Опубліковано

ВИЗНАЧЕННЯ ТА РОЗПОДІЛ РУХОМИХ ФОРМ Na, K, Li, Ca, Ba У ТОРФАХ ЛЬВІВСЬКОЇ ОБЛАСТІ МЕТОДОМ ПОЛУМ’ЯНОЇ СПЕКТРОФОТОМЕТРІЇ

Головна > Архів > № 1–2 (197–198) 2025 > 75–90


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 75–90

https://doi.org/10.15407/ggcm2025.197-198.075

Мирослава ЯКОВЕНКО1, Юрій ХОХА2

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: 1myroslavakoshil@ukr.net; 2khoha_yury@ukr.net

Анотація

Наведено результати визначення кількісного вмісту та геохімічних особливостей розподілу рухомих форм Na, K, Li, Ca, Ba у торфі окремих представницьких родовищ і ділянок Львівської області, а також виявлено основні фактори, що впливають на їхню концентрацію. Аналіз виконано методом полум’яної спектрофотометрії, а математико-статистична обробка даних включала кореляційний, кластерний та факторний аналізи для встановлення залежностей та типоморфних асоціацій елементів. Визначено межі фонових коливань та коефіцієнти концентрації елементів. Дослідження вертикального розподілу показало зменшення вмісту K і Na з глибиною для всіх родовищ, а також Ca, Вa та Li (крім родовища Гончари). Встановлено, що вертикальний розподіл рухомих форм досліджуваних елементів у торф’яних покладах характеризується максимумами у верхньому торфогенному горизонті та приконтактних шарах з мінеральним ґрунтом (0–40 см), що зумовлено переважно біологічною акумуляцією та еоловим привнесенням. Винятком є нерівномірний розподіл Ca, Ba та Li у торфових покладах родовища Гончари, де (особливо на глибині 80–120 см) спостерігається значне збагачення мушлями прісноводних молюсків.

Ключові слова

торф, рухомі форми, елементний аналіз, полум’яна спектрофотометрія

Використані літературні джерела

Алексеенко, В. А. (1990). Геохимия ландшафта и окружающей среды. Москва: Недра.

Алексеенко, В. А. (2000). Экологическая геохимия. Москва: Логос.

Войткевич, Г. В., Мирошников, А. Е., Поваренных, А. С., Прохоров, В. Г. (1970). Краткий справочник по геохимии. Москва: Недра, 280.

Інститут ґрунтознавства та агрохімії імені О. Н. Соколовського Української академії аграрних наук. (2006). Якість ґрунту. Визначення рухомих сполук фосфору і калію за методом Кірсанова в модифікації ННЦ ІГА (ДСТУ 4405:2005). Київ: Держспоживстандарт України.

Клос, В. Р., Бірке, М., Жовинський, Е. Я., Акінфієв, Г. О., Амашукелі, Ю. А., & Кламенс, Р. (2012). Регіональні геохімічні дослідження ґрунтів України в рамках міжнародного проекту з геохімічного картування сільськогосподарських та пасовищних земель Європи (GEMAS). Пошукова та екологічна геохімія, 1(12), 51–66.

Лиштван, И. И., Базин, Е. Т., Гамаюнов, Н. И., & Терентьев, А. А. (1989). Физика и химия торфа. Москва: Недра.

Малишев, В., Габ, А., Шахнін, Д. (2018). Аналітична хімія та інструментальні методи аналізу. Університет «Україна».

Спаська, О. А., Білокопитов, Ю. В., & Ятчишин, Й. Й. (2024). Аналітична хімія та інструментальні методи хімічного аналізу. Київ: Видавництво Національного авіаційного університету «НАУ-друк».

Яковенко, М., Хоха, Ю., & Любчак, О. (2022). Геохімічні особливості накопичення і міграції важких металів у торфах Львівської області. Вісник Харківського національного університету імені В. Н. Каразіна, cерія «Геологія. Географія. Екологія», 56, 105–121. https://doi.org/10.26565/2410-7360-2022-56-07

Andrejko, M. J., Fiene, F., & Cohen, A. D. (1983). Comparison of ashing techniques for determination of the inorganic content of peats. In P. M. Jarrett (Ed.), Testing of Peats and Organic Soils (pp. 5–20). Philadelphia: ASTM International. https://doi.org/10.1520/STP37331S

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San Francisco: Academic Press.

Lucas, R. E. (1982). Organic soils (Histosols) formation, distribution, physical and chemical properties and management for crop production (No 435, pp. 3–77) [Research Report]. Michigan State University.

Rydelek, P. (2013). Origin and composition of mineral constituents of fen peats from Eastern Poland. Journal of Plant Nutrition, 36(6), 911–928. https://doi.org/10.1080/01904167.2013.770525

Siddique, M. A. B., Alam, M. K., Islam, S., Diganta, M. T. M., Akbor, M. A., Bithi, U. H., Chowdhury, A. I., & Ullah, A. A. (2020). Apportionment of some chemical elements in soils around the coal mining area in northern Bangladesh and associated health risk assessment. Environmental Nanotechnology, Monitoring & Management, 14, Article 100366. https://doi.org/10.1016/j.enmm.2020.100366

Qin, S., Zhao, C., Li, Y., & Zhang, Y. (2015). Review of coal as a promising source of lithium. International Journal of Oil, Gas and Coal Technology, 9(2), 215–229. https://doi.org/10.1504/IJOGCT.2015.067490


Опубліковано

ХІМІЧНИЙ СКЛАД РОЗСОЛІВ ФЛЮЇДНИХ ВКЛЮЧЕНЬ У ГАЛІТІ ЕВАПОРИТОВИХ ВІДКЛАДІВ ЗАПАДИНИ ВЕНКОУ (КНР) У КОНТЕКСТІ СОЛЯНОГО МІНЕРАЛОГЕНЕЗУ

Головна > Архів > № 1–2 (197–198) 2025 > 57–74


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 57–74

https://doi.org/10.15407/ggcm2025.197-198.057

Анатолій Галамай1, Фанвей МЕНГ2, Дарія Сидор1

1 Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: galamaytolik@ukr.net
2 Китайський університет гірничої справи і технологій (CUMT), Сюйчжоу, провінція Цзянсу, Китай, e-mail: fwmeng@isl.ac.cn

Анотація

Особливості мінералогенезу западини Венкоу басейну Давенкоу встановлено за хімічним складом розсолів флюїдних включень різного генезису в галіті. Вміст К+, Mg2+ і SO42− у седиментаційних розсолах коливався в межах 27,6–32,9; 41,5–32,7; 66,6–33,3 г/л відповідно. Отримані дані щодо хімічного складу седиментаційних розсолів та значення δ34S (+10,9…+35,7 ‰) і δ18O (+14,7…+19,4 ‰) ангідриту свідчать про можливий вплив морських трансгресій на континентальний галогенез. Збагачені на Ca(HCO3)2 слабкомінералізовані води, що надходили в басейн, спричиняли випадіння гіпсу чи глаубериту. Високий вміст калію в розсолах, що наближений до початку осадження сильвіну, вказує на ймовірність наявності у відкладах полігалітової мінералізації.

У свердловині XZK-101, крім галіту, мірабіліту, глаубериту, інших соляних мінералів не встановлено, проте, згідно з даними дослідження хімічного складу розсолів включень у галіті, у районі дослідження слід очікувати виявлення в соленосних відкладах кізериту, лангбейніту та інших соляних мінералів. Утворенню лангбейніту сприяли підвищені температура та тиск. Виявлені розсоли з аномально високим вмістом магнію, очевидно, є залишковими розсолами при утворенні лангбейніту за рахунок нестабільних седиментаційних гексагідриту та сильвіну. Згідно з отриманими даними, межі як галітової, так і калійних фацій на наявних фаціальних мапах басейну потребують перегляду. 

Ключові слова

флюїдні включення, галіт, температура гомогенізації, джерела солей

Використані літературні джерела

Валяшко, М. Г. (1962). Закономерности формирования месторождений солей. Mосква: МГУ.

Галамай, А. Р., Максимук, С. В., & Сидор, Д. В. (2021). Геохімічні особливості впливу нафтогазових покладів на покриваючі солі Карпатської нафтогазоносної провінції. У Надрокористування в Україні. Перспективи інвестування: Міжнародна науково-практична конференція (1–5 листопада 2021 р.) (с. 100–105). Львів.

Галамай, А. Р., Садовий, Ю. В., Meng, F., & Сидор, Д. (2024). Фізико-хімічні умови формування полігаліту північно-західної частини басейну Кайдам, КНР. Мінералогічний збірник, 74, 94–108. https://doi.org/10.30970/min.74.08

Ковалевич, В. М. (1973). Физико-химические условия формирования солей Стебникского калийного месторождения. Киев: Наукова думка.

Петриченко, О. Й. (1973). Методи дослідження включень у мінералах галогенних порід. Kиїв: Наукова думка.

Станкевич, Е. Ф., Баталин, Ю. В., & Чайкин, В. Г. (1991). Об отличиях морских и континентальных галогенных отложений. В Проблемы морского и континентального галогенеза (с. 23–30). Новосибирск: Наука.

