Posted on

GEOCHEMICAL FEATURES OF EURASIAN EVAPORITES IN THE CONTEXT OF THE CHEMICAL EVOLUTION OF SEAWATER IN PHANEROZOIC

Home > Archive > No. 1–2 (183–184) 2021 > 110–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 110–129.

https://doi.org/10.15407/ggcm2021.01-02.110

Аnatoliy GALAMAY, Andriy POBEREZHSKYY, Sofiya HRYNIV, Serhiy VOVNYUK, Dariya SYDOR, Iaroslava IAREMCHUK, Sofiya MAKSYMUK, Oksana OLIYOVYCH-HLADKA, Lyudmila BILYK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Studies of evaporites provide new data to characterize the seawater chemistry in the Early Paleozoic and Middle Mesozoic. In particular, we studied the fluid inclusions in halite from Ordovician (China) and Cretaceous (Laos) evaporites. The corresponding sections on the plot of Ca/SO4 oscillations curve in the Phanerozoic seawater are updated. The calcium content in seawater concentrated to halite precipitation stage was 45.6 mol %, 485 million years ago and 24.3 mol % 112.2–93.5 million years ago.

By analyzing the previously published and new factual material, it is established that in Permian evaporites the sulfur isotopic composition is inversely correlated with the sulfate ion content in evaporite basin brines. Thus, the evolution of seawater chemistry in Permian is confirmed by the evolution of the isotopic composition of dissolved seawater sulfate.

According to the generalization of 38 Phanerozoic marine evaporite formations, it was found that the peculiarities of the clay minerals associations correlate with the change of the seawater chemical type. Clay minerals associations precipitated from the SO4-rich seawater are characterized by a larger set of minerals, among which smectite and mixed- layered minerals often occur; Mg-rich clay minerals (corensite, paligorskite, sepiolite, talc) also occur. Instead, in the associations of evaporite clay minerals formed from the Ca-rich seawater are represented by the smaller amount of minerals, and Mg-rich minerals are extremely rare. The increased content of magnesium in seawater of SO4-rich type is the main factor in the formation of Mg-rich silicates in evaporites.

The composition of clay minerals associations depends on the evaporate basin brine concentration; with its increase, unstable minerals are transformed, which theoretically leads to a decrease in the number of minerals in the associations. However, it was found that evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals – products of incomplete transformation of a significant amount of pyroclastic material from coeval volcanic activity.

The main factor determining the composition of clay minerals associations of Phanerozoic evaporites was the seawater (and basin brines) chemical type.

Geochemical studies of scattered organic matter and fluid inclusions with hydrocarbon phase in evaporites of the Upper Pechora Basin (overlying oil and gas deposits) indicate the presence of allochthonous bitumoids and allow to use this method to predict oil and gas potential of other areas. Analysis of the results of oil and gas exploration in a number of areas of the Transcarpathian Trough indicates the presence of fluid-saturated reservoirs and the prospects for the discovery of new accumulations of hydrocarbons. Geochemical studies proved the effectiveness of gas-flow survey method for oil and gas exploration, assessing the prospects for fluid saturation of seismic structures.

Keywords

fluid inclusions, halit, salt Basin, seawater.

Referenses

Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving” – a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279–288.

Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557–558. https://doi.org/10.1126/science.1140273

Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33(11), 877–880. https://doi.org/10.1130/G21945.1

Duchuk, S. V., & Maksymuk, S. V. (2019). Naftohazovyi potentsial Zakarpatskoho prohynu. In Mineralno-syrovynni bahatstva Ukrainy: shliakhy optymalnoho vykorystannia: tezy dopovidei naukovo-praktychnoi konferentsii (4 zhovtnia 2019 r., smt Khoroshiv) (pp. 55–61). Kyiv. [in Ukrainian]

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol., 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

D’yakonov, A. I., Tskhadaya, N. D., Ovcharova, T. A., Yudin, V. M., Ivanov, V. V., & Kuznetsov, N. I. (2002). Sovremennyi evolyutsionno-dinamicheskii metod prognoza neftegazonosnosti geologo-ekologicheskikh regionov osobo slozhnogo stroeniya (na primere yuga Verkhnepechorskoi vpadiny). Ukhta: UGTU. [in Russian]

Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]

Galamai, A. R., Shanina, S. N., & Ignatovich, O. O. (2013). Sostav mineraloobrazuyushchikh rassolov Verkhnepechorskogo solerodnogo basseina na stadii kristallizatsii galita. Zapiski Rossiiskogo mineralogicheskogo obshchestva, 142(4), 32–46. [in Russian]

Galamay, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37(2), 245–267.

Galamay, A. R., Meng, F., Bukowski, K., Ni, P., Shanina, S. N., & Ignatovich, O. O. (2016). The sulphur and oxygen isotopic composition of anhydrite from the Upper Pechora Basin (Russia): new data in the context of the evolution of the sulphur isotopic record of Permian evaporites. Geological Quarterly, 60(4), 990–999. https://doi.org/10.7306/gq.1309

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Extended abstract of сandidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A. R., & Baranenko, O. B. (2004). Proiavy vuhlevodniv u badenskykh soliakh Peredkarpattia i Zakarpattia. Mineralohichnyi zbirnyk, 54(1), 132–136. [in Ukrainian]

Halamai, A. R., & Meng, F. (2020). Khimichnyi sklad pivdenno-skhidnoi chastyny kreidovoho Sakon Nakhon solerodnoho baseinu Laosu u konteksti evoliutsii skladu okeanichnoi vody. In Vid mineralohii i heohnozii do heokhimii, petrolohii, heolohii ta heofizyky: fundamentalni i prykladni trendy XXI stolittia (MinGeoIntegration XXI): tezy dopovidei Vseukrainskoi konferentsii (Kyiv, 23–25 veresnia 2020 r.) (pp. 20–24). Kyiv. [in Ukrainian]

Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279–283. https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2

Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66, 3733–3756. https://doi.org/10.1016/S0016-7037(01)00884-5

Iaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138–146. https://doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]

Iaremchuk, I., Tariq, M., Hryniv, S., Vovnyuk, S., & Meng, F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan). Carbonates Evaporites, 32(1), 63–74. https://doi.org/10.1007/s13146-016-0294-5

Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (pp. 60–69). Moskva: Nauka. [in Russian]

Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoe. Kiev: Naukova dumka. [in Russian]

Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695–712. https://doi.org/10.1086/516054

Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseinov i vod mirovogo okeana. Litologiya, 4, 95–109. [in Russian]

Kovalevych, V. M., Peryt, T. M., Carmona, V., Sydor, D. V., Vovnyuk, S. V., & Halas, S. (2002). Evolution of Permian seawater: evidence from fluid inclusions in halite. N. Jb. Miner. Abh., 178(1), 27–62. https://doi.org/10.1127/0077-7757/2002/0178-0027

Kovalevych, V. M., Peryt, T. M., Shanina, S. N., Wieclaw, D., & Lytvyniuk, S. F. (2008). Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in rock salt. Journal of Petrolium Geology, 31(3), 245–262. https://doi.org/10.1111/j.1747-5457.2008.00419.x

Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real microdroplets of ancient sea water? Geological Quarterly, 54(4), 401–410.

Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485–506. https://doi.org/10.1007/s00126-019-00873-9

Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci Rev., 178, 1–28. https://doi.org/10.1016/j.earscirev.2017.12.004

Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., Demicco, R. V. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086–1088. https://doi.org/10.1126/science.1064280

Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69(7), 1701–1719. https://doi.org/10.1016/j.gca.2004.09.015

Lytvyniuk, S. V. (2007). Heokhimichni oreoly u soliakh nad pokladamy vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 95–111. [in Ukrainian]

Maksymuk, S. V. (2012). Osoblyvosti vidobrazhennia fliuidonasychenosti horyzontiv Vyshnianskoi ploshchi Zovnishnoi zony Peredkarpatskoho prohynu v heokhimichnykh poliakh prypoverkhnevykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(160–161), 109–117. [in Ukrainian]

Maksymuk, S. V., & Bodlak, P. M. (2015). Dosvid zastosuvannia heokhimichnykh metodiv u kompleksnykh poshukovykh robotakh na naftu i haz u Karpatskomu rehioni. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu im. Ivana Franka (Lviv, 7–8 zhovtnia 2015 r.) (pp. 151–152). Lviv. [in Ukrainian]

McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D

Moskovskii, G. A. (1983). Issledovaniya fiziko-khimicheskikh uslovii sedimentatsii kungurskikh galogennykh otlozhenii zapadnoi chasti Prikaspiiskoi sineklizy po vklyucheniyam v mineralakh [Extended abstract of сandidateʼs thesis]. Moskovskii gossudarstvennyi universitet. Moskva. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Pozo, M., & Calvo, J. P. (2018). An Overview of Authigenic Magnesian Clays. Minerals, 8(11), 520. https://doi.org/10.3390/min8110520

Raevskii, V. I., Fiveg, M. P., & Gerasimova, V. V. (1973). Mestorozhdeniya kaliinykh solei SSSR. Leningrad: Nedra. [in Russian]

Robinson, D., Schmidt, Th., & Santana de Zambora, A. (2002). Reaction pathways and reaction progress for the smectite-to chlorite transformation: evidence from hydrothermally altered metabasites. J. Metamorph. Geol., 20, 167–174. https://doi.org/10.1046/j.0263-4929.2001.00361.x

Schiffman, P., & Staudigel, H. (1995). The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487–498. https://doi.org/10.1111/j.1525-1314.1995.tb00236.x

Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]

Sone, M., & Metcalfe, I. (2008). Parallel Tethyan sutures in mainland South-East Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340, 166–179. https://doi.org/10.1016/j.crte.2007.09.008

Więcław, D., Lytvyniuk, S. F., Kovalevych, V. M., & Peryt, T. M. (2008). Incluzje w halicie oraz bituminy w solach ewaporatόw mioceńskich ukraińskiego Przedkarpacia jako wskaźnik występowania nagromadzeń węglowodorόw w niżey leżących utworach. Przegląd Geologiczny, 56(9), 837–841.

