Posted on

ON THE REGULARITY OF NATURAL PROCESSES OF SYNTHESIS AND GENESIS HYDROCARBONS AND WATER OF OIL AND GAS FIELDS: ABIOGENIC-BIOGENIC DUALISM

Home > Archive > No. 1–2 (189–190) 2023 > 81–91


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 81–91

https://doi.org/10.15407/ggcm2023.189-190.081

Yosyp SVOREN’

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

It is shown that the problem of the nature of water in oil and gas fields must be solved in an inextricable connection with the genesis and synthesis of natural hydrocarbons in the Earth’s bowels. The work offers an original solution, based on a new theory of the synthesis and genesis of hydrocarbons (oil, gas, etc.): abiogenic-biogenic dualism, which asserts that giant and supergiant oil and gas fields were formed from inorganic and organic original hydrocarbon-containing substances under the influence of abiogenic high-thermobaric deep fluid in harsh physical, physicochemical and geological conditions of the earth’s crust. Since the abiogenic high-thermobaric deep fluid contains hydrogen H+ and OH-containing anions, the described mechanism for the interaction of positively charged ions: C+, H+, CnHm+-radicals with the formation-synthesis of a complex hydrocarbon mixture such as gas, oil, bitumen, etc. must be logically supplemented by a reaction: Н2О → Н+ + ОН. As a result of this complex physical and chemical process, the maximum concentration of (OH) anions accumulated in the oxidation zone, which after the disappearance of the electric field become neutral and interact with each other according to the scheme: ОН + ОН = Н2О2 – hydrogen peroxide, which is an unstable compound, which decomposes into Н2О + О. Oxygen atoms became the starting substances for the formation of macro- and microcracks in these cavities under harsh conditions of rocks of the carbonate or quartz-carbonate type, etc., much less often – perfect mineral crystals, which with their defects in the process of growth (synthesis) captivate and preserve substances in the system (proper hydrocarbons and water). Тherefore, it was established for the first time that the natural water of oil and gas fields has a dual lithospheric-asthenospheric nature, while the lithospheric part is dominant, the isotopic composition is a mixture of these waters, and the deuterium isotope is more chemically active in complex physical and chemical processes, which run through the bowels of the planet. The obtained original data will contribute to the solution of Ukraine’s serious problem with energy carriers: natural gas, oil, coal and drinking water.

Keywords

fluid inclusions, hydrocarbons, drinking water, energy carriers, oil and gas industry, fundamental science, scientific discoveries

Referenses

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren, Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Dolenko, G. N. (1975). Sovremennoye sostoyaniye problemy proiskhozhdeniya nefti i gaza i formirovaniya ikh promyshlennykh zalezhey. In Zakonomernosti obrazovaniya i razmeshcheniya promyshlennykh mestorozhdeniy nefti i gaza (pp. 3–17). Kiev: Naukova dumka. [in Russian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Naumko, I., & Svoren, Y. (2021). Innovatsiini tekhnolohii poshukiv korysnykh kopalyn, osnovani na doslidzhenniakh fliuidnykh vkliuchen u mineralakh. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 92–108. https://doi.org/10.15407/ggcm2021.03-04.092 [in Ukrainian]

Pavliuk, I., Naumko, I., & Stefanyk, Yu. (2007, December 13). Heolohy-naukovtsi proty metanu-vbyvtsi. U Lvovi na Naukovii taky ye nauka. Ukraina i Chas, 50(286), 7.