Ходькова, С. В. (1968). Лангбейнит Передкарпатья и его парагенезисы. Литология и полезные ископаемые, 6, 73–85.

Acros, D., & Ayora, C. (1997). The use of fluіd іnclusіons іn halіte as envіronmental thermometer: an experіmental study. In M. C. Boiron & J. Pironon (Eds.), XІV ECROFІ: proceedings of the XIVth European Current Research on Fluid Inclusions, Nancy, France, July 1–4, 1997 (pp. 10–11). CNRS-CREGU.

Ayora, C., Garcia-Veigas, J., & Pueyo, J. J. (1994). The chemical and hydrological evolution of an ancient potash-forming evaporite basin as constrained by mineral sequence, fluid inclusion composition, and numerical simulation. Geochimica et Cosmochimica Acta, 58(16), 3379–3394. https://doi.org/10.1016/0016-7037(94)90093-0

Benison, K. C. (2019). How to search for life in Martian chemical sediments and their fluid and solid inclusions using petrographic and spectroscopic methods. Frontiers in Environmental Science, 7, 108. https://doi.org/10.3389/fenvs.2019.00108

Claypool, G. E., Holser, W. T., Kaplan, І. R., Sakaі, H., & Zak, І. (1980). The age curves of sulfur and oxygen іsotopes іn marіne sulfate and theіr mutual іnterpretatіon. Chemical Geology, 28, 199–260. https://doi.org/10.1016/0009-2541(80)90047-9

Doebelin, N., & Kleeberg, R. (2015). Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 48, 1573–1580. https://doi.org/10.1107/S1600576715014685

Eugster, H. P., Harvіe, C. E., & Weare, J. H. (1980). Mіneral equіlіbrіa іn a sіx-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25 °C. Geochimica et Cosmochimica Acta, 44(9), 1335–1347. https://doi.org/10.1016/0016-7037(80)90093-9

Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823. https://doi.org/10.3390/min10090823

Galamay, A. R., Karakaya, M. Ç., Bukowski, K., Karakaya, N., & Yaremchuk, Y. (2023). Geochemistry of brine and paleoclimate reconstruction during sedimentation of Messinian salt in the Tuz Gölü Basin (Türkiye): Insights from the study of fluid inclusions. Minerals, 13(2), 171. https://doi.org/10.3390/min13020171

Galamay, A. R., Meng, F., Bukowski, K., Ni, P., Shanina, S. N., & Ignatovich, O. O. (2016). The sulphur and oxygen isotopic composition of anhydrite from the Upper Pechora Basin (Russia): new data in the context of the evolution of the sulphur isotopic record of Permian evaporites. Geological Quarterly, 60(4), 990–999. https://doi.org/10.7306/gq.1309

Gibson, M. E., & Benison, K. C. (2023). It’s a trap!: Modern and ancient halite as Lagerstätten. Journal of Sedimentary Research, 93(9), 642–655. https://doi.org/10.2110/jsr.2022.110

Halas, S., & Szaran, J. (1999). Low-temperature thermal decomposition of sulfates to SO2 for on-line 34S/32S analysis. Analytical Chemistry, 71(15), 3254–3257. https://doi.org/10.1021/ac9900174

Li, M. H. (1986). Paleoecological analysis of the early Tertiary oil-bearing sedimentary formation in the Dongpu depression, North China Diwa Region. Geotectonica Metallogenia, 10, 159–168. [in Chinese with English abstract]

Liu, M. W., Song, W. Q., Xu, J. Q., Zhang, Y. J., & Xu, L. J. (2003). Geological characteristics of Cambrian gypsum deposit in Longquan of Yiyuan County. Geology of Shandong, 19(1), 39–42. [in Chinese with English abstract]

Lowenstein, T. K., Li, J. & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245. https://doi.org/10.1016/S0009-2541(98)00061-8

Meng, F., Galamay, A. R., Ni, P., Ahsan, N., & Rehman, S. U. (2020). Composition of middle-late Eocene salt lakes in the Jintan Basin of eastern China: Evidence of marine transgressions. Marine and Petroleum Geology, 122, Article 104644. https://doi.org/10.1016/j.marpetgeo.2020.104644

Meng, F., Galamay, A. R., Ni, P., Yang, C.-H., Li, Y. P., & Zhuo, Q. G. (2014). The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. Journal of Asian Earth Sciences, 85, 97–105. https://doi.org/10.1016/j.jseaes.2014.01.024

Paytan, A., Kastner, M., Campbell, D., & Thiemens, M. H. (1998). Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282(5393), 1459–1462. https://doi.org/10.1126/science.282.5393.1459

Ren, L. Y., Lin, G. F., Zhao, Z. Q., & Wang, X. W. (2000). Early Tertiary marine transgression in Dongpu depression. Acta Palaeontologica Sin., 39, 553–557. [in Chinese with English abstract]

Song, S. W. (2010). Rock salt mining and securite study of Tai’an Dawenkou Basin. Geology of Chemical Minierals, 32(3), 177–185. [in Chinese with English abstract]

Wang, Z. J., Li, Q., & Li, Z. C. (2003). Potentiality evaluation of gypsum resource in Dawenkou Basin in Tai’an City and suggestion on ore need predication and exploration. Land and Resources in Shangdong Province, 19(5), 23–25. [in Chinese with English abstract]

Wu, T., & Ren, L. Y. (2004). The tertiary seaway and new reservoir probe in Dongpu depression as well as its surrounded basins. Acta Palaeontologica Sin., 43, 147–154. [in Chinese with English abstract]

Xiao, B. J., Liu, A. T., Zhang, Y. Y., & Dong, W. H. (2010). Geological characteristics of Xiaotun Gypsum deposits in Zhangfanxiang of Zaozhuang City in Shandong Province. Land and Resources in Shangdong Province, 26(5), 12–15. [in Chinese with English abstract]

Xu, Y., Cao, Y., Liu, C., Zhang, H., & Nie, X. (2020). The history of transgressions during the Late Paleocene-Early Eocene in the Kuqa Depression, Tarim Basin: Constraints from C-O-S-Sr isotopic geochemistry. Minerals, 10(9), 834. https://doi.org/10.3390/min10090834

Yao, W., Wortmann, U. G., & Paytan, A. (2019). Sulfur isotopes – Use for stratigraphy during times of rapid perturbations. In M. Montenari (Ed.), Stratigraphy & Timescales: Vol. 4. Case Studies in Isotope Stratigraphy (Ch. 1, pp. 1–33). https://doi.org/10.1016/bs.sats.2019.08.004

Zhang, D., Huang, X. Y., & Li, C. J. (2013). Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes. Advances In Water Science, 24(3), 418–426. [in Chinese with English abstract]

Zhu, M. (2015). Study on the origin of salt deposit in Dawenkou Basin in Shandong Province. Land and Resources in Shangdong Province, 31(1), 27–30. [in Chinese with English abstract]


Опубліковано

ЗАСТОСУВАННЯ ХЕМОМЕТРИЧНИХ МЕТОДІВ ТА РЕГРЕСИВНИХ МОДЕЛЕЙ В ОБРОБЦІ NIR СПЕКТРІВ ТОРФУ ДЛЯ КІЛЬКІСНОГО ВИЗНАЧЕННЯ ЙОГО ХІМІКО-ТЕХНОЛОГІЧНИХ ПОКАЗНИКІВ

Головна > Архів > № 3–4 (195–196) 2024 > 100–125


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 100–125

https://doi.org/10.15407/ggcm2024.195-196.100

Юрій ХОХА1, Мирослава ЯКОВЕНКО2

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: 1khoha_yury@ukr.net; 2myroslavakoshil@ukr.net

Анотація

Розглянуто теоретичні та практичні аспекти застосування NIR спектрометрії, поєднаної з хемометрією, для експрес-аналізу торфу. Спектрометрія в ближньому інфрачервоному діапазоні забезпечує значний обсяг інформації про складні органічні системи, зокрема нерегулярні полімери, до яких належить торф. Порівняно з класичними аналітичними методами NIR-спектрометрія дозволяє досліджувати зразок без складної пробопідготовки, а сам аналіз триває декілька хвилин. Водночас, позаяк результати виражаються як інтенсивність відбиття випромінювання в діапазоні обертонів фундаментальних частот, їхня обробка вимагає застосування спеціальних математичних та статистичних методів. Показано, що такі методи надає хемометрія. Розглянуто та проаналізовано базові способи препроцеcінгу спектрів відбиття. За результатами обробки експериментальних даних доведено, що цей метод можна використовувати для встановлення відповідності торфу чинним нормам, стандартам та технічним умовам щодо вологості, вмісту зольного (неорганічного) залишку та кислотності (рН).

Ключові слова

ближня інфрачервона спектроскопія (NIR), аналіз торфу, прогнозні моделі, багатофакторний аналіз, метод регресії часткових найменших квадратів (PLS), ефект попередньої обробки

Використані літературні джерела

Інститут ґрунтознавства та агрохімії імені О. Н. Соколовського Української академії аграрних наук. (2008). Меліоранти ґрунту та середовища росту. Готування проб до хімічного та фізичного аналізу, визначення вмісту сухої речовини, вмісту вологи та лабораторно ущільненої насипної щільності (EN 13040:1999, ІDТ) (ДСТУ EN 13040:2005).