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020a). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974

Yaremchuk, Ya., Vovniuk, S., Hryniv, S., Tarik, M., Menh, F., Bilyk, L., & Kochubei, V. (2017). Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh, Pakystan. Mineralohichnyi zbirnyk, 67(2), 72–90. [in Ukrainian]

Yaremchuk, Ya. V., Vovniuk, S. V., & Tariq, M. (2020b). Hlynysti mineraly eotsenovoi kamianoi soli formatsii Bakhadar Khel, Pakystan. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 87–99. https://doi.org/10.15407/ggcm2020.01.087 [in Ukrainian]

Yaremchuk, Ya. V., Vovnyuk, S. V., & Hryniv, S. P. (2020c). The peculiarities of high-magnesium clay minerals occurrence in Phanerozoic evaporite formation. Geodynamics, 1(28), 52–61. https://doi.org/10.23939/jgd2020.01.052


Posted on

GEOCHEMISTRY Of FLUIDS: INNOVATIVE SOLUTION OF THE FUNDAMENTAL PROBLEM

Home > Archive > No. 1–2 (183–184) 2021 > 130–148


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 130–148.

https://doi.org/10.15407/ggcm2021.01-02.130

Josyp SVOREN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

First of all, has developed a reliable mass spectrometric method for studying fluid inclusions in minerals (on the basis of the author’s certificate of the USSR No. 454446 of 1974 for the invention of the “device for cleaning the content inclusions of solid materials”). Were created and published new scientific directions: 1. Thermobarometry and geochemistry of gases of veinlet-impregnated mineralization in sediments of oil and gas regions and metallogenic provinces. 2. Bowels of the Earth – natural physicochemical reactor. Was developed a “method (technology) for determining the prospects of oil and gas bearing of the local area” and “a method (technology) of local forecasting of enriched areas of gold-ore fields” (together with M. M. Davydenko). Was established unknown before, but objectively existing phenomenon of the material world: 1) “lack of molecular hydrogen in inclusions in minerals in the bowels of the planet Earth” (together with V. A. Kaliuzhny). Independently were established: 2) previously unknown “property of deep abiogenic methane-termobar high-temperature fluid decompose-convert natural organic residues into layers of coal with their simultaneous methane saturation and its conservation in the earth’s crust of the planet Earth”; 3) previously unknown natural “phenomenon of arbitrary formation of natural carbon methane in the coal layers of the earth’s crust of the planet Earth under the influence of abiogenic methane-containing high-temperature fluid with their conservation in them”; 4) previously unknown different chemical properties of carbon isotopes in natural processes of synthesis-formation of various carbon-containing compounds …; 5) “previously unknown pattern of natural processes of synthesis of perfect diamond crystals from astenospheric carbon dioxide ions…”. Was justified “a new way to determine the calorification of natural gas supplied to consumers and its cubic-metre barometry”.

Keywords

geochemistry, fluid inclusions, veinlet-impregnated mineralization, deep abiogenic methane-bearing high-termobaric fluid, searches, new technologies, cubic-metre-barometry, scientific discovery.

Referenses

Davydenko, M. M., & Svoren, Y. M. (1994). Sposib lokalnoho prohnozuvannia zbahachenykh dilianok zolotorudnykh poliv (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 3, 27. [in Ukrainian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi Natsionalnoi akademii nauk Ukrainy, 8, 117–120. [in Ukrainian]

Naumko, I. M., & Kaliuzhnyi, V. A. (2001). Pidsumky ta perspektyvy doslidzhen termobarometrii i heokhimii paleofliuidiv litosfery (za vkliuchenniamy u mineralakh). Heolohiia i heokhimiia horiuchykh kopalyn, 2, 162–175. [in Ukrainian]

Naumko, I., Kaliuzhnyi, V., Bratus, M., Zinchuk, I., Kovalyshyn, Z., Matviienko, O., Redko, L., & Svoren, Y. (2000). Uchennia pro mineralotvorni fliuidy: priorytetni zavdannia rozvytku na suchasnomu etapi. Mineralohichnyi zbirnyk, 50(2), 22–30. [in Ukrainian]

Naumko, I., Pavliuk, M., & Poberezhskyi, A. (2020). Heokhimiia i termobarometriia mineraloutvoriuvalnykh fliuidiv ta termobaroheokhimiia evaporytiv – vsesvitno vidomi naukovi shkoly. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 62–75. https://doi.org/10.15407/ggcm2020.01.062 [in Ukrainian]

Naumko, I. M., & Svoren, Y. M. (2008). Pro shliakhy vtilennia hlybynnoho vysokotemperaturnoho fliuidu u zemnu koru. Dopovidi Natsionalnoi akademii nauk Ukrainy, 9, 112–114. [in Ukrainian]

Pavlyshyn, V. I., Bondarenko, S. M., Bryk, O. B., Vozniak, D. K., Yelchenko, K. O., Kalinichenko, A. M., Kvasnytsia, V. M., Kulchytska, H. O., Lupashko, T. M., Naumko, I. M., Semenenko, V. P., Taran, M. M., Tarashchan, A. M., Khomenko, V. M., & Chernysh, D. S. (2018). Mineralohiia u Natsionalnii akademii nauk Ukrainy (do 100-richchia NAN Ukrainy). Mineralohichnyi zhurnal, 40(3), 3–22. https://doi.org/10.15407/mineraljournal.40.03.003 [in Ukrainian]

Svoren’, I. M. (1974). Ustroistvo dlya ochistki soderzhimogo vklyuchenii tverdykh materialov (Avtorskoe svidetel’stvo SSSR № 454446). Byulleten’, 47. [in Russian]

Svoren’, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyanie na svoistva veshchestv [Extended abstract of сandidateʼs thesis]. Institut geologii i geokhimii goryuchikh iskopaemykh AN USSR. L’vov. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy: tezy dopovidei naukovoi narady (20–22 zhovtnia 1992 r.) (pp. 143–145). Lviv. [in Ukrainian]

Svoren, Y. M. (2008). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: pryroda vuhilnoho metanu. Ugol’ Ukrainy, 8(620), 42–46. [in Ukrainian]

Svoren, Y. (2011a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: izotopy vuhletsiu pro pokhodzhennia planety Zemlia. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 158–159. [in Ukrainian]

Svoren, Y. (2011b). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda zemletrusu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 160–162. [in Ukrainian]

Svoren, Y. (2017a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryrodnyi vuhlevodnevyi fenomen. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 157–160. [in Ukrainian]

Svoren, Y. (2017b). Yavyshche utvorennia pryrodnykh vuhlemetaniv pid diieiu abiohennoho metanovmistnoho vysokotermobarnoho hlybynnoho fliuidu. In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy II Mizhnarodnoi naukovoi konferentsii (Kyiv, 6–8 veresnia 2017 r.) (pp. 225–229). Kyiv. [in Ukrainian]

Svoren, Y. (2019a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: poshuk pryrodnoho metanu – fundamentalna nauka chy tekhnichna problema? Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 104–115. https://doi.org/10.15407/ggcm2019.04.104 [in Ukrainian]

Svoren, Y. (2019b). Pro novyi pidkhid do vyznachennia teplotvornosti pryrodnoho hazu, yakyi postachaiut spozhyvacham ta yoho kubometrobarometriiu. Heolohiia i heokhimiia horiuchykh kopalyn, 2(179), 84–89. https://doi.org/10.15407/ggcm2019.02.084 [in Ukrainian]

Svoren, Y. (2020a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda vody naftovykh i hazovykh rodovyshch. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 08–09 hrudnia 2020 r.) (pp. 158–160). [in Ukrainian]

Svoren, Y. (2020b). Pro znachennia kubometrobarometrii pryrodnoho hazu, yakyi postachaiut spozhyvacham. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 08–09 hrudnia 2020 r.) (pp. 91–94). [in Ukrainian]

Svoren’, J. M. (2020c). Subsoil Natural Physico-Chemical Reactor: Regularity of Natural Processes of Synthesis of Perfect Diamond Crystals. Journal of Geological Resource and Engineering, 8, 133–136. https://doi.org/10.17265/2328-2193/2020.04.005

Svoren’, J. M. (2020d). Various Chemical Properties of Carbon Isotopes in Natural Synthesis of Different Compounds. Journal of Geological Resource and Engineering, 8, 20–23. https://doi.org/10.17265/2328-2193/2020.01.002

Svoren’, J. M. (2021). Subsoil Natural Physico-chemical Reactor: The Property of Deep Abiogenic Methane-Containing High-Thermobaric Fluid to Form Coal Seams. Journal of Geological Resource and Engineering, 9, 25–28. https://doi.org/10.17265/2328-2193/2021.01.003

Svoren, Y. M., & Davydenko, M. M. (1994). Sposib vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 4. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii (novyi naukovyi napriamok v heolohii). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2000). Nova tekhnolohiia vyznachennia henezysu vuhlevodnevykh haziv. In Nafta i haz Ukrainy–2000: materialy VI Mizhnarodnoi naukovo-praktychnoi konferentsii (Ivano-Frankivsk, 31 zhovtnia–3 lystopada 2000 r.) (Vol. 1, pp. 108). Ivano-Frankivsk: Fakel. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006a). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi Natsionalnoi akademii nauk Ukrainy, 2, 111–116. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006b). Rol riznykh form vodniu ta vuhletsiu v pryrodnykh protsesakh: novyi pohliad na pokhodzhennia vuhlevodniv. Dopovidi Natsionalnoi akademii nauk Ukrainy, 1, 131–134. [in Ukrainian]


Posted on

CLAY MINERALS FROM ROCK SALT OF BAHADUR KHEL FORMATION, EOCENE, PAKISTAN

Home > Archive > No. 1 (182) 2020 > 87-100


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 87-100.

https://doi.org/10.15407/ggcm2020.01.087

Yaroslava YAREMCHUK, Serhiy VOVNYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, е-mail: slava.yaremchuk@gmail.com

Mohammad TARIQ

Baluchistan University of Information Technology, Engineering and Management Sciences, Department of Petroleum and Gas Engineering, Quetta, Pakistan

Abstract

According to studies of the pelitic fraction of the water-insoluble residue of 10 samples of Eocene rock salt of the Bahadur Khel Formation (Pakistan), it was determined that the clay minerals association contains swelling chlorite, chlorite-smectite, illite and kaolinite; chlorite was identified in three samples. Non-clay minerals are represented by quartz, dolomite, less often – magnesite; one sample contains impurities of both carbonates. Swelling chlorite, chlorite and mixed-layer minerals are trioctahedral, and illite and kaolinite are dioctahedral. All identified clay minerals, with the exception of kaolinite, are authigenic.