Svoren, Y. M. (1975). Istochniki uglerodsoderzhashchikh gazov vklyucheniy. In Uglerod i ego soyedineniya v endogennykh protsessakh mineraloobrazovaniya (po dannym izucheniya flyuidnykh vklyucheniy v mineralakh): tezisy Respublikanskogo soveshchaniya (Lvov, sentyabr 1975 g.) (pp. 104–106). Lvov. [in Russian]

Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyaniye na svoystva veshchestv [Extended abstract of Candidateʼs thesis]. Institut geologii i geokhimii goryuchikh iskopayemykh AN USSR. Lvov. [in Russian]

Svoren. I. M. (1988). Formy nakhozhdeniya vodoroda v nekotorykh tverdykh materialakh razlichnogo proiskhozhdeniya soglasno fiziko-khimicheskoy modeli navodorozhivaniya tverdykh tel. In Geokhimiya i termobarometriya endogennykh flyuidov (pp. 95–103). Kiev: Naukova dumka. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy (pp. 143–145). Lviv. [in Ukrainian]

Svoren, Y. (2011). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: izotopy vuhletsiu pro pokhodzhennia planety Zemlia. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 158–159. [in Ukrainian]

Svoren, Y. (2018). Vlastyvist hlybynnoho abiohennoho metanovmisnoho vysokotermobarnoho fliuidu utvoriuvaty vuhillia. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(176–177), 105–109. [in Ukrainian]

Svoren, Y. (2019). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: rizna khimichna vlastyvist izotopiv vuhletsiu u pryrodnykh protsesakh syntezu riznykh spoluk. In Problemy heolohii fanerozoiu Ukrainy: materialy X Vseukrainskoi naukovoi konferentsii (do 95-richchia kafedry istorychnoi heolohii ta paleontolohii i 120-richchia vid narodzhennia Severyna Ivanovycha Pasternaka (Lviv, 9–11 zhovtnia 2019 r.) (pp. 64–67). Lviv: LNU imeni Ivana Franka. [in Ukrainian]

Svoren, Y. (2020a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda vody naftovykh i hazovykh rodovyshch. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 8–9 hrudnia 2020 r.) (pp. 158–160). Ivano-Frankivsk: IFNTUNH. [in Ukrainian]

Svoren, J. M. (2020b). Subsoil Natural Physico-Chemical Reactor: Regularity of Natural Processes of Synthesis of Perfect Diamond Crystals. Journal of Geological Resource and Engineering, 8(4), 133–136. https://doi.org/10.17265/2328-2193/2020.04.005

Svoren, J. M. (2021). Subsoil Natural Physico-chemical Reactor: The Property of Deep Abiogenic Methane-Containing High-Thermobaric Fluid to Form Coal Seams. Journal of Geological Resource and Engineering, 9(1), 25–28. https://doi.org/10.17265/2328-2193/2021.01.003

Svoren, Y. M., & Davydenko, M. M. (1995). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Dopovidi NAN Ukrainy, 9, 72–73. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2003). Nova teoriia syntezu i henezysu vuhlevodniv u litosferi Zemli: abiohenno-biohennyi dualizm. In Mezhdunarodnaya konferentsiya “Krym–2003” (pp. 75–77). Simferopol. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111–116. [in Ukrainian]


Posted on

FUNDAMENTAL PROBLEMS AND ACHIEVEMENTS OF MINERAL FLUIDOLOGY IN THE WORKS OF PROFESSOR VOLODYMYR ANTONOVYCH KALYUZHNYI (based on the materials of the Memorial Academy on the occasion of the 100th anniversary of the birth)

Home > Archive > No. 1–2 (189–190) 2023 > 66–80


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 66–80

https://doi.org/10.15407/ggcm2023.189-190.066

Ihor NAUMKO1, Myroslav PAVLYUK1, Oleh ZYNYUK2, Anatoliy GALAMAY1, Myroslavа YAKOVENKO1, Zoryana MATVIISHYN1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Western Scientific Center of the National Academy of Sciences of Ukraine and the Ministry of Education and Science of Ukraine, Lviv, Ukraine, е-mail: zynyuk@ukr.net