Інститут сільськогосподарської мікробіології та агропромислового виробництва НААН. (2016). Торф і продукти його перероблення для сільського господарства. Методи визначення обмінної й активної кислотності (ДСТУ 7882:2015).

Супрунович, С. В., Кормош, Ж. О., & Сливка, Н. Ю. (2022). Статистичні та хемометричні методи в хімії: навчальний посібник для студентів вищих навчальних закладів. Луцьк: ВНУ імені Лесі Українки.

Технічний комітет стандартизації «Ґрунтознавство». (2016). Якість ґрунту. Визначення зольності торфу і торфового ґрунту (ДСТУ 7942:2015).

Яковенко, М., & Хоха, Ю. (2024). Використання методів інфрачервоної спектроскопії для дослідження торфу (родовище Гончари, Львівська область). Геологія і геохімія горючих копалин, 1–2(193–194), 113–129. https://doi.org/10.15407/ggcm2024.193-194.113

Andrés, J. M., & Bona, M. T. (2005). Analysis of coal by diffuse reflectance near-infrared spectroscopy. Analytica chimica acta, 535(1–2), 123–132. https://doi.org/10.1016/j.aca.2004.12.007

Geladi, P., MacDougall, D., & Martens, H. (1985). Linearization and scatter-correction for near-infrared reflectance spectra of meat. Applied spectroscopy, 39(3), 491–500.

McClure, W. F. (1994). Near-infrared spectroscopy the giant is running strong. Analytical chemistry, 66(1), 42A–53A.

Mostert, M. M., Ayoko, G. A., & Kokot, S. (2010). Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry, 29(5), 430–445. https://doi.org/10.1016/j.trac.2010.02.009

Nunes, C. A., Freitas, M. P., Pinheiro, A. C. M., & Bastos, S. C. (2012). Chemoface: a novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society, 23(11), 2003–2010. https://doi.org/10.1590/S0103-50532012005000073


Опубліковано

ІННОВАЦІЙНИЙ КОМПЛЕКС ВИВЧЕННЯ СКЛАДНОПОБУДОВАНИХ ПОРІД-КОЛЕКТОРІВ ВУГЛЕВОДНІВ, ОСНОВАНИЙ НА ПЕТРОФІЗИЧНИХ ТА ГЕОХІМІЧНИХ ПАРАМЕТРАХ (на прикладі Бориславсько-Покутської зони Передкарпатського прогину)

Головна > Архів > № 1–2 (193–194) 2024 > 130–140


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 130–140

https://doi.org/10.15407/ggcm2024.193-194.130

Роман-Даниїл КУЧЕР, Оксана СЕНІВ

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: igggk@mail.lviv.ua

Анотація

Розглянуто способи вивчення ємнісно-фільтраційних властивостей порід-колекторів покладів вуглеводнів та процеси трансформації і стан виснаженості керогену в межах Бориславсько-Покутської зони Передкарпатського прогину. За результатами аналізу фактичного і теоретичного матеріалу обґрунтовано оптимальний методичний комплекс досліджень найважливіших характеристик колекторів та процесів еволюції керогену для розглянутої зони. Проведено аналіз геолого-петрофізичних характеристик відкладів олігоцену Внутрішньої зони Передкарпатського прогину та сформовано масиви інформації. Встановлено, що порово-тріщинні і тріщинні колектори мають складну будову, а їхнє поширення та потужність контролюються двома чинниками різної природи: літолого-фаціальним і структурно-деформаційним. Виявлено, що моделі термодинамічного моделювання – максимізація ентропії та констант незалежних хімічних реакцій – надають достовірні результати розподілу елементів між компонентами складних гетерогенних та гомогенних геохімічних систем. Показано, що обраний спосіб розрахунку енергії Гіббса індивідуальних компонентів геохімічних систем має точність, достатню для використання в вищезазначених моделях.

Ключові слова

Бориславсько-Покутська зона, складнопобудовані породи-колектори, петрофізичні та геохімічні параметри

Використані літературні джерела

Глушко, В. П. (1972). Термодинамические свойства индивидуальных веществ. Москва: Наука.

Крупський, Ю. З., Куровець, І. М., Сеньковський, Ю. М., Михайлов, В. А., Чепіль, П. М., Дригант, Д. М., Шлапінський, В. Є., Колтун, Ю. В., Чепіль, В. П., Куровець, С. С., & Бодлак, В. П. (2014). Нетрадиційні джерела вуглеводнів України: Кн. 2. Західний нафтогазоносний регіон. Київ: Ніка-Центр.

Куровець, І., Грицик, І., Зубко, О., Приходько, О., & Кучер, Р.-Д. (2023). Апаратурно-методичний комплекс досліджень петрофізичних властивостей тріщинуватих порід-колекторів вуглеводнів. Геологія і геохімія горючих копалин, 3–4(191–192), 37−44. https://doi.org/10.15407/ggcm2023.191-192.037

Куровець, І., Грицик, І., Приходько, О., Чепусенко, П., Кучер, З., Михальчук, С., Мельничук, С., Лисак, Ю., & Петелько, Л. (2021). Петрофізичні моделі відкладів менілітової світи олігоценового флішу Карпат і Передкарпатського прогину. Геологія і геохімія горючих копалин, 3–4(185–186), 33–43. https://doi.org/10.15407/ggcm2021.03-04.033

Куровець, І., Зубко, О., Грицик, І., Приходько, О., & Кучер, Р.-Д. (2023). Особливості формування ємнісно-фільтраційних властивостей порід-колекторів Внутрішньої зони Передкарпатського прогину. У Геофізика і геодинаміка: прогнозування та моніторинг геологічного середовища: збірник матеріалів XI Міжнародної наукової конференції (Львів, 10−12 жовтня 2023 р.) (с. 109−112). Львів.

Куровець, І. М., Притулка, Г. Й., Шеремета, О. В., Зубко, О. С., Осадчий, В. Г., Грицик, І. І., Приходько, О. А., Кос’яненко, Г. П., Чепусенко, П. С., Шира, А. І., Кучер, З. І., & Олійник, К. А. (2006). Петрофізичні моделі складнопобудованих колекторів вуглеводнів. Геологія і геохімія горючих копалин, 3–4, 119–139.

Кучер, Р.-Д. А., & Сенів, О. Р. (2024). Обґрунтування оптимального методичного комплексу досліджень ємнісно-фільтраційних властивостей колекторів та процесів трансформації керогену Бориславсько-Покутської зони Передкарпатського прогину. У Сучасні проблеми наук про Землю: матеріали ХІІІ Всеукраїнської конференції-школи (Київ, 10–12 квітня 2024 р.) (с. 22–24). Київ.

Павлюк, М., Наумко, І., Лазарук, Я., Хоха, Ю., Крупський, Ю., Савчак, О., Різун, Б., Медведєв, А., Шлапінський, В., Колодій, І., Любчак, О., Яковенко, М., Тернавський, М., Гривняк, Г., Тріска, Н., Сенів, О., & Гузарська, Л. (2022). Резерв нафтогазовидобутку Західного регіону України (Електрон. вид.). Львів. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf

Хоха, Ю. В. (2014). Термодинаміка глибинних вуглеводнів у прогнозуванні регіональної нафтогазоносності. Київ: Наукова думка.

Хоха, Ю. В., Любчак, О. В., & Яковенко, М. Б. (2019). Енергія Гіббса утворення компонентів природного газу в осадових товщах. Геологія і геохімія горючих копалин, 2(179), 37–46. https://doi.org/10.15407/ggcm2019.02.037

Чекалюк, Э. Б. (1971). Термодинамические основы теории минерального происхождения нефти. Киев: Наукова думка.

Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498–2508. https://doi.org/10.1021/ie4033999

Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A code calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225(1). https://doi.org/10.3847/0067-0049/225/1/4

Koukkari, P. (2014). Introduction to constrained Gibbs energy methods in process and materials research. VTT Technical Research Centre of Finland. VTT Technology No. 160. https://publications.vtt.fi/pdf/technology/2014/T160.pdf

van Krevelen, D. W., & Chermin, H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1(2), 66–80. https://doi.org/10.1016/0009-2509(51)85002-4

Sanford, G., & McBride, B. J. (1994). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. NASA reference publication, 1311.

Stull, D. R., Westrum Jr., E. F., & Sinke, G. C. (1969). The Chemical Thermodynamics of Organic Compounds. NewYork: J. Wiley and Sons, Inc.

Tribus, M. (1961). Thermostatics and thermodynamics: an introduction to energy, information and states of matter, with engineering applications. Princeton: D. Van Nostrand Company Inc.