The presence of swelling chlorite in Eocene rock salt is probably caused by changes in the concentration of brines in the basin against the background of complex geological processes of this era (climate change from thermal maximum to global cooling, changes in water circulation in oceans, changes in isotopic composition of carbonates).

The association of clay minerals of Eocene rock salt, taking into account the peculiarities of its composition and the presence of swelling chlorite in it, we attributed to that formed during the SO4-rich seawater chemical type. This is also confirmed by two finds of swelling chlorite in the Triassic evaporites (rock salt of the Western Moroccan Basin, Midland marl) described in the literature, which are known to have been deposited from SO4-rich seawater.

The presence of kaolinite in almost all samples is caused by its largest accumulation in sediments of this time period – terrigenous kaolinite came in large quantities from dry land and did not transform even at the stage halite precipitation.

Keywords

clay minerals, swelling chlorite, rock salt, Eocene, Bahadur Khel Salt, Pakistan.

REFERENCES

Bain, D. C., & Russell, J. D. (1981). Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite. Clay Miner., 16 (2), 203-212. doi.org/10.1180/claymin.1981.016.2.08
https://doi.org/10.1180/claymin.1981.016.2.08
 
Bilonizhka, P. M. (1973). Nekotorye osobennosti mineral’nogo sostava glin nizhnemolasovykh otlozhenii Prikarpat’ya. In Voprosy litologii i petrografii (Kn. 2, s. 113-120). L’vov: Izdatel’stvo L’vovskogo universiteta. [in Russian]
 
Brindley, G. W. (1961). Chlorite minerals. In G. Brown (ed.), The X-ray identification and crystal structures of clay minerals (pp. 242-296). The Mineralogical Society, London.
 
Brindli, G. V. (1965). Khloritovye mineraly. In G. Braun (red.), Rentgenovskie metody izucheniya i struktura glinistykh mineralov. (V. A. Drits i dr., per. s angl.; V. A. Frank-Kamenetskii, red.) (s. 284-344). Moskva: Mir. [in Russian]
 
Carroll, D. (1970). Clay Minerals: A Guide to Their X-ray Identification (Special Paper 126). Boulder, Colorado: Geological Society of America.
https://doi.org/10.1130/SPE126-p1
 
Frank-Kamenetskii, V. A. (red.). (1983). Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty). Leningrad: Nedra. [in Russian]
 
Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]
 
Gavrilov, Yu. O., & Shcherbinina, E. A. (2004). Global’noe biosfernoe sobytie na granitse paleotsena i eotsena. In Yu. O. Gavrilov & M. D. Khutorskoi (red.), Sovremennye problemy geologii (s. 493-531). Moskva: Nauka. [in Russian]
 
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279-283.
https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
 
Holland, H. D. (2003). The geologic history of seawater. Treatise on Geochemistry, 6, 583-625.
 
Honeyborne, D. B. (1951). The clay minerals in the Keuper marl. Clay min. Bull., 1 (5), 150-157.
https://doi.org/10.1180/claymin.1951.001.5.05
 
Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta, 66, 3733-3756.
https://doi.org/10.1016/S0016-7037(01)00884-5
 
Jaumé, S. C., & Lillie, R. J. (1988). Mechanics of the Salt Range-Potwar Plateau, Pakistan: A fold-and-thrust belt underlain by evaporites. Tectonics, 7, 57-71.
https://doi.org/10.1029/TC007i001p00057
 
Kazmi, A. H., & Jan, M. Q. (1997). Geology and Tectonics of Pakistan. Nazimabad; Karachi: Graphic Publishers.
 
Khrushcheva, M. O., & Nebera, T. S. (2019). Swelling clay minerals of bottom sediments of Uskol lake (Republic of Khakassia). IOP Conference Series: Earth and Environmental Science, 319, Article 012010. doi:10.1088/1755-1315/319/1/012010
https://doi.org/10.1088/1755-1315/319/1/012010
 
Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (s. 60-69). Moskva: Nauka. [in Russian]
 
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimizma morskikh evaporitovykh basseinov i vod Mirovogo okeana. Geologiya i poleznye iskopaemye Mirovogo okeana, 4, 50-64. [in Russian]
 
Kovalevych, V. M., Peryt, T. M., & Petrychenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. The Journal of Geology, 106 (6), 695-712.
https://doi.org/10.1086/516054
 
Krupskaya, V. V., Krylov, A. A., & Sokolov, V. N. (2011). Glinistye mineraly kak indikatory uslovii osadkonakopleniya na rubezhakh mel-paleotsen-eotsen na khrebte Lomonosova (Severnyi ledovityi okean). Problemy Arktiki i Antarktiki, 2 (88), 23-35. [in Russian]
 
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T. et al. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086-1088.
https://doi.org/10.1126/science.1064280
 
Lucas, J. (1962). La transformation des mineraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem. Serv. Carte Geol. Als. et Lorraine, 20.
 
Meissner, C. R., Master J. M., Rashid, M. A., & Hussain, M. (1974). Stratigraphy of the Kohat Quadrangle, Pakistan. Geological survey professional paper, 716-D. Washington: U.S. Govt. Print. Off.
https://doi.org/10.3133/pp716D
 
Millo, Zh. (1968). Geologiya glin (vyvetrivanie, sedimentologiya, geokhimiya). (M. E. Kaplan, per. s frants.). Leningrad: Nedra. [in Russian]
 
Moore, D. M., & Reynolds, R. C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford; New York: Oxford University Press.
 
Pastukhova, M. V. (1965). K poznaniyu autigennykh silikatnykh i alyumosilikatnykh mineralov v solenosnykh porodakh. Litologiya i poleznye iskopaemye, 3, 78-90. [in Russian]
 
Premovi, P. I., Todorovi, B. Z., & Stankovi, M. N. (2008). Cretaceous-Paleogene boundary (KPB) Fish Clay at Hjerup (Stevns Klint, Denmark): Ni, Co, and Zn of the black marl. Geologica Acta, 6 (4), 369-382.
 
Shah, S. M. I. (ed.). (1977). Memoirs of the geological survey of Pakistan. Vol. 12. Stratigraphy of Pakistan. Quetta
 
Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]
 
Strakhov, N. M. (1962). Osnovy teorii litogeneza. T. 3. Zakonomernosti sostava i razmeshcheniya aridnykh otlozhenii. Moskva: AN SSSR. [in Russian]
 
Suchecki, R. K., Perry, E. A., & Hubert, J. F. (1977). Clay Petrology of Cambro-Ordovician Continental Margin, Cow Head Klippe, Western Newfoundland. Clays and Clay Minerals, 25, 163-170. doi.org/10.1346/CCMN.1977.0250301
https://doi.org/10.1346/CCMN.1977.0250301
 
Velde, B. (1977). A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed layered minerals. Clays and Clay Minerals, 25, 264-270.
https://doi.org/10.1346/CCMN.1977.0250403
 
Weaver, C. E., & Beck, K. C. (Eds.). (1977). Developments in Sedimentology. Vol. 22. Miocene of the S.E. United States: A Model for Chemical Sedimentation in a Peri-Marine Environment. New York: Elsevier.
 
Yaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138-146. doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]
https://doi.org/10.30836/igs.2522-9753.2010.147301
 
Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292 (5517), 686-693. doi.org/10.1126/science.1059412
https://doi.org/10.1126/science.1059412
Posted on

GEOCHEMICAL CHARACTERISTIC OF RIVER AND GROUND WATERS (OUTER ZONE OF THE PRECARPATHIAN DEEP)

Home > Archive > No. 1 (182) 2020 > 76-86


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 76-86.

https://doi.org/10.15407/ggcm2020.01.076

Maria KOST’, Halyna MEDVID, Vasyl HARASYMCHUK,Olga TELEGUZ, Iryna SAKHNYUK, Orysia MAYKUT

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Geochemical peculiarities of river and groundwaters of the Outer zone of the Precarpathian deep have been established. It is revealed that the main feature of the distribution of salt composition indicators in the Dniester River and its influxes is hydrochemical zonality, which does not depend on the flow direction of the rivers, but is consistent with the physics-geographical and geological features of the area to which the man-made factor is imposed.

There is an increase in concentrations of sulfate, calcium in the left bank confluent of the river Shchyrka. The waters from the Tysmenytsya, Kolodnitsa and Dniester rivers in the village Kolodrubi are characterized by the highest amounts of sodium and chlorides and are sodium chloride-hydrocarbonate composition. The water composition of the Dniester River (Rozvadiv village), its confluents Bystrytsia and Letnyanka are hydrocarbonate calcium (sodium-magnesium-calcium), Shchyrka, Vereshchitsa – sulfate-hydrocarbonate calcium (magnesium-calcium). The index of biochemical oxygen consumption for 5 days in the waters of Tysmenytsya River reached 4.5 mg O2/dm3, while in other rivers it was 0.70‒3.20 mg O2/dm3. The content of O2 soluble in the waters of the river Vereshchytsya was 0.29 mg/dm3, the value of biochemical oxygen consumption was 11.4 mg O2/dm3.

In the chemical composition of river waters, there is an increase in the concentrations of sodium, potassium and chloride ions from the left bank to the right bank confluents of the Dniester. In the left-bank confluents, in the chemical composition of water dominate the contents of calcium and hydrocarbons ions.

The heterogeneity of the lithological composition, the instability of the thickness of the aquifer both in the horizontal and vertical directions, and the different technogenic influence form the irregularity of pollution and its local distribution in groundwater.

Keywords

river waters, groundwaters, geochemical features, geochemical zonality, Outer zone, Precarpathian deep.