Abstract

The fundamental problems and achievements of mineralofluidology in the works of the outstanding Ukrainian scientist-geologist, mineralogist-geochemist, laureate of the State Prize of Ukraine in the field of science and technology, laureate of the International Gold Medal named after the outstanding English researcher of fluid inclusions H. C. Sorby (the H. C. Sorby medal), recipient of the State Scholarship for Outstanding Scientists of Ukraine, Doctor of Sciences (Geology, Mineralogy), Professor Volodymyr Antonovych Kalyuzhnyі – one of the founders of the fundamental science on fluid inclusions, the creator of the world-famous scientific school of geochemistry and thermobarometry of mineral-forming fluids are discussed. The Memorial Academy on the occasion of celebrating a significant date – the 100th anniversary of the birth of Volodymyr Kalyuzhnyі was held on October 25, 2022, at the Institute of Geology and Geochemistry of Combustible Minerals (IGGCM) of the NAS of Ukraine within the framework of the Department of Earth Sciences of the NAS of Ukraine at the visiting meeting of the Earth Sciences Section of the Western Science Center (WSC) of the NAS of Ukraine and the Ministry of Education and Science of Ukraine. Members of the Council and Executive Committee of the WSC, employees of the Institute and neighboring scientific institutions took part in its work. Head of the Institute, Аcademician of the NAS of Ukraine Myroslav Pavlyuk opened the Memorial Academy with an opening speech, greetings from the WSC of the NAS of Ukraine and the Ministry of Education and Science of Ukraine were delivered by the deputy head of the WSC, director of the WSC, PhD (Тechnic), Аssociate Рrofessor Oleh Zynyuk. Scientific reports were given by: Head of the Department of Geochemistry of Deep Fluids of the Institute, Corresponding Member of the NAS of Ukraine Ihor Naumko and Head of the Department of Geochemistry of Sedimentary Strata of Oil and Gas-bearing provinces, PhD (Geology), Senior Research Fellow Anatoliy Galamay. Scientific Secretary of the Institute, PhD (Geology), Senior Researcher Myroslava Yakovenko read the greetings that were sent or personally delivered to Members of the Organizing Committee and participants of the Memorial Academy. Warm memories of Volodymyr Kalyuzhny were shared by his son Yuriy, Myroslav Bratus, and Myroslav Pavlyuk. The apotheosis of a worthy commemoration and celebration of a significant date – the 100th anniversary of the birth of an outstanding Scientist, Teacher, Patriot, Citizen, and Man being were the prophetic words: “We remember, they will remember us too! Ukraine is and will be!”

Keywords

Volodymyr Antonovych Kalyuzhnyі, outstanding scientist, thermobarogeochemistry, mineralofluidology, fluid inclusions research

Referenses

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Ermakov, N. P., & Dolgov, Yu. A. (1979). Termobarogeokhimiya. Moskva: Nedra. [in Russian]

Kaliuzhnyi, V. A. (1960). Metody vyvchennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Kaliuzhnyi, V. A. (Ed.). (1971). Mineraloutvoriuiuchi fliuidy ta parahenezysy mineraliv pehmatytiv zanoryshevoho typu Ukrainy (ridki vkliuchennia, termobarometriia, heokhimiia). Kyiv: Naukova dumka. [in Ukrainian]

Kalyuzhnyy, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. (English translation: Kalyuzhnyi, V. A. (1985). Principles of knowledge about mineral forming fluids. In Fluid Inclusions Research: Proceedings of COFFI (Vol. 15, pp. 289–333; Vol. 16, pp. 306–320). [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. T., Bratus, M. D., Velychko, N. Z., Harasymchuk, V. Yu., Hnylko, O. M., Danysh, V. V., Dudok, I. V., Zubko, O. S., Kaliuzhnyi, V. A., Kovalyshyn, Z. I., Koltun, Yu. V., Kopach, I. P., Krupskyi, Yu. Z., Osadchyi, V. H., Kurovets, I. M., Lyzun, S. O., Naumko, I. M., . . . Shcherba, O. S. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Matkovskyi, O., Naumko, I., Pavlun, M., & Slyvko, Ye. (2021). Termobaroheokhimiia v Ukraini. Lviv: Prostir-M. [in Ukrainian]