Опубліковано

ВИКОРИСТАННЯ МЕТОДІВ ІНФРАЧЕРВОНОЇ СПЕКТРОСКОПІЇ ДЛЯ ДОСЛІДЖЕННЯ ТОРФУ (родовище Гончари, Львівська область)

Головна > Архів > № 1–2 (193–194) 2024 > 113–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 113–129

https://doi.org/10.15407/ggcm2024.193-194.113

Мирослава ЯКОВЕНКО1, Юрій ХОХА2

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: 1myroslavakoshil@ukr.net; 2khoha_yury@ukr.net

Анотація

Розглянуто використання методів інфрачервоної спектроскопії ближнього (англ. NIR – near-infrared reflectance) та середнього (англ. MIR – mid-infrared reflectance) діапазону для аналізу торфу, що дозволяє отримати інформацію про структуру органічної речовини на рівні функціональних груп.

Дослідження проводили на зразках торфу, відібраних з вертикальної колонки/розрізу (0–140 см) родовища Гончари (Львівська область). За результатами аналізу ідентифіковано спектри хімічних сполук, серед яких домінують такі функціональні групи: гідроксильні, метиленові, метильні та ароматичні.

Проведений аналіз ділянок ІЧ-спектрограм досліджуваного торфу показав, що спектроскопія середньої інфрачервоної області (400–4000 см−1) є значно інформативнішою порівняно зі спектрометрією ближнього інфрачервоного діапазону (3900 до 7400 см−1). Це свідчить про те, що середній інфрачервоний діапазон є більш ефективним для виявлення та ідентифікації хімічних сполук у торфі.

Оцінено можливість та ефективність використання методів інфрачервоної спектроскопії ближнього та середнього інфрачервоного діапазону для аналізу хімічного складу торфу та отримання інформації про структуру органічної речовини на рівні функціональних груп.

Виявлено, що методи MIR та NIR можуть бути використані та ефективно застосовані в комплексі з іншими методами як аналітичний інструмент для моніторингу якості торфу, одночасного вимірювання кількох параметрів якості та його подальшого використання в різних галузях промисловості і розробки екологічно чистих технологій.

Ключові слова

торф, мінеральний та органічний склад, інфрачервона спектроскопія, ближня інфрачервона спектроскопія, середня інфрачервона спектроскопія, функціональні групи

Використані літературні джерела

Інститут ґрунтознавства та агрохімії імені О. Н. Соколовського Української академії аграрних наук. (2008). Меліоранти ґрунту та середовища росту. Готування проб до хімічного та фізичного аналізу, визначення вмісту сухої речовини, вмісту вологи та лабораторно ущільненої насипної щільності (EN 13040:1999, ІDТ) (ДСТУ EN 13040:2005).

Миронюк, О. В. (Уклад.). (2017). Інструментальні методи хімічного аналізу. Київ: НТУУ «КПІ ім. І. Сікорського».

Технічний комітет стандартизації «Ґрунтознавство». (2016). Якість ґрунту. Визначення зольності торфу і торфового ґрунту (ДСТУ 7942:2015).

Юрченко, О. М., Кормош, Ж. О., Савчук, Т. І., & Корольчук, С. І. (2021). Методичні рекомендації до вивчення теми «Інфрачервона спектроскопія» з дисципліни «Фізичні методи дослідження речовини». Луцьк.

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. (2013). Herisau: Metrohm AG.

Bellamy, L. J. (2013). The infra-red spectra of complex molecules. Springer Science & Business Media.

Burns, D. A., & Ciurczak, E. W. (Eds.). (2008). Handbook of near-infrared analysis (3rd ed.). CRC Press. https://doi.org/10.1201/9781420007374

Cross, A. D. (1960). An introduction to practical infra-red spectroscopy. Butterworths Scientific Publications.

Mistry, B. D. (2009). A handbook of spectroscopic data – chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy). Oxford Book Company.

Rice, J. A., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 17(5), 635–648. https://doi.org/10.1016/0146-6380(91)90006-6

Stark, E., Luchter, K., & Margoshes, M. (1986). Near-infrared analysis (NIRA): A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, 22(4), 335–399. https://doi.org/10.1080/05704928608060440

Szymanski, H. A., & Erickson, R. E. (1970). Infrared Band Handbook: Vol. 1. 4240–999 cm−1/Vol. 2. 999–29 cm−1 [Electronic resource]. Boston, MA: Springer US: Imprint: Springer. https://doi.org/10.1007/978-1-4684-6069-8

Tsutsuki, K., & Kuwatsuka, S. (1978). Chemical studies on soil humic acids: II. Composition of oxygen-containing functional groups of humic acids. Soil Science and Plant Nutrition, 24(4), 547–560. https://doi.org/10.1080/00380768.1978.10433134

Yonebayashi, K., & Hattori, T. (1988). Chemical and biological studies on environmental humic acids: I. Composition of elemental and functional groups of humic acids. Soil Science and Plant Nutrition, 34(4), 571–584. https://doi.org/10.1080/00380768.1988.10416472


Опубліковано

ПРО ЗНАЧЕННЯ ПРИРОДНИХ КАРБОНАТІВ У ПРОЦЕСАХ СИНТЕЗУ І ГЕНЕЗИ ВУГЛЕВОДНІВ У ЛІТОСФЕРІ ЗЕМЛІ

Головна > Архів > № 3–4 (191–192) 2023 > 135–142


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 135–142

https://doi.org/10.15407/ggcm2023.191-192.135

Йосип СВОРЕНЬ

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: igggk@mail.lviv.ua

Анотація

Засвідчено фундаментальне значення досліджень процесів синтезу і генези вуглеводнів у літосфері Землі і вказано на перспективність вибраного напряму як для вирішення пошукових завдань, так і вдосконалення генетичних висновків про фізико-хімічні умови формування покладів вуглеводнів у різних геологічних умовах, зокрема ролі в цьому процесі природного карбонатоутворення. У цьому зв’язку показано, що одним із найяскравіших природних феноменів літосфери Землі є наявні прояви прожилково-вкрапленої карбонатної мінералізації. Це предметно обговорено на прикладі деяких районів Українських Карпат і Передкарпаття, де часто трапляються істотно карбонатні прожилкові утворення гідротермального походження зі слідами міграції вуглеводнів, але промислово-пошукові роботи проводяться рідко через їхні низькі (як вважають) перспективи на газово-нафтові поклади. Привертають увагу райони розвитку кальцитових прожилків з рідкісними досконало ограненими кристалами кварцу – «мармароськими діамантами» серед відкладів крейди і палеогену південно-західного схилу Карпат.

 Обґрунтовано матеріали про значення природних карбонатів у процесах синтезу і генези вуглеводнів у літосфері Землі, яке полягає у виявленій, невідомій раніше властивості природних карбонатів, переважно карбонату Кальцію, під дією абіогенного високотермобарного глибинного флюїду розкладатися і бути додатковим джерелом Карбону з різними ізотопними складами в процесах синтезу і генези вуглеводнів: газу, нафти, бітумів, а також переносником цих сполук у час їхньої міграції та консервації в новоутвореннях у відкладах нафтогазоносних областей і металогенічних провінцій: покладах-родовищах, жилах, флюїдних включеннях, прожилково-вкрапленій мінералізації.

Ключові слова

флюїдні включення, карбонати, прожилки, вуглеводні, поклади, газ і нафта, мас-спектрометричні дослідження, передбачуване наукове відкриття

Використані літературні джерела

Білецький, В. C. (Ред.). (2004). Мала гірнича енциклопедія: Т. 1. А–К. Донецьк: Донбас.

Братусь, М. Д., Давиденко, М. М., Зінчук, І. М., Калюжний, В. А., Матвієнко, О. Д., Наумко, І. М., Пірожик, Н. Е., Редько, Л. Р., & Сворень, Й. М. (1994). Флюїдний режим мінералоутворення в літосфері (в зв’язку з прогнозуванням корисних копалин). Київ: Наукова думка.

Лазаренко, Є. К., & Винар, О. М. (1975). Мінералогічний словник. Київ: Наукова думка.

Матковський, О. І. (Гол. ред.). (2003). Мінерали Українських Карпат. Борати, арсенати, фосфати, молібдати, сульфати, карбонати, органічні мінерали і мінералоїди. Львів: Видавничий центр ЛНУ ім. Івана Франка.

Матковський, О., Наумко, І., Пав лунь, М., & Сливко, Є. (2021). Термобарогеохімія в Україні. Львів: Простір-М.

Наумко, І. М. (2006). Флюїдний режим мінералогенезу породно-рудних комплексів України (за включеннями у мінералах типових парагенезисів) [Автореф. дис. д-ра геол. наук, Інститут геології і геохімії горючих копалин НАН України]. Львів.

Наумко І., Братусь М., Дудок І., Калюжний В., Ковалишин З., Сахно Б., Сворень Й., & Телепко Л. (2004). Флюїдний режим катагенно-гідротермального процесу періоду формування жильної, прожилкової і прожилково-вкрапленої мінералізації в осадових товщах. У В. В. Колодій (Відп. ред.), Карпатська нафтогазоносна провінція (с. 308–345). Львів; Київ: Український видавничий центр.

Наумко, І. М., & Сворень, Й. М. (2008). Про шляхи втілення глибинного високотемпературного флюїду в земну кору. Доповіді НАН України, 9, 112–114.

Сворень, И. М. (1984). Примеси газов в кристаллах минералов и других твердых телах, их способы извлечения, состав, форма нахождения и влияние на свойства веществ [Автореф. дис. канд. техн. наук]. Институт геологии и геохимии горючих ископаемых АН УССР. Львов.