REFERENCES

Babiienko, V. V., Levkovska, V. Yu., & Hanykina, S. O. (2017). Hihiienichna otsinka dzherel zabrudnennia richky Dnister [Hygienic evaluation of sources of pollution of the river Dniester]. Odeskyi medychnyi zhurnal, 4, 64-67. [in Ukrainian]
 
Herenchuk, K. I. (Red.). (1972). Pryroda Lvivskoi oblasti [Nature of Lviv region]. Lviv: Vyshcha shkola. Vydavnytstvo Lvivskoho universytetu. [in Ukrainian]
 
Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu [Hygienic requirements for drinking water intended for human habitation]. (2010). DSanPiN 2.2.4-171-10. Nakaz Ministerstva okhorony zdorovia Ukrainy N 400 vid 2010-05-12. Kyiv. [in Ukrainian]
 
Ivaniuta, M. M. (red.). (1998). Atlas rodovyshch nafty i hazu Ukrainy. T. 4. Zakhidnyi naftohazonosnyi rehion [Atlas of Oil and Gas Fields of Ukraine. Vol. 4. Western Oil-and-Gas-Bearing Region]. Lviv: Tsentr Yevropy. [in Ukrainian]
 
Lototska, O. V. (2019). Hihiienichni problemy okhorony poverkhnevykh i pidzemnykh vod vid antropotekhnohennoho zabrudnennia ta yikh vykorystannia v pytnomu vodopostachanni v Zakhidnomu rehioni Ukrainy [Hygienic problems of protection of surface and underground waters from anthropotechnogenic pollution and their use in drinking water supply in the western region of Ukraine]. (Extended abstract of Doctor’s thesis, National Academy of Medical Sciences of Ukraine, State Institution “O. M. Marzieiev Institute for Public Health NAMSU”). Kyiv. [in Ukrainian]
 
Pankiv, R., Kost, M., Harasymchuk, V., Maikut, O., Mandzia, O., Sakhniuk, I., Kozak, R., & Palchykova, O. (2015). Heokhimichni osoblyvosti poverkhnevykh vod baseinu richky Dnister u mezhakh Ukrainy [Geochemical features of surface waters of the river Dniester basin within Ukraine]. Heolohiia i heokhimiia horiuchykh kopalyn, 1-2 (166-167), 135-144. [in Ukrainian]
 
Perechen’ rybokhozyaistvennykh normativov: predel’no-dopustimykh kontsentratsii (PDK) i orientirovochno bezopasnykh urovnei veshchestv (OBUV) dlya vody vodnykh ob”ektov, imeyushchikh rybokhozyaistvennoe znachenie [List of fishery standards: maximum permissible concentrations (MPC) and tentatively safe levels of substances (TSEL) for water in water bodies of fishery importance]. (1999). Moskva: Izdatel’stvo VNIRO. [in Russian]
 
Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha u Lvivskii oblasti v 2018 rotsi [Regional report on the state of the environment in the Lviv region in 2018]. (2019). Lviv. https://drive.google.com/file/d/1Q7lX0uKWoTbv5rsga5PnSRs l7Tff6qc0/view [in Ukrainian]
 
Shtohryn, O. D., & Havrylenko, K. S. (1968). Pidzemni vody zakhidnykh oblastei Ukrainy [Groundwater of the western regions of Ukraine]. Kyiv: Naukova dumka. [in Ukrainian]
 
Zharkykh, M. I. (Red.). (1998). Doslidzhennia Dnistra: 10 rokiv hromadskoi ekolohichnoi ekspedytsii “Dnister” [Dniester research: 10 years of the public ecological expedition “Dniester”]. Lviv; Kyiv. [in Ukrainian]
Posted on

GEOCHEMISTRY AND THERMOBAROMOMETRY OF MINERAL-FORMING FLUIDS AND THERMOBAROGEOCHEMISTRY OF EVAPORITES – WORLD-FAMOUS SCIENTIFIC SCHOOLS

Home > Archive > No. 1 (182) 2020 > 62-75


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 62-75.

https://doi.org/10.15407/ggcm2020.01.062

Ihor NAUMKO, Myroslav PAVLYUK, Andriy POBEREZHSKYY

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Fundamental and applied achievements in the fields of geochemistry and thermobarometry of mineral-forming fluids and thermobarogeochemistry of evaporites are summarized as the basis of the corresponding world-famous scientific thermobarogeochemical schools established by professors V. A. Kalyuzhny and O. Yo. Petrychenko at the Institute of Geology and Geochemistry of Combustible Minerals of the Academy of Sciences of Ukraine on the basis of creative development of ideas of predecessors with the support of academicians Ye. K. Lazarenko, V. S. Sobolyev, H. N. Dolenko. Emphasis is placed on the contribution of schools to geological science, which is determined by the formed knowledge base on geochemical and thermobaric parameters of fluid environments of mineral-ore- naphthidogenesis in the Earth’s lithosphere (according to data of fluid inclusions research). In this context, in view of the enormous array of available data, the composition, physicochemical properties, genesis of fluids of the upper mantle and crust are briefly discussed and it is shown that the course of processes of petro-, mineral-, ore-, naphthidogenesis and formation fields of hydrocarbon, ore and non-ore minerals is determined by the peculiarities of degassing (defluidization) of the Earth and its influence on the conversion of carbon compounds during terrigenous, organogenic, hemogenic sedimentation and on the processes of diagenesis of sediments of various origins. The obtained data on the reproduction of the evolution of the fluid regime of rock complexes contribute to solving the fundamental problem of geochemistry of carbon and hydrogen (hydrocarbon-hydrogen matter) and deep (endogenous) fluid flows in the Earth’s lithosphere as an important basis for mineralofluidological model of the planet. They played a decisive role in substantiating at the Institute on the basis of abiogenic-biogenic dualism universal approaches to the processes of synthesis and genesis of natural hydrocarbons in the form of a new fundamental paradigm of oil and gas geology and geochemistry, the polygenesis of natural hydrocarbons in the Earth’s bowels, which increases the potential of oil and gas resources of promising regions, including Ukraine. This creates the preconditions for the identification of promising rock complexes for hydrocarbon, ore and non-ore minerals by applying the obtained fundamental thermobarogeochemical data in forecasting, exploration and operational practice on the basis of developing of new non-traditional geotechnologies for assessment and exploration of hydrocarbons and minerals.

Keywords

fluid inclusions, geochemistry, thermobarometry, fluids, fluid media, mineral-ore-naphthidogenesis, Earth’s lithosphere.

REFERENCES

Bratus’, M. D., Davidenko, M. M., Zinchuk, I. M., Kalyuzhnyi, V. A., Matvienko, O. D., Naumko, I. M., Pirozhik, H. E., Red’ko, L. R., & Svoren’, Yo. M. (1994). Fluid regime in mineral formation in lithosphere (in relation to prognosis in prospecting for economic deposits), Fluid inclusion research: Proceedings оf COFFІ, USA, 27, 173–174.

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren, Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Chekalyuk, E. B. (1980). Problema genezisa nefti s pozitsii geotermodinamiki. In Teoreticheskie voprosy neftegazovoi geologii (s. 13–20). Kiev: Naukova dumka. [in Russian]

Davidenko, N. M. (1992). Istochniki zolotonosnykh rossypei kriolitozony severo-vostoka Azii (po flyuidnym vklyucheniyam v mineralakh). Kiev: Naukova dumka. [in Russian]

Dolenko, G. N. (1986). Proiskhozhdenie nefti i gaza i neftegazonakoplenie v zemnoi kore. Kiev: Naukova dumka. [in Russian]

Ermakov, N. P. (1950). Issledovaniya mineraloobrazuyushchikh rastvorov (temperatury i agregatnoe sostoyanie). Khar’kov: Izdatel’stvo Khar’kovskogo universiteta. [in Russian]

Ermakov, N. P. (1972). Geokhimicheskie sistemy vklyuchenii v mineralakh (vklyucheniya mineraloobrazuyushchikh sred – istochnik geneticheskoi informatsii). Moskva: Nedra. [in Russian]

Ermakov, N. P., & Dolgov, Yu. A. (1979). Termobarogeokhimiya. Moskva: Nedra. [in Russian]

Kadik, A. A. (1986). Fraktsionirovanie letuchikh komponentov pri plavlenii verkhnei mantii. Geologiya i geofizika, 7, 70–73. [in Russian]

Kaliuzhnyi, V. A. (1960). Metody doslidzhennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Kaliuzhnyi, V. A. (Red.). (1971). Mineraloutvoriuiuchi fliuidy ta parahenezysy mineraliv pehmatytiv zanoryshevoho typu Ukrainy (ridki vkliuchennia, termobarometriia, heokhimiia). Kyiv: Naukova dumka. [in Ukrainian]

Kalyuzhnyi, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. [in Russian]

Kalyuzhnyi, V. A. (1983). Problemy issledovaniya endogennykh (mineraloobrazuyushchikh) flyuidov po vklyucheniyam v mineralakh. Geologiya i geokhimiya goryuchikh iskopaemykh, 2, 73–78. [in Russian]

Kalyuzhnyi, V. A. (1988). Osnovnye dostizheniya i perspektivy razvitiya ucheniya o mineraloobrazuyushchikh flyuidakh (voprosy termobarometrii i geokhimii rudoobrazuyushchikh flyuidov). In Geokhimiya i termobarometriya endogennykh flyuidov (s. 3–10). Kiev: Naukova dumka. [in Russian]

Kalyuzhnyi, V. A., Vynar, O. N., Zinchuk, I. N., Kovalishin, Z. I., & Matvienko, A. D. (1987). Geokhimicheskaya spetsializatsiya endogennykh mineraloobrazuyushchikh flyuidov i poiskovye kriterii na poleznye iskopaemye. Mineralogicheskii sbornik L’vovskogo universiteta, 41 (2), 54–58. [in Russian]

Khokha, Yu., Yakovenko, M., & Liubchak, O. (2019). Termodynamika transformatsii kerohenu II typu. Heolohiia i heokhimiia horiuchykh kopalyn, 3 (180), 25–40. [in Ukrainian]

Kovalevich, V. M. (1978). Fiziko-khimicheskie usloviya formirovaniya Stebnikskogo kaliinogo mestorozhdeniya. Kiev: Naukova dumka. [in Russian]

Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoe. Kiev: Naukova dumka. [in Russian]

Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal of Geology, 106, 695–712.

