Головна > Архів > № 1–2 (189–190) 2023 > 54–65
Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 54–65
https://doi.org/10.15407/ggcm2023.189-190.054
Анатолій ГАЛАМАЙ, Ігор ЗІНЧУК, Дарія СИДОР
Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: galamaytolik@ukr.net
Анотація
Вивчення басейнів седиментації з дискусійними палеотектонічними характеристиками, до яких належить, зокрема, баденський Карпатського регіону, показало, що задля уникнення протиріч в інтерпретації умов формування солей за флюїдними включеннями в галіті на першому етапі дослідження має бути генетична ідентифікація седиментаційних структур галіту та флюїдних включень у цьому мінералі. Термометричні дослідження включень, які є наступним етапом під час такого вивчення, доцільно провадити термометричними установками з високою точністю заміру температур гомогенізації, у яких передбачена можливість синхронного спостереження груп включень у різних зонах седиментаційного галіту.
Реконструкцію глибини (потужності водної товщі) баденського басейну Карпатського регіону здійснено завдяки модернізації апаратурного устаткування термометричного методу, яку проведено з урахуванням досвіду використання мікротермокамер конструкції В. А. Калюжного, О. Й. Петриченка і В. М. Ковалевича. Зокрема, здійснено заміну матеріалу термокамери (жаростійка сталь) на мідь, що дозволило уникнути зайвих теплових градієнтів у камері та збільшити допустиму швидкість нагрівання без спотворення теплового поля завдяки більшій теплопровідності міді. З аналогічною метою скляні оптичні вікна камери замінені на лейкосапфірові, як матеріал зі значно вищою теплопровідністю і більшим полем зору. Вимірювальну систему установки виконано на мініатюрному платиновому термометрі опору з електронним блоком вимірювання. Ці вдосконалення дали змогу досягти високої стабільності системи та хорошої відтворюваності результатів вимірювань.
Встановлено, що температура мінералотворення на дні баденського солеродного басейну Карпатського регіону становила 19,5–26,0 °C, а на поверхні розсолу – 34,0–36,0 °C. На цій підставі вперше для цього солеродного басейну побудовано модель із вираженим термоклином із загальною потужністю водної товщі близько 30 м, яка є найбільш імовірною для встановлення особливостей седиментації. Очевидно, що виявлення в низці давніх соленосних відкладів т. зв. «низькотемпературного» та «високотемпературного» придонного галіту пояснюється не різкими змінами клімату, а його кристалізацією на різних глибинах у солеродних басейнах.
Ключові слова
галіт, флюїдні включення, термометричний метод, термокамера, температура гомогенізації
Використані літературні джерела
Валяшко, М. Г. (1952). Галит, основные его разности, встречаемые в соляных озерах, и их структура. Труды ВНИИГалургии, 23, 25–32.
Воробьев, Ю. К. (1988). К проблеме термометрии по первичным включениям в минералах. Записки Всесоюзного минералогического общества, 117(1), 125–132.
Галамай, А. Р. (2001). Фізико-хімічні умови формування баденських евапоритових відкладів Карпатського регіону [Дис. канд. геол. наук]. Інститут геології і геохімії горючих копалин НАН України. Львів.
Галамай, А., Сидор, Д., & Любчак, О. (2014). Особливості появи газової фази в однофазових рідких включеннях у галіті (для визначення температури його кристалізації). У Мінералогія: сьогодення і майбуття: матеріали VІІІ наукових читань імені академіка Євгена Лазаренка (присвячено 150-річчю заснування кафедри мінералогії у Львівському університеті) (с. 34–36). Львів; Чинадієве.
Зінчук, І. М. (2003). Геохімія мінералоутворюючих розчинів золото-поліметалевих рудопроявів Центрального Донбасу (за включеннями у мінералах) [Дис. канд. геол. наук]. Інститут геології і геохімії горючих копалин НАН України. Львів.
Калюжний, В. А. (1960). Методи вивчення багатофазових включень у мінералах. Київ: Видавництво АН УРСР.
Ковалевич, В. М. (1978). Физико-химические условия формирования солей Стебникского калийного месторождения. Киев: Наукова думка.