Сворень, И. М. (1988). Формы нахождения водорода в некоторых твердых материалах различного происхождения согласно физико-химической модели наводороживания твердых тел. В Геохимия и термобарометрия эндогенных флюидов (с. 95–103). Киев: Наукова думка.

Сворень, Й. М. (1992). Питання теорії генезису природних вуглеводнів та шляхи пошуку їх покладів. У Тектогенез і нафтогазоносність надр України (с. 143–145). Львів.

Сворень, Й. (2020). Надра Землі – природний фізико-хімічний реактор: природа води нафтових і газових родовищ. У Нафтогазова галузь: Перспективи нарощування ресурсної бази: матеріали доповідей Міжнародної науково-технічної конференції (Івано-Франківськ, 8–9 грудня 2020 р.) (с. 158–160). Івано-Франківськ: ІФНТУНГ.

Сворень, Й. М., & Давиденко, М. М. (1995). Термобарометрія і геохімія газів прожилково-вкрапленої мінералізації у відкладах нафтогазоносних областей і металогенічних провінцій. Доповіді НАН України, 9, 72–73.

Сворень, Й. М., Давиденко, М. М., Гаєвський, В. Г., Крупський, Ю. З., & Пелипчак, Б. П. (1994). Перспективи термобарометрії і геохімії газів прожилково-вкрапленої мінералізації у відкладах нафтогазоносних областей і металогенічних провінцій. Геологія і геохімія горючих копалин, 3–4(88–89), 54–63.

Сворень, Й. М., & Наумко, І. М. (2003). Нова теорія синтезу і генезису вуглеводнів у літосфері Землі: абіогенно-біогенний дуалізм. В Международная конференция «Крым–2003» (с. 75–77). Симферополь.

Сворень, Й., & Наумко, І. (2004). Термобарометрія і геохімія газів прожилково-вкрапленої мінералізації у відкладах нафтогазоносних областей і металогенічних провінцій: генезис і синтез прожилкових карбонатних порід. У Мінералогія: історія, теорія і практика: тези доповідей Міжнародної наукової конференції, присвяченої 140-річчю кафедри мінералогії Львівського національного університету імені Івана Франка (Львів–Шацьк, 3–6 вересня 2004 р.) (с. 63–65). Львів: Видавничий центр ЛНУ імені Івана Франка.

Сворень, Й. М., & Наумко, І. М. (2005). Термобарометрія і геохімія газів прожилково-вкрапленої мінералізації у відкладах нафтогазоносних областей і металогенічних провінцій – природний феномен літосфери Землі. Доповіді НАН України, 2, 109–113.

Сворень, Й. М., & Наумко, І. М. (2006). Нова теорія синтезу і генезису природних вуглеводнів: абіогенно-біогенний дуалізм. Доповіді НАН України, 2, 111–116.

Svoren, J. M. (2020). Various Chemical Properties of Carbon Isotopes in Natural Synthesis of Different Compounds. Journal of Geological Resource and Engineering, 8, 20–23. https://doi.org/10.17265/2328-2193/2020.01.002


Опубліковано

ВПЛИВ ВОД МОРСЬКОГО І КОНТИНЕНТАЛЬНОГО ПОХОДЖЕННЯ НА ПРОЦЕСИ ТРАНСФОРМАЦІЇ ГЛИНИСТИХ МІНЕРАЛІВ ЕВАПОРИТОВИХ ВІДКЛАДІВ (на прикладі Калуш-Голинського родовища Передкарпатського прогину)

Головна > Архів > № 3–4 (191–192) 2023 > 122–134


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 122–134

https://doi.org/10.15407/ggcm2023.191-192.122

Софія ГРИНІВ, Ярослава ЯРЕМЧУК, Наталія РАДКОВЕЦЬ

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: sophia_hryniv@ukr.net

Анотація

Розглянуто вплив хімічного складу вод морського та континентального походження на особливості утворення і перетворення глинистих мінералів на прикладі евапоритових відкладів Калуш-Голинського родовища калійних солей Передкарпатського прогину. Глинисті мінерали при зміні фізико-хімічних умов стають нестійкими і трансформуються, пристосовуючись до нових умов. Основним чинником, який спричиняє їхню перебудову, є концентрація розсолів.

Підвищена концентрація розсолів на стадії осадження калійних солей сприяла аградаційній трансформації глинистих мінералів, перетворенню лабільних мінералів у стійкі в умовах гіперсолоного середовища гідрослюду і хлорит. Саме гідрослюда і хлорит характерні для калієносних відкладів Калуш-Голинського родовища. Відтак впорядкування структури приводить до перетворення частини гідрослюди в слюду.

В умовах гіпергенезу при розмиві евапоритових відкладів прісними поверхневими водами проходить зворотний процес (деградаційна трансформація), який полягає у вилуговуванні Калію із міжшарового простору частини гідрослюди та утворенні лабільних глинистих структур. Асоціація глинистих мінералів зони звітрювання евапоритових відкладів, окрім успадкованих гідрослюди і хлориту, містить ще змішаношарувате утворення гідрослюда-монтморилоніт та каолініт – поява цих глинистих мінералів у гіпергенних відкладах є результатом деградаційної трансформації (гідрослюда-монтморилоніт) та новоутворення (каолініт) в умовах пониження концентрації при опрісненні середовища.

Ключові слова

глинисті мінерали, аградаційна і деградаційна трансформація, евапоритові відклади, зона гіпергенезу, відклади гіпсо-глинистої шапки

Використані літературні джерела

Білоніжка, П. М. (1992). Трансформаційні перетворення теригенних глинистих мінералів під час галогенезу. Мінералогічний збірник, 45(2), 51–56.

Білоніжка, П. М. (2001). Природа міжшарової води в гідрослюдах. Мінералогічний збірник, 51(1), 142–148.

Джиноридзе, Н. М., Рогова, М. С., & Телегин, В. П. (1974). Вулканогенные породы Калуш-Голынского месторождения калийных солей. Труды ВНИИГалургии, 71, 36–56.

Дриц, В. А., & Коссовская, А. Г. (1990). Глинистые минералы: смектиты, смешанослойные образования. Москва: Наука.

Кореневский, С. М. (1954). Миоценовые вулканические туфы Предкарпатья. Труды ВНИИГалургии, 29, 176–196.

Коссовская, А. Г., & Дриц, В. А. (1975). Кристаллохимия диоктаэдрических слюд, хлоритов и корренситов как индикаторов геологических обстановок. В Кристаллохимия минералов и геологические проблемы (с. 60–69). Москва: Наука.

Липницкий, В. К. (1971). Литологические особенности и солевой комплекс четвертичных отложений и пород гипсово-глинистой шляпы Стебникского месторождения калийных солей. В Материалы по гидрогеологии и геологической роли подземных вод (с. 98–108). Ленинград: Издательство Ленинградского университета.

Лобанова, В. В. (1956). Вопросы петрографии калийных залежей Восточного Предкарпатья. Труды ВНИИГалургии, 32, 164–214.

Николишин, В. П. (1969). Гипсо-глинистая шляпа Домбровского месторождения калийных солей. Труды ВНИИГалургии, 54, 308–312.

Олійович, О., Яремчук, Я., & Гринів, С. (2004). Глини галогенних відкладів і кори звітрювання Калуш-Голинського родовища калійних солей (міоцен, Передкарпаття). Мінералогічний збірник, 54(2), 214–223.

Петриченко, О. Й. (1988). Физико-химические условия осадкообразования в древних солеродных бассейнах. Киев: Наукова думка.

Рудько, Г. І., & Петришин, В. Ю. (2017). Соляні ресурси Передкарпаття та перспективи їх використання. Київ; Чернівці: Букрек.

Семчук, Я. М. (1995). Наукові та методичні основи охорони геологічного середовища в районах розробки калійних родовищ (на прикладі Передкарпаття) [Автореф. дис. д-ра техн. наук, Прикарпатський національний університет імені Василя Стефаника]. Івано-Франківськ.

Соколова, Т. Н. (1982). Аутигенное силикатное минералообразование разных стадий осолонения. Москва: Наука.

Франк-Каменецкий, В. А., Котов, Н. В., & Гойло, Э. Л. (1983). Трансформационные преобразования слоистых силикатов. Ленинград: Недра.

Шестопалов, М., Лютий, Г., & Саніна, І. (2019). Сучасні підходи до гідрогеологічного районування України. Мінеральні ресурси України, 2, 3–12. https://doi. org/10.31996/mru.2019.2.3-12

Яремчук, Я. В. (2012). Залежність асоціацій глинистих мінералів неогенових евапоритів Карпатського регіону від концентрації розсолів солеродних басейнів. Геологія і геохімія горючих копалин, 160–161(3–4), 119–130.

Andreyeva-Grigorovich, A., Oszczypko, N., Savitskaya, N., Ślączka, A., & Trofimovicz, N. (2003). Correlation of the Badenian Salts of the Wieliczka, Bochnia and Kalush Areas (Polish and Ukrainian Carpathian Foredeep). Annales Societatis Geologorum Poloniae, 73, 67–89.