Kovalevych, V., Dudok, I., Poberezhskyi, A., Vovniuk, S., Halamai, A., Hryniv, S., Lytvyniuk, C., Sydor, D., & Yaremchuk, Ya. (2012). Khimiko-paleookeanohrafichni indykatory prohnozu pokladiv vuhlevodniv ta korysnykh kopalyn u vidkladakh kontynentalnykh okrain (za rezultatamy mineraloho-heokhimichnykh doslidzhen sulfatno-karbonatnykh i solenosnykh tovshch fanerozoiu Tsentralnoi i Skhidnoi Yevropy). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (160–161), 66–81. [in Ukrainian]

Kovalishin, Z. I., & Bratus’, M. D. (1984). Flyuidnyi rezhim gidrotermal’nykh protsessov Zakarpat’ya. Kiev: Naukova dumka. [in Russian]

Lazarenko, E. K. (1979). Opyt geneticheskoi klassifikatsii mineralov. Kiev: Naukova dumka. [in Russian]

Liakhov, Yu., Matkovskyi, O., Pavlun, M., & Sivoronov, A. (2013). Profesor Mykola Porfirovych Yermakov – teoretyk i zasnovnyk novoi haluzi heolohichnykh znan – termobaroheokhimii (do 100-richchia vid dnia narodzhennia). Mineralohichnyi zbirnyk, 63 (2), 4–13. [in Ukrainian]

Lukin, A. E., & Pikovskii, Yu. I. (2004). O roli glubinnykh i sverkhglubinnykh flyuidov v nefteobrazovanii. Geologicheskii zhurnal, 2, 21–33. [in Russian]

Matkovskyi, O., Naumko, I., & Pavlun, M. (2017). Termobaroheokhimichna shkola profesora Mykoly Yermakova ta yii vnesok u rozvytok henetychnoi mineralohii y uchennia pro rodovyshcha korysnykh kopalyn. Mineralohichnyi zbirnyk, 67 (1), 3–37. [in Ukrainian]

Matkovskyi, O., Naumko, I., & Pavlun, M. (2018a). Etapy ta periody rozvytku termobaroheokhimichnykh doslidzhen v Ukraini. Mineralohichnyi zbirnyk, 68 (1), 129–134. [in Ukrainian]

Matkovskyi, O. I., Naumko, I. M., & Pavlun, M. M. (2018b). Termobaroheokhimiia v Ukraini. In Heolohiia i korysni kopalyny Ukrainy (s. 142–145). Kyiv: IHMR NAN Ukrainy. [in Ukrainian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv). (Extended abstract of Doctorʼs thesis). Lviv. [in Ukrainian]

Naumko, I. (2011). Mineralofliuidolohiia v Instytuti heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2 (154–155), 114–115. [in Ukrainian]

Naumko, I. (2017). Vnesok akademika Hryhoriia Nazarovycha Dolenka u rozvytok termobaroheokhimii–mineralofliuidolohii v Instytuti heolohii i heokhimii horiuchykh kopalyn. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2 (170–171), 120–121. [in Ukrainian]

Naumko, I. (2019). Pro litofliuidotermodynamichnu systemu v heolohii i heokhimii. Heolohiia i heokhimiia horiuchykh kopalyn, 2 (179), 28–36. [in Ukrainian]

Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi NAN Ukrainy, 8, 117–120. [in Ukrainian]

Naumko, I., Bratus, M., Dudok, I., Kaliuzhnyi, V., Kovalyshyn, Z., Sakhno, B., Svoren, Y., & Telepko, L. (2004). Fliuidnyi rezhym katahenno-hidrotermalnoho protsesu periodu formuvannia zhylnoi, prozhylkovoi i prozhylkovo-vkraplenoi mineralizatsii v osadovykh tovshchakh. In V. V. Kolodii (Red.), Karpatska naftohazonosna provintsiia (s. 308–345). Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Naumko, I., Bratus, M., Zinchuk, I., Svoren, Y., Batsevych, N., Vovk, O., Zankovych, H., Redko, L., Sakhno, B., Beletska, Yu., Druchok, L., Matviishyn, Z., Telepko, L., Bondar, R., Brynskyi, T., Zubyk, M., Sava, N., & Stepaniuk, V. (2019). Letki spoluky fliuidnykh vkliuchen i zakrytykh por porid yak vazhlyvyi pokaznyk fliuidonasychenosti nadr (na prykladi porodno-rudnykh kompleksiv Ukrainy). In Heofizyka i heodynamika: prohnozuvannia ta monitorynh heolohichnoho seredovyshcha (s. 134–136). Lviv: Rastr-7. [in Ukrainian]

Naumko, I. M., & Kaliuzhnyi, V. A. (2001). Pidsumky ta perspektyvy doslidzhen termobarometrii i heokhimii paleofliuidiv litosfery (za vkliuchenniamy u mineralakh). Heolohiia i heokhimiia horiuchykh kopalyn, 2, 162–175. [in Ukrainian]

Naumko, I., Kaliuzhnyi, V., Bratus, M., Zinchuk, I., Kovalyshyn, Z., Matviienko, O., Redko, L., & Svoren, Y. (2000). Uchennia pro mineralotvorni fliuidy: priorytetni zavdannia rozvytku na suchasnomu etapi. Mineralohichnyi zbirnyk, 50 (2), 22–30. [in Ukrainian]

Naumko, I., Kaliuzhnyi, V., Svoren, Y., Zinchuk, I., Bekesha, S., Redko, L., Sakhno, B., Druchok, L., Telepko, L., Beletska, Yu., Matviishyn, Z., Sava, N., Bondar, R., & Stepaniuk, V. (2007). Fliuidy postsedymentohennykh protsesiv v osadovykh ta osadovo-vulkanohennykh verstvakh pivdenno-zakhidnoi okrainy Skhidnoievropeiskoi platformy i prylehlykh heostruktur (za vkliuchenniamy u mineralakh). Heolohiia i heokhimiia horiuchykh kopalyn, 4, 63–94. [in Ukrainian]

Naumko, І. М., Kovalyshyn, Z. I., Svoren’, J. M., Sakhno, B. Е., & Telepko, L. F. (1999). Towards forming conditions of veinlet mineralization in sedimentary oil- and gas- bearing layers of Carpathian region (obtained by data of fluid inclusions research). Геологія і геохімія горючих копалин, 3 (108), 83–91.

Naumko, І. М., Кurovets’, І. М., Zubyk, М. І., Batsevych, N. V., Sakhno, B. Е., & Chepusenko, P. S. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv Paleozoic depression. Geodynamics, 1 (22), 26–41.

Naumko, I. M., Pavliuk, M. I., Svoren, Y. M., & Zubyk, M. I. (2015). Metan hazovuhilnykh rodovyshch – potuzhne dodatkove dzherelo vuhlevodniv v Ukraini. Visnyk NAN Ukrainy, 6, 43–54. [in Ukrainian]

Naumko, I. M., Pavliuk, M. I., Svoren, Y. M., & Zubyk, M. I. (2016). Hazy vuhilnykh rodovyshch: nove vyrishennia problemy syntezu–henezysu metanu. Dopovidi NAN Ukrainy, 3, 61–68. https://doi.org/10.15407/dopovidi2016.03.061 [in Ukrainian]

Naumko, I. M., & Svoren’, I. M. (2003). O vazhnosti glubinnogo vysokotemperaturnogo flyuida v sozdanii uslovii dlya formirovaniya mestorozhdenii prirodnykh uglevodorodov v zemnoi kore. In Novye idei v naukakh o Zemle: Materialy VI Mezhdunarodnoi konferentsii (Moskva, 8–12 aprelya 2003 g.) (T. 1, s. 249). Moskva. [in Russian]

Naumko, І., & Svoren’, Yo. (2010). Abiogenic-biogenic bases of the genesis and synthesis of natural hydrocarbons in the Earth’s lithosphere (by fluid inclusions research). Geochimica et Cosmochimica Acta, 74 (11, Suppl. 1), A747.

Naumko, I., & Svoren, Y. (2014). Novi tekhnolohii poshukiv korysnykh kopalyn, osnovani na doslidzhenniakh fliuidnykh vkliuchen u mineralakh. V Aktual’nye problemy poiskovoi i ekologicheskoi geokhimii: Sbornik tezisov Mezhdunarodnoi nauchnoi konferentsii (Kiev, 1–2 iyulya 2014 g.) (s. 23–25). Kiev: Іnterservіs. [in Ukrainian]

Pavliuk, M. I. (2014). Heodynamichna evoliutsiia ta naftohazonosnit Azovo-Chornomorskoho i Barentsevomorskoho perykontynentalnykh shelfiv. Lviv: PROMAN. [in Ukrainian]

Pavliuk, M. I. (2017). Heotektonichna evoliutsiia i naftohazonosnyi potentsial Ukrainy (stenohrama naukovoi dopovidi na zasidanni Prezydii NAN Ukrainy 5 lypnia 2017 r.). Visnyk NAN Ukrainy, 9, 11–21. [in Ukrainian]

Pavlyshyn, V. I., Bondarenko, S. M., Bryk, O. B., Vozniak, D. K., Ilchenko, K. O., Kalinichenko, A. M., Kvasnytsia, V. M., Kulchytska, H. O., Lukashko, T. M., Naumko, I. M., Semenenko, V. P., Taran, M. M., Tarashchan, A. M., Khomenko, V. M., & Chernysh, D. S. (2018). Mineralohiia u Natsionalnii akademii nauk Ukrainy (do 100-richchia NAN Ukrainy). Mineralohichnyi zhurnal, 40 (3), 3–22. https://doi.org/10.15407/mineraljournal. 40.03.003 [in Ukrainian]

Pavlyuk, M. I., Varichev, S. A., & Rizun, B. P. (2003). Novye predstavleniya o genezise nefti i gaza i formirovanii neftegazonosnykh provinnii. In Genezis nefti i gaza (s. 441–442). Moskva: GEOS. [in Russian]

Petrichenko, O. I. (1977). Atlas mikrovklyuchenii v mineralakh galogennykh porod. Kiev: Naukova dumka. [in Russian]

Petrichenko, O. I. (1988). Fiziko-khimicheskie usloviya osadkoobrazovaniya v drevnikh solerodnykh basseinakh. Kiev: Naukova dumka. [in Russian]

Petrichenko, O. I. (1989). Epigenez evaporitov. Kiev: Naukova dumka. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Petrychenko, O., Kovalevych, V., Poberezhskyi, A., Vovniuk, S., Halamai, A., Dudok, I., Hryniv, S., Khmelevska, O., Sydor, D., Yaremchuk, Ya., Oliiovych, O., & Lytvyniuk, C. (2006). Vikovi zminy khimichnoho skladu okeanichnoi vody ta yikhnii vplyv na formuvannia halohennykh i bituminoznykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 97–118. [in Ukrainian]

Poberezhskyi, A. V., & Kovalevych, V. M. (2001). Khimichnyi sklad morskoi vody v kainozoi (za rezultatamy doslidzhennia vkliuchen u sedymentatsiinomu haliti). Heolohiia i heokhimiia horiuchykh kopalyn, 2, 90–109. [in Ukrainian]

Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy (Vol. 12). Virginia: Mineralogical Society of America.