Naumko, I. M. (2002). Korotkyi narys naukovoi, naukovo-orhanizatsiinoi, pedahohichnoi ta hromadskoi diialnosti V. A. Kaliuzhnoho. In Volodymyr Antonovych Kaliuzhnyi. Do 80-richchia vid dnia narodzhennia (M. I. Pavliuk, Ed.; I. M. Naumko, L. F. Telepko, Compilers) (pp. 3–8). Lviv: IHHHK NAN Ukrainy ta NAK “Naftohaz Ukrainy”. [in Ukrainian]

Roedder, E. (1984). Fluid inclusions [Monograph]. Reviews in Mineralogy, 12, 1–644. https://doi.org/10.1515/9781501508271

Sorby, H. C. (1858). On the Microscopic, Structure of Crystals, Indicating the Origin of Minerals and Rocks. The Quarterly Journal of the Geological Society of London, 14(1), 453–500. https://doi.org/10.1144/GSL.JGS.1858.014.01-02.44

Vynar, O. M., Kaliuzhnyi, V. A., Naumko, I. M., & Matviienko, O. D. (1987). Mineraloutvoriuiuchi fliuidy postmahmatychnykh utvoren hranitoidiv Ukrainskoho shchyta. Kyiv: Naukova dumka. [in Ukrainian]

Zinchuk, I. N., Kalyuzhnyy, V. A., & Shchiritsa, A. S. (1984). Flyuidnyy rezhim mineraloobrazovaniya Tsentralnogo Donbassa. Kiev: Naukova dumka. [in Russian]


Posted on

THERMOMETRICAL STUDIES OF FLUID INCLUSIONS IN THE BADENIAN HALITE OF THE CARPATHIAN REGION IN THE CONTEXT OF DETERMINING THE DEPTH OF THE SALT BASIN

Home > Archive > No. 1–2 (189–190) 2023 > 54–65


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 54–65

https://doi.org/10.15407/ggcm2023.189-190.054

Anatoliy GALAMAY, Ihor ZINCHUK, Daria SYDOR

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: galamaytolik@ukr.net

Abstract

It was established that in order to avoid errors in the interpretation of paleotectonic conditions of salt formation based on fluid inclusions in halite, the primary stage of the research should be the genetic identification of the sedimentation textures of halite and fluid inclusions in this mineral. For the thermometric study of inclusions and to determine the depth of the sedimentation basin based on the obtained data, only thermal test chambers are suitable which provide the possibility of observing groups of inclusions in different zones of sedimentary halite, as, for example, in the micro thermal test chamber designed by Prof. V. A. Kalyuzhny.

In the course of the research, the equipment of the thermometric method, which is based on the use of a microthermal test chamber designed by V. A. Kalyuzhny, was modernized. In particular, the material of the thermal chamber (stainless steel) was replaced with copper, which made it possible to avoid excessive thermal gradients into chamber and to increase the permissible heating rate by 20 times due to the higher thermal conductivity of copper. For the same purpose, the glass optical windows of the camera were replaced with leukosapphire windows, which have a much higher thermal conductivity. The measuring system of the installation is made on a miniature platinum resistance thermometer with an electronic measuring unit. These improvements made it possible to achieve high system stability and good reproducibility of measurement results.

Using the thermometric method, it was established that the temperature of sedimentation at the bottom of the Badenian salt basin of the Carpathian region was 19.5–20.5; 20.0–22.0; 24.0–26.0 °C, and on the surface of the brine was 34.0–36.0 °C. On this basis, a model of the basin with a pronounced thermocline and a total thickness of the water column of up to 30 meters was built, which is the most likely to establish the features of sedimentation. Crystallization of halite at different depths in basins with a thermocline can explain the presence of so-called “low-temperature” (24.0–25.0 °C) and “high-temperature” (37.8–42.6 °C) bottom halite in a number of ancient salt-bearing basins.

Keywords

halite, fluid inclusions, thermometric method, thermal chamber, homogenization temperature

Referenses

Acros, D., & Ayora, C. (1997). The use of fluid inclusions in halite as environmental thermometer: an experimental study. In XIV ECROFI: proceedings of the XIVth European Current Research on Fluid Inclusions (Nancy, France, July 1–4, 1997) (pp. 10–11). CNRS-CREGU.