Bąbel, M. & Schreiber, B. C. (2014). Geochemistry of Evaporites and Evolution of Seawater. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (2nd ed.) (Vol. 9, pp. 483–560). Elsevier. http://doi.org/10.1016/B978-0-08-095975-7.00718-X

Bilonizhka, P., Iaremchuk, Ia., Hryniv, S., & Vovnyuk, S. (2012). Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine. Biuletyn Państwowego Instytutu Geologicznego, 449, 137–146.

Bodine, M. W., Jr. (1985). Trioctahedral Clay Mineral Assemblages in Paleozoic Marine Evaporite Rocks. In Sixth International Symposium on Salt (Vol. 1, pp. 267–284).

Calvo, J. P., Blanc-Valleron, M. M., Rodriguez Arandia, J. P., Rouchy, J. M., & Sanz, M. E. (1999). Authigenic clay minerals in continental evaporitic environments. International Association Sedimentologists Special Publication, 27, 129–151.

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

Galán, E. (2006). Genesis of Clay Minerals. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Ch. 14, pp. 1129–1162). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01042-1

Honty, M., Uhlík, P., Šucha, V., Čaplovičova, M, Franců, J., Clauer, N., & Biroň, A. (2004). Smectite-to-illite alteration in salt-bearing bentonites (East Slovak Basin). Clay and Clay Minerals, 52, 533–551. https://doi.org/10.1346/CCMN.2004.0520502

Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A., & Meunier A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37(1), 1–22. https://doi.org/10.1180/0009855023710014

McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Research, 57(5), 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D

Meunier, A. (2005). Clays. Berlin: Springer.

Millot, G. (1970). Geology of Clays: Weathering, Sedimentology, Geochemistry (R. W. Farrand & H. Paquet, Trans.). New York; Berlin: Springer.

Millot, G., Lucas, J., & Paquet, H. (1966). Evolution géochimique par dégradation et agradation des minéraux argileux dans l’hydrosphère. Geologische Rundschau, 55, 1–20. https://doi.org/10.1007/BF01982951

Rosenberg, P. E. (2002). The nature, formation, and stability of end-member illite: a hypothesis. American Mineralogist, 87, 103–107. https://doi.org/10.2138/am-2002-0111

Środoń, J. (1978). Illite group clay minerals. In G. V. Middleton, M. J. Church, M. Coniglio, L. A. Hardie & F. J. Longstaffe (Eds.), Encyclopedia of Sediments and Sedimentary Rocks (p. 115). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-3609-5

Turner, C. E., & Fishman, N. S. (1991). Jurassic Lake T’oo’dichi: a large alkaline, saline lake, Morison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103(4), 538–558. https://doi.org/10.1007/3-540-32344-9

Weaver, C. E. (1989). Developments in Sedimentology: Vol. 44. Clays, muds, and shales. Amsterdam: Elsevier.

Wójtowicz, A., Hryniv, S. P., Peryt, T. M., Bubniak, A., Bubniak, I., & Bilonizhka, P. M. (2003). K-Ar dating of the Miocene potash salts of the Carpathian Foredeep (West Ukraine): application to dating of tectonic events. Geologica Carpatica, 54(4), 243–249.

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974


Опубліковано

ПРО ЗАКОНОМІРНІСТЬ ПРИРОДНИХ ПРОЦЕСІВ СИНТЕЗУ І ГЕНЕЗИСУ ВУГЛЕВОДНІВ ТА ВОДИ НАФТОВИХ І ГАЗОВИХ РОДОВИЩ: АБІОГЕННО-БІОГЕННИЙ ДУАЛІЗМ

Головна > Архів > № 1–2 (189–190) 2023 > 81–91


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 81–91

https://doi.org/10.15407/ggcm2023.189-190.081

Йосип СВОРЕНЬ

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: igggk@mail.lviv.ua

Анотація

Показано, що проблему природи води нафтових і газових родовищ треба вирішувати в нерозривному зв’язку з відтворенням процесів генезису і синтезу природних вуглеводнів у надрах Землі. Запропоновано оригінальне рішення, ґрунтуючись на новій теорії синтезу і генезису вуглеводнів (нафти, газу тощо) – абіогенно-біогенний дуалізм, якою стверджено, що гігантські та надгігантські родовища нафти і газу утворилися з неорганічних й органічних вихідних вуглеводневмісних речовин під впливом абіогенного високотермобарного глибинного флюїду в жорстких фізичних, фізико-хімічних і геологічних умовах земної кори. Позаяк абіогенний високотермобарний глибинний флюїд містить водень Н+ і ОН-вмісні аніони, то озвучений механізм взаємодії позитивно заряджених іонів С+, Н+, CnHm+-радикалів з утворенням-синтезом складної вуглеводневої суміші типу газу, нафти, бітумів тощо необхідно логічно доповнити реакцією: Н2О → Н+ + ОН. У підсумку цього складного фізико-хімічного процесу в окислювальній зоні накопичилися в максимальній концентрації аніони (ОН)mах, які після зникнення електричного поля стають нейтральними і взаємодіють між собою за схемою: ОН + ОН = Н2О2 – перекис водню, яка є нестійкою сполукою, що розкладається на Н2О + О. Атоми ж кисню стали вихідними речовинами для формування в цих порожнинах макро- і мікротріщин за жорстких умов порід типу карбонатної або кварц-карбонатної тощо, значно рідше – досконалих кристалів мінералів, які своїми дефектами в процесі росту (синтезу) захоплюють і консервують речовини, наявні d системі (власне вуглеводні і воду). Отже, уперше встановлено, що природна вода нафтових і газових родовищ має подвійну літосферно-астеносферну природу, при тому літосферна частка домінує і за ізотопним складом є сумішшю цих вод, а ізотоп дейтерію є більш хімічно активним у складних фізико-хімічних процесах, що перебігають у надрах планети. Отримані оригінальні дані сприятимуть вирішенню серйозної проблеми України з енергоносіями: природним газом, нафтою, вугіллям та питною водою.

Ключові слова

флюїдні включення, вуглеводні, питна вода, енергоносії, нафтогазова промисловість, фундаментальна наука, наукові відкриття

Використані літературні джерела

Братусь, М. Д., Давиденко, М. М., Зінчук, І. М., Калюжний, В. А., Матвієнко, О. Д., Наумко, І. М., Пірожик, Н. Е., Редько, Л. Р., & Сворень, Й. М. (1994). Флюїдний режим мінералоутворення в літосфері (в зв’язку з прогнозуванням корисних копалин). Київ: Наукова думка.

Доленко, Г. Н. (1975). Современное состояние проблемы происхождения нефти и газа и формирования их промышленных залежей. В Закономерности образования и размещения промышленных месторождений нефти и газа (с. 3–17). Киев: Наукова думка.

Наумко, І. М. (2006). Флюїдний режим мінералогенезу породно-рудних комплексів України (за включеннями у мінералах типових парагенезисів) [Автореф. д-ра геол. наук]. Інститут геології і геохімії горючих копалин НАН України. Львів.

Наумко, І., & Сворень, Й. (2021). Інноваційні технології пошуків корисних копалин, основані на дослідженнях флюїдних включень у мінералах. Геологія і геохімія горючих копалин, 3–4(185–186), 92–108. https://doi.org/10.15407/ggcm2021.03-04.092

Павлюк, І., Наумко, І., & Стефаник, Ю. (2007, 13 грудня). Геологи-науковці проти метану-вбивці. У Львові на Науковій таки є наука. Україна і Час, 50(286), 7.

Сворень, Й. М. (1975). Источники углеродсодержащих газов включений. В Углерод и его соединения в эндогенных процессах минералообразования (по данным изучения флюидных включений в минералах): тезисы Республиканского совещания (Львов, сентябрь 1975 г.) (с. 104–106). Львов.

Сворень, И. М. (1984). Примеси газов в кристаллах минералов и других твердых телах, их способы извлечения, состав, форма нахождения и влияние на свойства веществ [Автореф. дис. канд. техн. наук]. Институт геологии и геохимии горючих ископаемых АН УССР. Львов.

Сворень, И. М. (1988). Формы нахождения водорода в некоторых твердых материалах различного происхождения согласно физико-химической модели наводороживания твердых тел. В Геохимия и термобарометрия эндогенных флюидов (с. 95–103). Киев: Наукова думка.

Сворень, Й. М. (1992). Питання теорії генезису природних вуглеводнів та шляхи пошуку їх покладів. В Тектогенез і нафтогазоносність надр України (с. 143–145). Львів.

Сворень, Й. (2011). Надра Землі – природний фізико-хімічний реактор: ізотопи вуглецю про походження планети Земля. Геологія і геохімія горючих копалин, 1–2(154–155), 158–159.

Сворень, Й. (2018). Властивість глибинного абіогенного метановмісного високотермобарного флюїду утворювати вугілля. Геологія і геохімія горючих копалин, 3–4(176–177), 105–109.