Shestopalov, V. M., Lukin, A. E., Zgonnik, V. A., Makarenko, A. N., Larin, N. V., & Boguslavskii, A. S. (2018). Ocherki degazatsii Zemli. Kiev. [in Russian]

Smit, F. G. (1956). Geologicheskaya termometriya po vklyucheniyam v mineralakh. Moskva: Izdatel’stvo inostrannoi literatury. [in Russian]

Sorby, H. C. (1858). On the Microscopic, Structure of Crystals, Indicating the Origin of Minerals and Rocks. Quarterly Journal of the Geological Society of London, 14 (1), 453–500. https://jgs.lyellcollection.org/content/14/1-2/453

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111–116. [in Ukrainian]

Vovniuk, S., Halamai, A., Hryniv, S., Dudok, I., Maksymuk, S., Poberezhskyi, A., Sydor, D., & Yaremchuk, Ya. (2017). Heokhimichni kryterii zviazku evaporytovykh i osadovykh formatsii fanerozoiu ta pokladiv vuhlevodniv (na prykladi naftohazonosnykh baseiniv Tsentralnoi i Skhidnoi Yevropy). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (172–173), 56–75. [in Ukrainian]

Vozniak, D. K. (2005). Rozvytok v Ukraini vchennia pro fliuidni vkliuchennia v mineralakh. Zapysky Ukrainskoho mineralohichnoho tovarystva, 2, 34–43. [in Ukrainian]

Vozniak, D. K., Kulchytska, H. O., Chernysh, D. S., & Belskyi, V. M. (2019). Nauka pro fliuidni vkliuchennia u mineralakh v Ukraini (do 100-richchia NAN Ukrainy). Mineralohichnyi zhurnal, 41 (1), 23–34. [in Ukrainian]

Vynar, O. M., Kaliuzhnyi, V. A., Naumko, I. M., & Matviienko, O. D. (1987). Mineraloutvoriuiuchi fliuidy postmahmatychnykh utvoren hranitoidiv Ukrainskoho shchyta. Kyiv: Naukova dumka. [in Ukrainian]

Zinchuk, I. N., Kalyuzhnyi, V. A., & Shchiritsa, A. S. (1984). Flyuidnyi rezhim mineraloobrazovaniya Tsentral’nogo Donbassa. Kiev: Naukova dumka. [in Russian]

Posted on

BOWELS OF THE EARTH – NATURAL PHYSICAL-CHEMICAL REACTOR: IS THE SEARCH FOR NATURAL METHANE A FUNDAMENTAL SCIENCE OR A TECHNICAL PROBLEM?

Home > Archive > No. 4 (181) 2019 > 104-115


Geology & Geochemistry of Combustible Minerals No. 4 (181) 2019, 104-115.

https://doi.org/10.15407/ggcm2019.04.104

Yosyp Svoren

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine,
e-mail: igggk@mail.lviv.ua

Abstract

It is shown that the hypothesis of organic origin of hydrocarbons doesn’t respond to the presence of a dominant concentration of methane in sediments, deposits, “shale’ series and so on, hence prospecting and exploration for hydrocarbon deposits in them are conducted in most cases intuitively, but not on the fundamental scientific basis.

Experimental studies based on the heating of slightly modified organic matter (peat) show that up to 200 °C in the process of its decomposition the following gases were delivered (vol. %): CO2 = 49.5; H2O = 49.3; CH4, C2H6, C3H8, N2, H2, SO2, H2S within 1.2 % in total.

It is confirmed that there is no coal methane, there is no shale gas-methane, but there is methane of one genesis with slightly different isotope composition of carbon, but synthesized according to the same mechanism in the high-thermobaric processes that after migration into the earth’s crust accumulated in the form of deposits in cavities of coal seams, terrigenous units, sandstones and so on.

Prospecting for pool-deposits of hydrocarbons should be carried out in conformity with developed “new technology of determination of prospects for oil and gas presence in the local area”, “physical-chemical model of synthesis of hydrocarbons and the way of geochemical searching for their occurrences”, “new theory of hydrocarbon synthesis and genesis in the earth’s lithosphere: abiogenic-biogenic dualism”.

Keywords

fluid inclusions, minerals, methane, origin of hydrocarbons, exploration, pool-deposits, new technologies.

REFERENCES

Davydenko, M. M., & Svoren, Y. M. (1994). Sposib lokalnoho prohnozuvannia zbahachenykh dilianok zolotorudnykh poliv. Promyslova vlasnist. Ofitsiinyi biuleten, 3. [in Ukrainian]
 
Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv). (Extended abstract of Doctorʼs thesis). Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy, Lviv. [in Ukrainian]
 
Naumko, І. М., Кurovets’, І. М., Zubyk, М. І., Batsevych, N. V., Sakhno, B. Е., & Chepusenko, P. S. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv Paleozoic depression. Geodynamics, 1 (22), 26-41.
 
Naumko, I. M., Pavliuk, M. I., Svoren, I. M., Zubyk, M. I. (2016). Hazy vuhilnykh rodovyshch: nove vyrishennia problemy syntezu-henezysu metanu. Dopovidi NAN Ukrainy, 3, 61-68. [in Ukrainian]
https://doi.org/10.15407/dopovidi2016.03.061
 
Naumko, I. M., & Svoren, I. M. (2003). O vazhnosti glubinnogo vysokotemperaturnogo flyuida v sozdanii usloviy dlya formirovaniya mestorozhdeniy prirodnykh uglevodorodov v zemnoy kore. In Novyye idei v naukakh o Zemle: Materialy VI Mezhdunarodnoy konferentsii (Moskva. 8-12 aprelya 2003 g.) (T. 1. s. 249). Moskva. [in Russian]
 
Naumko, I., & Svoren, I. (2014). Novi tekhnolohii poshukiv korysnykh kopalyn, osnovani na doslidzhenniakh fliuidnykh vkliuchen u mineralakh. In Aktualnyye problemy poiskovoy i ekologicheskoy geokhimii: Sbornik tezisov Mezhdunarodnoy nauchnoy konferentsii (Kiyev. 1-2 iyulya 2014 g.) (s. 23-25). Kiev: Interservis. [in Ukrainian]
 
Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyaniye na svoystva veshchestv. (Extended abstract of candidateʼs thesis). Institut geologii i geokhimii goryuchikh iskopayemykh AN USSR, Lvov. [in Russian]
 
Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy: tezy dopovidei naukovoi narady (20-22 zhovtnia 1992 r.) (s. 143-145). Lviv. [in Ukrainian]
 
Svoren, Y. M. (2008). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: pryroda vuhilnoho metanu. Ugol Ukrainy, 8 (620), 42-46. [in Ukrainian]
 
Svoren, Y. (2013). Termobarometriia ta heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: defekty v mineralakh – dzherelo informatsii pro protsesy mineraloutvorennia. Mineralohichnyi zbirnyk, 63 (2), 91-97. [in Ukrainian]
 
Svoren, Y. (2018). Vlastyvist hlybynnoho abiohennoho metanovmisnoho vysokotermobarnoho fliuidu utvoriuvaty vuhillia. Heolohiia i heokhimiia horiuchykh kopalyn, 3-4 (176-177), 105-109. [in Ukrainian]
 
Svoren, I. (2019). Pro novyi pidkhid do vyznachennia teplotvornosti pryrodnoho hazu, yakyi postachaiut spozhyvacham, ta yoho kubometrobarometriiu. Heolohiia i heokhimiia horiuchykh kopalyn, 2 (179), 84-89. [in Ukrainian]
 
Svoren, Y. M., & Davydenko, M. M. (1994). Sposib vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi. Promyslova vlasnist. Ofitsiinyi biuleten, 4. [in Ukrainian]
 
Svoren, Y. M., & Davydenko, M. M. (1995). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Dopovidi NAN Ukrainy, 9, 72-73. [in Ukrainian]
 
Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii (novyi naukovyi napriamok v heolohii). Heolohiia i heokhimiia horiuchykh kopalyn, 3-4 (88-89), 54-63. [in Ukrainian]
 
Svoren, Y. M., & Naumko, I. M. (2000). Nova tekhnolohiia vyznachennia henezysu vuhlevodnevykh haziv. In Nafta i haz Ukrainy (T. 1, s. 118). Ivano-Frankivsk: UNHA. [in Ukrainian]
 
Svoren, I. M., & Naumko, I. M. (2003). Rol adiabaticheskikh yavleniy v protsessakh nakopleniya-kontsentratsii i prevrashcheniya uglevodorodsoderzhashchikh veshchestv v litosfere Zemli. In Novyye idei v naukakh o Zemle: Materialy VI Mezhdunarodnoy konferentsii (Moskva. 8-12 aprelya 2003 g.) (T. 1. s. 257). Moskva. [in Russian]
 
Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111-116. [in Ukrainian]
 
Svoren, Y., & Naumko, I. (2012). Boryslavske vuhlevodneve rodovyshche: problemy dlia rozdumiv. In Stan, problemy ta perspektyvy naftohazovoi promyslovosti Ukrainy: Zbirnyk tez dopovidei Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 7-9 veresnia 2012 r.) (s. 16). Lviv: Vydavnytstvo Lvivskoi politekhniky. [in Ukrainian]
 
Svoren, I. M., Naumko, I. M., & Davydenko, M. M. (1998). Nova tekhnolohiia vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi. In Nafta-Haz Ukrainy – 1998: Materialy V Mizhnarodnoi konferentsii (Poltava, 15-17 veresnia 1998 r.) (T. 1, s. 111-112). Poltava: UNHA. [in Ukrainian]
 
Svoren’, J. M., Naumko, І. М., Kovalyshyn, Z. I., Bratus’, M. D., & Davydenko, M. M. (1999). New technology of local forecast of enriched areas of gold ore fields. In Naukovi osnovy prohnozuvannia, poshukiv ta otsinky rodovyshch zolota: Materialy Mizhnarodnoi naukovoi konferentsii (Lviv, 27-30 veresnia 1999 r.) (s. 121-125). Lviv: Vydavnychyi tsentr LDU im. I. Franka.