Кореневский, С. М., Захарова, В. М., & Шамахов, В. А. (1977). Миоценовые галогенные формации предгорий Карпат. Ленинград: Недра.
Петриченко, О. Й. (1973). Методи дослідження включень у мінералах галогенних порід. Kиїв: Наукова думка.
Петриченко, О. Й. (1988). Физико-химические условия осадкообразования в древних солеродных бассейнах. Киев: Наукова думка.
Сидор, Д. В., Галамай, А. Р., & Мeng, F. (2018). Піротинова мінералізація у галогенних відкладах Верхньокамського родовища калійно-магнієвих солей (термобарогеохімічні дослідження). Мінералогічний збірник, 68(2), 52–61.
Хрущов, Д. П. (1980). Литология и геохимия галогенных формаций Предкарпатского прогиба. Киев: Наукова думка.
Шанина, С. Н., Сокерина, Н. В., Галамай, А. Р., Леденцов, В. Н., & Оносов, Д. В. (2014). Определение температур гомогенизации включений в галите Якшинского месторождения. Вестник Института геологии Коми НЦ УрО РАН, 8, 3–6.
Acros, D., & Ayora, C. (1997). The use of fluіd іnclusіons іn halіte as envіronmental thermometer: an experіmental study. In XІV ECROFІ: proceedings of the XIVth European Current Research on Fluid Inclusions (Nancy, France, July 1–4, 1997) (pp. 10–11). CNRS-CREGU.
Benison, K. C., & Goldstein, R. H. (1999). Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1–4), 113–132. https://doi.org/10.1016/S0009-2541(98)00127-2
Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823. https://doi.org/10.3390/min10090823
Galamay, A. R., Meng, F., Bukowski, K., Lyubchak, A., Zhang, Y., & Ni, P. (2019). Calculation of salt basin depth using fluid inclusions in halite from the Ordovician Ordos Basin in China. Geological Quarterly, 63(3), 619–628. https://doi.org/10.7306/gq.1490
Kovalevych, V., Paul, J., & Peryt, T. M. (2009). Fluid inclusions in the halite from the Röt (Lower Triassic) salt deposit in Central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporates, 24(1), 45–57. https://doi.org/10.1007/BF03228056
Lowenstein, T. K., Li, J., & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245. https://doi.org/10.1016/S0009-2541(98)00061-8
Meng, F., Ni, P., Schiffbauer, J. D., Yuan, X., Zhou, C., Wang, Y., & Xia, M. (2011). Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research, 184(1–4), 63–69. https://doi.org/10.1016/j.precamres.2010.10.004
Meng, F., Zhang, Y., Galamay, A. R., Bukowski, K., Ni, P., Xing, E., & Ji, L. (2018). Ordovician seawater composition: evidence from fluid inclusions in halite. Geological Quarterly, 62(2), 344–352. https://doi.org/10.7306/gq.1409
Roberts, S. M., & Spencer, R. J. (1995). Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19), 3929–3942. https://doi.org/ 10.1016/0016-7037(95)00253-V
Sirota, I., Enzel, Y., & Lensky, N. G. (2017). Temperature seasonality control on modern halite layers in the Dead Sea: In situ observations. GSA Bulletin, 129(9–10), 1181–1194. https://doi.org/10.1130/B31661.1
Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-32344-9
Xu, Y., Liu, C., Cao, Y., & Zhang, H. (2018). Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm. International Journal of Earth Sciences, 108, 173–182. https://doi.org/10.1007/s00531-018-1648-0
Zambito, J. J., & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590. https://doi.org/10.1130/G34078.1
Zhang, H., Lü, F., Mischke, S., Fan, M., Zhang, F., & Liu, C. (2017). Halite fluid inclusions and the late Aptian sea surface temperatures of the Congo Basin, northern South Atlantic Ocean. Cretaceous Research, 71, 85–95. https://doi.org/10.1016/j.cretres.2016.11.008
Zhao, Х., Zhao, Y., Wang, M., Hu, Y., Liu, C., & Zhang, H. (2022). Estimation of the ambient temperatures during the crystallization of halite in the Oligocene salt deposit in the Shulu Sag, Bohaiwan Basin, China. Minerals, 12(4), 410. https://doi.org/10.3390/min12040410