Сворень, Й. (2019). Надра Землі – природний фізико-хімічний реактор: різна хімічна властивість ізотопів вуглецю у природних процесах синтезу різних сполук. У Проблеми геології фанерозою України: матеріали Х Всеукраїнської наукової конференції (до 95-річчя кафедри історичної геології та палеонтології і 120-річчя від народження Северина Івановича Пастернака (Львів, 9–11 жовтня 2019 р.) (с. 64–67). Львів: ЛНУ імені Івана Франка.

Сворень, Й. (2020). Надра Землі – природний фізико-хімічний реактор: природа води нафтових і газових родовищ. У Нафтогазова галузь: Перспективи нарощування ресурсної бази: матеріали доповідей Міжнародної науково-технічної конференції (Івано-Франківськ, 8–9 грудня 2020 р.) (с. 158–160). Івано-Франківськ: ІФНТУНГ.

Сворень, Й. М., & Давиденко, М. М. (1995). Термобарометрія і геохімія газів прожилково-вкрапленої мінералізації у відкладах нафтогазоносних областей і металогенічних провінцій. Доповіді НАН України, 9, 72–73.

Сворень, Й. М., Давиденко, М. М., Гаєвський, В. Г., Крупський, Ю. З., & Пелипчак, Б. П. (1994). Перспективи термобарометрії і геохімії газів прожилково-вкрапленої мінералізації у відкладах нафтогазоносних областей і металогенічних провінцій. Геологія і геохімія горючих копалин, 3–4(88–89), 54–63.

Сворень, Й. М., & Наумко, І. М. (2003). Нова теорія синтезу і генезису вуглеводнів у літосфері Землі: абіогенно-біогенний дуалізм. В Международная конференция «Крым–2003» (с. 75–77). Симферополь.

 Сворень, Й. М., & Наумко, І. М. (2006). Нова теорія синтезу і генезису природних вуглеводнів: абіогенно-біогенний дуалізм. Доповіді НАН України, 2, 111–116.

Svoren, J. M. (2020). Subsoil Natural Physico-Chemical Reactor: Regularity of Natural Processes of Synthesis of Perfect Diamond Crystals. Journal of Geological Resource and Engineering, 8(4), 133–136. https://doi.org/10.17265/2328-2193/2020.04.005

Svoren, J. M. (2021). Subsoil Natural Physico-chemical Reactor: The Property of Deep Abiogenic Methane-Containing High-Thermobaric Fluid to Form Coal Seams. Journal of Geological Resource and Engineering, 9(1), 25–28. https://doi.org/10.17265/2328-2193/2021.01.003


Опубліковано

ФУНДАМЕНТАЛЬНІ ПРОБЛЕМИ І ЗДОБУТКИ МІНЕРАЛОФЛЮЇДОЛОГІЇ У ПРАЦЯХ ПРОФЕСОРА ВОЛОДИМИРА АНТОНОВИЧА КАЛЮЖНОГО (за матеріалами пам’ятної академії з нагоди відзначення 100-річчя від уродин)

Головна > Архів > № 1–2 (189–190) 2023 > 66–80


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 66–80

https://doi.org/10.15407/ggcm2023.189-190.066

Ігор НАУМКО1, Мирослав ПАВЛЮК1, Олег ЗИНЮК2, Анатолій ГАЛАМАЙ1, Мирослава ЯКОВЕНКО1, Зоряна МАТВІЇШИН1

1 Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: igggk@mail.lviv.ua
2 Західний науковий центр НАН України і МОН України, Львів, Україна, е-mail: zynyuk@ukr.net

Анотація

Обговорено фундаментальні проблеми і здобутки мінералофлюїдології у працях видатного українського ученого-геолога, мінералога-геохіміка, лауреата Державної премії України в галузі науки і техніки, лауреата Міжнародної золотої медалі імені видатного англійського дослідника флюїдних включень Г. К. Сорбі (the H. C. Sorby medal), стипендіата Державної стипендії видатним діячам науки України, доктора геолого-мінералогічних наук, професора Володимира Антоновича Калюжного. Один із засновників фундаментальної науки про включення у мінералах, творець всесвітньовідомої наукової школи геохімії і термобарометрії мінералоутворювальних флюїдів, багатолітній завідувач відділу геохімії глибинних флюїдів і головний науковий співробітник Інституту геології і геохімії горючих копалин (ІГГГК) НАН України, він займає чільне місце в когорті учених Інституту, які примножували славу й утверджували міжнародний авторитет України. Пам’ятну академію з нагоди відзначення знаменної дати – 100-ліття від уродин Володимира Калюжного, провели 25 жовтня 2022 року в ІГГГК НАН України у рамках Відділення наук про Землю (ВНЗ) НАН України на виїзному засіданні секції наук про Землю Західного наукового центру (ЗНЦ) НАН України і МОН України. У її роботі взяли участь члени Ради і виконкому Ради ЗНЦ, працівники Інституту і сусідніх наукових установ. Вступним словом пам’ятну академію відкрив директор Інституту, академік НАН України Мирослав Павлюк, привітання від ЗНЦ НАН України і МОН України виголосив заступник голови ЗНЦ, директор ЗНЦ, кандидат технічних наук, доцент Олег Зинюк. З науковими доповідями виступили: завідувач відділу геохімії глибинних флюїдів Інституту, член-кореспондент НАН України Ігор Наумко – на тему «Професор Володимир Калюжний – світоч учення про мінералоутворювальні середовища (флюїди) (термобарогеохімії–мінералофлюїдології–fluid inclusions research): життєвий і творчий шлях»; завідувач відділу геохімії осадових товщ нафтогазоносних провінцій, кандидат геологічних наук, старший науковий співробітник Анатолій Галамай – на тему «Внесок професора Володимира Калюжного у всесвітньовідому наукову школу термобарогеохімії евапоритів». Учений секретар Інституту, кандидат геологічних наук, старший дослідник Мирослава Яковенко зачитала привітання, надіслані чи особисто передані членам Оргкомітету та учасникам пам’ятної академії. Теплом спогадів про Володимира Калюжного поділилися син Юрій, Мирослав Братусь, Мирослав Павлюк. Апофеозом гідного вшанування пам’яті та відзначення знаменної дати Видатного діяча науки, Педагога, Патріота, Громадянина, Людини стали пророчі слова: «Пам’ятаємо ми – пам’ятатимуть і про нас! Україна є і буде!»

Ключові слова

Володимир Антонович Калюжний, видатний діяч науки, термобарогеохімія, мінералофлюїдологія, fluid inclusions research

Використані літературні джерела

Братусь, М. Д., Давиденко, М. М., Зінчук, І. М., Калюжний, В. А., Матвієнко, О. Д., Наумко, І. М., Пірожик, Н. Е., Редько, Л. Р., & Сворень Й. М. (1994). Флюїдний режим мінералоутворення в літосфері (в зв’язку з прогнозуванням корисних копалин). Київ: Наукова думка.

Винар, О. М., Калюжний, В. А., Наумко, І. М., & Матвієнко, О. Д. (1987). Мінералоутворюючі флюїди постмагматичних утворень гранітоїдів Українського щита. Київ: Наукова думка.

Ермаков, Н. П., & Долгов, Ю. А. (1979). Термобарогеохимия. Москва: Недра.

Зинчук, И. Н., Калюжный, В. А., & Щирица, А. С. (1984). Флюидный режим минералообразования Центрального Донбасса. Киев: Наукова думка.

Калюжний, В. А. (1960). Методи вивчення багатофазових включень у мінералах. Київ: Видавництво АН УРСР.

Калюжний, В. А. (Ред.). (1971). Мінералоутворюючі флюїди та парагенезиси мінералів пегматитів заноришевого типу України (рідкі включення, термобарометрія, геохімія). Київ: Наукова думка.

Калюжный, В. А. (1982). Основы учения о минералообразующих флюидах. Киев: Наукова думка. (English translation: Kalyuzhnyi, V.  A. (1985). Principles of knowledge about mineral forming fluids. In Fluid Inclusions Research: Proceedings of COFFI (Vol. 15, рр. 289–333; Vol. 16, рр. 306–320).

Колодій, В. В., Бойко, Г. Ю., Бойчевська, Л. Т., Братусь, М. Д., Величко, Н. З., Гарасимчук, В. Ю., Гнилко, О. М., Даниш, В. В., Дудок, І. В., Зубко, О. С., Калюжний, В. А., Ковалишин, З. І., Колтун, Ю. В., Копач, І. П., Крупський, Ю. З., Осадчий, В. Г., Куровець, І. М., Лизун, С. О., Наумко, І. М., . . . Щерба, О. С. (2004). Карпатська нафтогазоносна провінція. Львів; Київ: Український видавничий центр.

Матковський, О., Наумко, І., Павлунь, М., & Сливко, Є. (2021). Термобарогеохімія в Україні. Львів: Простір-М.

Наумко, І. М. (2002). Короткий нарис наукової, науково-організаційної, педагогічної та громадської діяльності В. А. Калюжного. У Володимир Антонович Калюжний. До 80-річчя від дня народження (М. І. Павлюк, відп. за випуск; І. М. Наумко, Л. Ф. Телепко, уклад.) (с. 3–8). Львів: ІГГГК НАН України та НАК «Нафтогаз України».