Posted on

ON CONTENT, MIGRATION AND CONCENTRATION OF HEAVY METALS IN OILS (by the example of the Dnieper-Donets Depression)

Home > Archive > No. 4 (181) 2019 > 96-103


Geology & Geochemistry of Combustible Minerals No. 4 (181) 2019, 96-103.

https://doi.org/10.15407/ggcm2019.04.096

Artem Yerofieiev

V. N. Karazin Kharkiv National University,
e-mail: pro100graf@gmail.com

Ihor Berezovsky

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine,
e-mail: igggk@mail.lviv.ua

Abstract

Literature review and analysis of previous studies of the problem was carried. The main scientific works on the research topic, as well as the main directions and stages of the study are indicated. Similar studies that were conducted on the territory of Ukraine are considered.

The results of the study of heavy metals in oil samples taken from a large oil and gas region from more than thirty deposits of Ukraine are presented. All current and non-working fields are considered.

The geological structure of the oil and gas province, as well as the main geochemical features of the formation of mineral deposits are considered. The main forms of finding target metals, as well as possible ways of transferring these elements in the earth’s crust are given.

Samples were investigated using x-ray fluorescence and neutron activation analysis. The obtained research data in the framework of two selected methods are combined for analysis. The results obtained within the same geological structure are compared with each other to determine the effect of the physical conditions of sediment formation on the microcomponent composition of crude oil. They also compared the effect of physical conditions on the properties of oil and their ability to accumulate heavy metals. Possible causes of the abnormal accumulation of heavy metals due to the close occurrence of oil and formation water are noted.

According to the results obtained, a graph is constructed of the dependence of the mineralization of oil on its depth. An exponential graphical approximation is presented to display the general trend of dependence.

Possible sources and ways of migration and accumulation of heavy metals in hydrocarbons are analyzed. The concept of the migration of heavy metals in oil is proposed in conjunction with the ore mineralization of adjacent and adjacent deposits.

Possible causes of differences in the concentrations of heavy metals in oil of various geological structures are indicated, as well as the main possible causes of measurement errors and complications in the selection of each of the analysis methods are specified.

Keywords

migration, heavy metals, petroleum, X-ray fluorescence spectroscopy, petroleum geochemistry, organometallic compounds.

REFERENCES

Ahmad, D. M., Hafizan, J., & Kamaruzaman, Y. (2015). Oil spill related Heavy Metal: a Review. Malaysian Journal of Analytical Sciences, 48 (1), 1348-1360.
 
Akpoveta, O. V., & Osakwe, S. A. (2014). Determination of Heavy Metal Contents in Refined Petroleum. IOSR Journal of Applied Chemistry, 7 (6), 1-2.
https://doi.org/10.9790/5736-07610102
 
Barwise, A. J. G. (1990). Role of nickel and vanadium in petroleum classification. Energy Fuels, 4 (6), 647-652.
https://doi.org/10.1021/ef00024a005
 
Ishchenko, L. V. (2018). Oreolni vody rtutnykh rudnykh poliv Donbasu yak rezultat evoliutsii hidrotermalnykh system. Science Rise, 9, 6-10. [in Ukrainian]
 
Khlibyshyn, Yu. Ya., Mokhamad Shakir Abd Al-Ameri, Hrynyshyn, O. B., & Pochapska, I. Ya. (2013). Doslidzhennia dystyliatnoi chastyny vysokosirkovoi nafty Orkhovytskoho naftovoho rodovyshcha. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 761, 462-465. [in Ukrainian]
 
Lazarenko, E. K., Panov, B. S., & Pavlishin, V. I. (1975). Mineralogiya Donetskogo basseyna. Kiev: Naukova dumka. [in Russian]
 
Madu, A. N., & Iwuoha, G. A. (2011). Extent of heavy metals in oil samples in escravos, Abiteye and Malu Platforms in Delta State Nigeria Njoku. Learning Publics Journal of Agriculture and Environmental Studies, 2 (2), 41-44.
 
Shnyukov, E. F., Gozhik, P. F., & Krayushkin, V. A. (2007). Vanadiy i nikel v prirodnykh neftyakh Azii. Afriki. Evropy. Severnoy i Yuzhnoy Ameriki. Dopovidi NAN Ukrainy, 3, 137-141. [in Russian]
 
Suiarko, V. H., Zahnitko, V. M., & Lysychenko, H. V. (2010). Strukturno-heokhimichne prohnozuvannia skupchen vuhlevodniv (na prykladi Zakhidno-Donetskoho hrabenu). Kyiv: IHNS NAN ta MNS Ukrainy. [in Ukrainian]
 
Suiarko, V. H., Zahnitko, V. M., & Reshetov, I. K. (2008). Ridkisni elementy v hidrotermalnykh vodakh Donbasu. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, 803, 70-74. [in Ukrainian]
 
Sukhanov, A. A., & Petrova, Yu. E. (2008). Resursnaya baza poputnykh komponentov tyazhelykh neftey Rossii. Neftegazovaya geologiya. Teoriya i praktika, 3, 1-11. [in Russian]
 
Suyarko, V. G. (1988). Geokhimicheskiye osobennosti podzemnykh vod Donbassa. Geokhimiya, 5, 738-746. [in Russian]
 
Suyarko, V. G. (2006). Geokhimiya podzemnykh vod vostochnoy chasti Dneprovsko-Donetskogo avlakogena. Kharkov: KhNU imeni V. N. Karazina. [in Russian]
 
Wilberforce, J. O. (2016). Profile of Heavy Metals in Crude Oil Commonly Consumed for Medicinal Purposes in Abakaliki. IOSR Journal of Pharmacy and Biological Sciences, 11 (3), 43-44.
 
Yakutseni, S. P. (2010). Glubinnaya zonalnost v obogashchennosti uglevodorodov tyazhelymi elementami-primesyami. Neftegazovaya geologiya. Teoriya i praktika, 5 (2), 1-7. [in Russian]
 
Zalia, M. A., Kamaruzaman, W., & Ahmad, W. (2015). Concentration of heavy metals in virgin, used, recovered and waste oil: a spectroscopic study. Procedia Environmental Sciences, 30, 201-204.
https://doi.org/10.1016/j.proenv.2015.10.036

Posted on

PECULIARITIES OF CHEMICAL COMPOSITION OF EARLY PALEOZOIC SEAWATER (study of fluid inclusions in halite of Ordovician Ordos salt basin, China)

Home > Archive > No. 4 (181) 2019 > 78-95


Geology & Geochemistry of Combustible Minerals No. 4 (181) 2019, 78-95.

https://doi.org/10.15407/ggcm2019.04.078

Anatoliy GALAMAY, Daria SYDOR

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine,
e-mail: igggk@mail.lviv.ua

Fanwei MENG

State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, CAS, Nanjing 210008, China,
e-mail: mengfanwei2004@hotmail.com

Yongsheng ZHANG

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract

The fluid inclusions in the marine Middle Ordovician halite of the Majiagou Salt Formation of the Ordos Basin (China) have been investigated. In addition to the primary inclusions the secondary ones of several generations were also detected. The fluid inclusions brine chemistry of halite was studied using an ultramicrochemical (UMCA) method, and the homogenization temperature of fluid inclusions was determined in a special thermal chamber designed by V. A. Kalyuzhny

At the post-sedimentation stage, the studied salt strata were exposed to high temperature (58–72 °C) and high (up to several tens of MPa) pressure. Although there are opinions of the inability of primary inclusions in such halite to determine the physical and chemical conditions of sedimentation, however, the informative value of primary inclusions in halite of the Majiagou Formation has remained. The preservation of the integrity (and thus the informative value) of primary inclusions in halite is evidenced by the same chemistry of their brines, which differs from that of secondary inclusions The sedimentation brines of the basin were concentrated to the middle of halite stage and points to the Na-K-Mg-Ca-Cl seawater.

The physical and chemical conditions of evaporites formation are not known enough. Currently, the results of the brine chemistry of primary fluid inclusions in marine halite are the best indicators of seawater composition in the Phanerozoic. It is established that the magnesium content in the brines of the Lower Paleozoic basins is lower comparing to modern seawater of the corresponding concentration, and the potassium ion concentration is higher. The chemical composition of the concentrated seawater from which the halite was crystallized in the Ordovician salt basin of Ordos, with the exception of the calcium ion content, is similar to the seawater chemistry of the Cambrian and Silurian basins, which indicates the relative constancy of Early Paleozoic seawater chemistry.

Age-related changes in the chemical composition of seawater are always consistent with many quantitatively or qualitatively characterized processes of the Earth’s crust evolution. So we believe that the causes that led to more than twice the potassium content of Riphean-Devonian clays, unlike the younger ones, it were also the reason for the increase in potassium content in the Lower Paleozoic marine brines.

The studies conducted also clarify the limits of oscillation of calcium ion content, which determines the type of seawater. Its content in the sedimentary brines of the Ordos basin of the Middle Ordovician reaches 66 g/l at the middle of halite stage. Therefore, at the beginning of the stage of halite precipitation, its content should be approximately 20 g/l (considering its theoretical content of 10 g/l with the modern composition of the atmosphere). Apparently, the cause of the abnormally high calcium content in the early Paleozoic Ocean was the direct flow of it with hydrothermal solutions into the ocean during the activation of global tectonics of the Earth and the increase of solubility of carbonates of continents and ocean floor due to high carbon dioxide atmospheric content.

Keywords

halite, primary inclusions, homogenization temperature, seawater.

REFERENCES

Acros, D., & Ayora, C. (1997). The use of fluid inclusions in halite as environmental thermometer: an experimental study. In XIV ECROFI (pp. 10-11). Nancy.
 
Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving”- a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279-288. [in Chinese with English abstract].
 
Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557-558.
https://doi.org/10.1126/science.1140273
 
Brennan, S. T., & Lowenstein, T. K. (2002). The major-ion composition of Silurian seawater composition. Geochimica et Cosmochimica Acta, 6, 2683-2700.
https://doi.org/10.1016/S0016-7037(02)00870-0
 
Claypool, G. E., Holser, W. T., Kaplan, І. R., Sakaі, H., & Zak, І. (1980). The age curves of sulfur and oxygen іsotopes іn marіne sulfate and theіr mutual іnterpretatіon. Chem. Geol., 28, 199-260.
https://doi.org/10.1016/0009-2541(80)90047-9
 
Das, N., Horita, J., & Holland, H. D. (1990). Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin: Implications of Late Silurian seawater and the origin of Sedimentary brines. Geochimica et Cosmochimica Acta, 54, 319-327.
https://doi.org/10.1016/0016-7037(90)90321-B
 
Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33 (11), 877-880.
https://doi.org/10.1130/G21945.1
 
Eugster, H. P., Harvie, C. E., & Weare J. H. (1980). Mineral equilibria in a sixcomponent seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25 ºС. Geochimica et Cosmochimica Acta, 44, 1335-1347.
https://doi.org/10.1016/0016-7037(80)90093-9
 
Feng, Z. Z., Zhang, Y. S., & Jin, Z. K. (1998). Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China platform. Sedimentary Geology, 118, 127-140.
https://doi.org/10.1016/S0037-0738(98)00009-8
 
Fox, J. S., & Videtich, P. E. (1997). Revised estimate of δ34S for marine sulfates from the Upper Ordovician: data from the Williston Basin, North Dakota, USA. Applied Geochemistry, 12, 97-103.
https://doi.org/10.1016/S0883-2927(96)00065-0
 
Galamаy, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37 (2), 245-267.
 
Garrels, R., & Mackenzie, F. (1974). Evolyutsiya osadochnykh porod [Evolution of sedimentary rocks]. Moscow: Mir. [in Russian]
 
Geological Survey of Western Australia. Petroleum Operations Division. & Western Australia. Department of Industry and Resources. (2004). Summary of petroleum prospectivity onshore Western Australia and State waters 2004: Bonaparte, Canning, Officer, Perth, Southern Carnarvon and Northern Carnarvon Basins : 2003. Geological Survey of Western Australia.
 
Goncharenko, G. A., & Moskovsky, O. P. (2004). Osobennosti evolyutsii sostava morskikh rastvorov v fanerozoye [Evolution features of marine solutions composition in the Phanerozoic]. Proceedings of Voronezh University. Geology, 2, 48-62. [in Russian]
 
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279-283.
https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
 
Holdoway, K. A. (1974). Behavior of fluid inclusions in salt during heating and irradiation. In Fourth International Symposium on salt (Vol. 1, pp. 303-312). Cleveland Ohio: Northern Ohio Geological Society.
 
Holland, H. D. (2003). The geologic history of seawater. Treatise on Geochemistry, 6, 583-625.
 
Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66, 3733-3756.
https://doi.org/10.1016/S0016-7037(01)00884-5
 
Kalyuzhny, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh [The foundations of teaching about mineral-forming fluids]. Kiev: Naukova dumka. [in Russian]
 
Kovalevich, V. M. (1978). Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya [Physical and chemical conditions of salts formation of the Stebnik potash deposit]. Kiev: Naukova dumka.
 
Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoye [Halogenesis and chemical evolution of ocean in the Phanerozoic]. Kiev: Naukova dumka. [in Russian]
 
Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695-712.
https://doi.org/10.1086/516054
 
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovyye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseynov i vod mirovogo okeana [Secular variations in the chemical brines composition of marine evaporite basins and oceans waters]. Lithology, 4, 95-109. [in Russian]
 
Kovalevych, V. M., Peryt, T. M., & Dzhinoridze, N. M. (2003). Chemical characteristics of seawater in the Early Cambrian: results of a fluid-inclusion study of halite from the Tyret’ Deposit (East Siberia). In D. G. Eliopoulos et al. (Eds). Mineral Exploration and Sustainable Development (pp. 693-695). Rotterdam: Millpress.
 
Kovalevych, V. M., Peryt, T. M., Zang, W., & Vovnyuk, S. V. (2006). Composition of brines in halite-hosted fluid inclusions in the Upper Ordovician, Canning Basin, Western Australia: new data on seawater chemistry. Terra Nowa, 18 (2), 95-103.
https://doi.org/10.1111/j.1365-3121.2006.00668.x
 
Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real micro-droplets of ancient sea water? Geological Quarterly, 54 (4), 401-410.
 
Kovalevych, V. M., Zang, W-L., Peryt, T. M., Khmelevska, O. V., Halas, S., Iwasinska-Budzyk, I. … Heithersay, P. S. (2006). Deposition and chemical composition of Early Cambrian salt in the eastern Officer Basin, South Australia. Australian Journal of Earth Sciences, 53, 577-593.
https://doi.org/10.1080/08120090600686736
 
Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485-506. https://doi.org/10.1007/s00126-019-00873-9
https://doi.org/10.1007/s00126-019-00873-9
 
Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178, 1-28.
https://doi.org/10.1016/j.earscirev.2017.12.004
 
Li, R. X., Guzmics, T., Liu, X. J., & Xie, G. C. (2011). Migration of immiscible hydrocarbons recorded in calcite-hostedfluid inclusions, Ordos Basin: a case study from Northern China. Russian Geology and Geophysics, 52, 1491-1503.
https://doi.org/10.1016/j.rgg.2011.10.016
 
Lowenstein, T. K., & Timofeeff, M. N. (2008). Secular variations in seawater chemistry as a control on the chemistry of basinal brines: test of the hypothesis. Geofluids, 8, 77-92.
https://doi.org/10.1111/j.1468-8123.2007.00206.x
 
Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69 (7), 1701-1719.
https://doi.org/10.1016/j.gca.2004.09.015
 
Matukhin, R. G., Petrichenko, O. Y., & Sokolov, P. N. (1985). Gazovo-zhidkiye vklyucheniya v galite kak pokazatel usloviy formirovaniya devonskikh solenosnykh otlozheniy Sibiri [Gas-liquid inclusions in halite as an indicator of the conditions of the Siberia Devonian salt sediments formation]. In Litologo-fatsialnyye i geokhimicheskiye problemy solenakopleniya [Lithological-facies and geochemical problems of salt accumulation] (pp. 194-203). Moscow: Nauka. [in Russian]
 
McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928-937.
https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D
 
Ogg, J. G., Scotese, C. R., Hou, M., Chen, A., Ogg, G. M., & Zhong, H. (2019). Global Paleogeography through the Proterozoic and Phanerozoic: Goals and Challenges.Acta Geologica Sinica (English Edition), 93 (1), 59-60.
https://doi.org/10.1111/1755-6724.14245
 
Petrichenko, O. Y. (1989). Epigenez evaporitov [Epigenesis of evaporites]. Kiev: Naukova dumka. [in Russian]
 
Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid [Methods of inclusions investigation in salt rock minerals]. Kyiv: Naukova dumka. [in Ukrainian]
 
Petrychenko, O. Y., Peryt, T. M., & Chechel, E. I. (2005). Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporates. Chem. Geol., 219, 149-161.
https://doi.org/10.1016/j.chemgeo.2005.02.003
 
Roedder, E. (1984). The fluids in salt. Am. Mineralogist, 69, 413-439.
 
Scotese, C. R. (2014). Atlas of Silurian and Middle-Late Ordovician Paleogeographic Maps (Mollweide Projection). (Maps 73-80, Vol. 5). The Early Paleozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL.
 
Strakhov, N. M. (1962). Osnovy teorii litogeneza [Fundamentals of the theory of lithogenesis] (Vol. 3). Moscow: AS USSR. [in Russian]
 
Valyashko, M. G. (1962). Zakonomernosti formirovaniya mestorozhdeniy soley [The principle of forming of salt deposits]. Moscow: MGU. [in Russian]
 
Vinogradov, A. P., & Ronov, A. B. (1956). Evolyutsiya khimicheskogo sostava glin Russkoy platformy [Evolution of the chemical composition of clays of the Russian Platform]. Geochemistry, 2, 3-18. [in Russian]
 
Wang, B. Q., & Al-Aasm, I. S. (2002). Karst-controlled diagenesis and reservoir development; example from the Ordovician mainreservoir carbonate rocks on the eastern margin of the Ordos basin, China. AAPG Bulletin, 86, 1639-1658.
https://doi.org/10.1306/61EEDD28-173E-11D7-8645000102C1865D
 
Yang, Y., Li, W., & Ma, L. (2005). Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: a multicycle cratonic basin in central China. AAPG Bulletin, 89, 255-269.
https://doi.org/10.1306/10070404027
 
Zharkov, M. A., Zharkova, T. M., & Merzlyakov, G. A. (1978). K probleme evolyutsii solevogo sostava vod Mirovogo okeana [To the problem of waters salt composition evolution of the World Ocean]. Geology and Geophysics, 3, 3-18. [in Russian]