Roedder, E. (1984). Fluid inclusions [Monograph]. Reviews in Mineralogy, 12, 1–644. https://doi.org/10.1515/9781501508271

Sorby, H. C. (1858). On the Microscopic, Structure of Crystals, Indicating the Origin of Minerals and Rocks. The Quarterly Journal of the Geological Society of London, 14(1), 453–500. https://doi.org/10.1144/GSL.JGS.1858.014.01-02.44


Опубліковано

ТЕРМОМЕТРИЧНІ ДОСЛІДЖЕННЯ ФЛЮЇДНИХ ВКЛЮЧЕНЬ У БАДЕНСЬКОМУ ГАЛІТІ КАРПАТСЬКОГО РЕГІОНУ В КОНТЕКСТІ ВСТАНОВЛЕННЯ ГЛИБИНИ СОЛЕРОДНОГО БАСЕЙНУ

Головна > Архів > № 1–2 (189–190) 2023 > 54–65


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 54–65

https://doi.org/10.15407/ggcm2023.189-190.054

Анатолій ГАЛАМАЙ, Ігор ЗІНЧУК, Дарія СИДОР

Інститут геології і геохімії горючих копалин НАН України, Львів, Україна, e-mail: galamaytolik@ukr.net

Анотація

Вивчення басейнів седиментації з дискусійними палеотектонічними характеристиками, до яких належить, зокрема, баденський Карпатського регіону, показало, що задля уникнення протиріч в інтерпретації умов формування солей за флюїдними включеннями в галіті на першому етапі дослідження має бути генетична ідентифікація седиментаційних структур галіту та флюїдних включень у цьому мінералі. Термометричні дослідження включень, які є наступним етапом під час такого вивчення, доцільно провадити термометричними установками з високою точністю заміру температур гомогенізації, у яких передбачена можливість синхронного спостереження груп включень у різних зонах седиментаційного галіту.

Реконструкцію глибини (потужності водної товщі) баденського басейну Карпатського регіону здійснено завдяки модернізації апаратурного устаткування термометричного методу, яку проведено з урахуванням досвіду використання мікротермокамер конструкції В. А. Калюжного, О. Й. Петриченка і В. М. Ковалевича. Зокрема, здійснено заміну матеріалу термокамери (жаростійка сталь) на мідь, що дозволило уникнути зайвих теплових градієнтів у камері та збільшити допустиму швидкість нагрівання без спотворення теплового поля завдяки більшій теплопровідності міді. З аналогічною метою скляні оптичні вікна камери замінені на лейкосапфірові, як матеріал зі значно вищою теплопровідністю і більшим полем зору. Вимірювальну систему установки виконано на мініатюрному платиновому термометрі опору з електронним блоком вимірювання. Ці вдосконалення дали змогу досягти високої стабільності системи та хорошої відтворюваності результатів вимірювань.

Встановлено, що температура мінералотворення на дні баденського солеродного басейну Карпатського регіону становила 19,5–26,0 °C, а на поверхні розсолу – 34,0–36,0 °C. На цій підставі вперше для цього солеродного басейну побудовано модель із вираженим термоклином із загальною потужністю водної товщі близько 30 м, яка є найбільш імовірною для встановлення особливостей седиментації. Очевидно, що виявлення в низці давніх соленосних відкладів т. зв. «низькотемпературного» та «високотемпературного» придонного галіту пояснюється не різкими змінами клімату, а його кристалізацією на різних глибинах у солеродних басейнах.

Ключові слова

галіт, флюїдні включення, термометричний метод, термокамера, температура гомогенізації

Використані літературні джерела

Валяшко, М. Г. (1952). Галит, основные его разности, встречаемые в соляных озерах, и их структура. Труды ВНИИГалургии, 23, 25–32.

Воробьев, Ю. К. (1988). К проблеме термометрии по первичным включениям в минералах. Записки Всесоюзного минералогического общества, 117(1), 125–132.

Галамай, А. Р. (2001). Фізико-хімічні умови формування баденських евапоритових відкладів Карпатського регіону [Дис. канд. геол. наук]. Інститут геології і геохімії горючих копалин НАН України. Львів.

Галамай, А., Сидор, Д., & Любчак, О. (2014). Особливості появи газової фази в однофазових рідких включеннях у галіті (для визначення температури його кристалізації). У Мінералогія: сьогодення і майбуття: матеріали VІІІ наукових читань імені академіка Євгена Лазаренка (присвячено 150-річчю заснування кафедри мінералогії у Львівському університеті) (с. 34–36). Львів; Чинадієве.

Зінчук, І. М. (2003). Геохімія мінералоутворюючих розчинів золото-поліметалевих рудопроявів Центрального Донбасу (за включеннями у мінералах) [Дис. канд. геол. наук]. Інститут геології і геохімії горючих копалин НАН України. Львів.

Калюжний, В. А. (1960). Методи вивчення багатофазових включень у мінералах. Київ: Видавництво АН УРСР.

Ковалевич, В. М. (1978). Физико-химические условия формирования солей Стебникского калийного месторождения. Киев: Наукова думка.

Кореневский, С. М., Захарова, В. М., & Шамахов, В. А. (1977). Миоценовые галогенные формации предгорий Карпат. Ленинград: Недра.

Петриченко, О. Й. (1973). Методи дослідження включень у мінералах галогенних порід. Kиїв: Наукова думка.

Петриченко, О. Й. (1988). Физико-химические условия осадкообразования в древних солеродных бассейнах. Киев: Наукова думка.

Сидор, Д. В., Галамай, А. Р., & Мeng, F. (2018). Піротинова мінералізація у галогенних відкладах Верхньокамського родовища калійно-магнієвих солей (термобарогеохімічні дослідження). Мінералогічний збірник, 68(2), 52–61.

Хрущов, Д. П. (1980). Литология и геохимия галогенных формаций Предкарпатского прогиба. Киев: Наукова думка.

Шанина, С. Н., Сокерина, Н. В., Галамай, А. Р., Леденцов, В. Н., & Оносов, Д. В. (2014). Определение температур гомогенизации включений в галите Якшинского месторождения. Вестник Института геологии Коми НЦ УрО РАН, 8, 3–6.

Acros, D., & Ayora, C. (1997). The use of fluіd іnclusіons іn halіte as envіronmental thermometer: an experіmental study. In XІV ECROFІ: proceedings of the XIVth European Current Research on Fluid Inclusions (Nancy, France, July 1–4, 1997) (pp. 10–11). CNRS-CREGU.

Benison, K. C., & Goldstein, R. H. (1999). Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1–4), 113–132. https://doi.org/10.1016/S0009-2541(98)00127-2

Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823. https://doi.org/10.3390/min10090823

Galamay, A. R., Meng, F., Bukowski, K., Lyubchak, A., Zhang, Y., & Ni, P. (2019). Calculation of salt basin depth using fluid inclusions in halite from the Ordovician Ordos Basin in China. Geological Quarterly, 63(3), 619–628. https://doi.org/10.7306/gq.1490

Kovalevych, V., Paul, J., & Peryt, T. M. (2009). Fluid inclusions in the halite from the Röt (Lower Triassic) salt deposit in Central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporates, 24(1), 45–57. https://doi.org/10.1007/BF03228056

Lowenstein, T. K., Li, J., & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245. https://doi.org/10.1016/S0009-2541(98)00061-8

Meng, F., Ni, P., Schiffbauer, J. D., Yuan, X., Zhou, C., Wang, Y., & Xia, M. (2011). Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research, 184(1–4), 63–69. https://doi.org/10.1016/j.precamres.2010.10.004

Meng, F., Zhang, Y., Galamay, A. R., Bukowski, K., Ni, P., Xing, E., & Ji, L. (2018). Ordovician seawater composition: evidence from fluid inclusions in halite. Geological Quarterly, 62(2), 344–352. https://doi.org/10.7306/gq.1409

Roberts, S. M., & Spencer, R. J. (1995). Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19), 3929–3942. https://doi.org/ 10.1016/0016-7037(95)00253-V

Sirota, I., Enzel, Y., & Lensky, N. G. (2017). Temperature seasonality control on modern halite layers in the Dead Sea: In situ observations. GSA Bulletin, 129(9–10), 1181–1194. https://doi.org/10.1130/B31661.1

Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-32344-9

Xu, Y., Liu, C., Cao, Y., & Zhang, H. (2018). Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm. International Journal of Earth Sciences, 108, 173–182. https://doi.org/10.1007/s00531-018-1648-0

Zambito, J. J., & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590. https://doi.org/10.1130/G34078.1

Zhang, H., Lü, F., Mischke, S., Fan, M., Zhang, F., & Liu, C. (2017). Halite fluid inclusions and the late Aptian sea surface temperatures of the Congo Basin, northern South Atlantic Ocean. Cretaceous Research, 71, 85–95. https://doi.org/10.1016/j.cretres.2016.11.008

Zhao, Х., Zhao, Y., Wang, M., Hu, Y., Liu, C., & Zhang, H. (2022). Estimation of the ambient temperatures during the crystallization of halite in the Oligocene salt deposit in the Shulu Sag, Bohaiwan Basin, China. Minerals, 12(4), 410. https://doi.org/10.3390/min12040410