Benison, K. C., & Goldstein, R. H. (1999). Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1–4), 113–132. https://doi.org/10.1016/S0009-2541(98)00127-2

Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823. https://doi.org/10.3390/min10090823

Galamay, A. R., Meng, F., Bukowski, K., Lyubchak, A., Zhang, Y., & Ni, P. (2019). Calculation of salt basin depth using fluid inclusions in halite from the Ordovician Ordos Basin in China. Geological Quarterly, 63(3), 619–628. https://doi.org/10.7306/gq.1490

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A., Sydor, D., & Liubchak, O. (2014). Osoblyvosti poiavy hazovoi fazy v odnofazovykh ridkykh vkliuchenniakh u haliti (dlia vyznachennia temperatury yoho krystalizatsii). In Mineralohiia: sohodennia i maibuttia: materialy VIII naukovykh chytan imeni akademika Yevhena Lazarenka (prysviacheno 150-richchiu zasnuvannia kafedry mineralohii u Lvivskomu universyteti) (pp. 34–36). Lviv; Chynadiieve. [in Ukrainian]

Kaliuzhnyi, V. A. (1960). Metody vyvchennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Khrushchov, D. P. (1980). Litologiya i geokhimiya galogennykh formatsiy Predkarpatskogo progiba. Kiev: Naukova dumka. [in Russian]

Korenevskiy, S. M., Zakharova, V. M., & Shamakhov, V. A. (1977). Miotsenovyye galogennyye formatsii predgoriy Karpat. Leningrad: Nedra. [in Russian]

Kovalevich, V. M. (1978). Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya. Kiev: Naukova dumka. [in Russian]

Kovalevych, V., Paul, J., & Peryt, T. M. (2009). Fluid inclusions in the halite from the Röt (Lower Triassic) salt deposit in Central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporates, 24(1), 45–57. https://doi.org/10.1007/BF03228056

Lowenstein, T. K., Li, J., & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245. https://doi.org/10.1016/S0009-2541(98)00061-8

Meng, F., Ni, P., Schiffbauer, J. D., Yuan, X., Zhou, C., Wang, Y., & Xia, M. (2011). Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research, 184(1–4), 63–69. https://doi.org/10.1016/j.precamres.2010.10.004

Meng, F., Zhang, Y., Galamay, A. R., Bukowski, K., Ni, P., Xing, E., & Ji, L. (2018). Ordovician seawater composition: evidence from fluid inclusions in halite. Geological Quarterly, 62(2), 344–352. https://doi.org/10.7306/gq.1409

Petrichenko, O. Y. (1988). Fiziko-khimicheskiye usloviya osadkoobrazovaniya v drevnikh solerodnykh basseynakh. Kiev: Naukova dumka. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Roberts, S. M., & Spencer, R. J. (1995). Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19), 3929–3942. https://doi.org/10.1016/0016-7037(95)00253-V

Shanina, S. N., Sokerina, N. V., Galamay, A. R., Ledentsov, V. N., & Onosov, D. V. (2014). Opredeleniye temperatur gomogenizatsii vklyucheniy v galite Yakshinskogo mestorozhdeniya. Vestnik Instituta geologii Komi NTs UrO RAN, 8, 3–6. [in Russian]

Sirota, I., Enzel, Y., & Lensky, N. G. (2017). Temperature seasonality control on modern halite layers in the Dead Sea: In situ observations. GSA Bulletin, 129(9–10), 1181–1194. https://doi.org/10.1130/B31661.1

Sydor, D. V., Halamai, A. R., & Meng, F. (2018). Pirotynova mineralizatsiia u halohennykh vidkladakh Verkhnokamskoho rodovyshcha kaliino-mahniievykh solei (termobaroheokhimichni doslidzhennia). Mineralohichnyi zbirnyk, 68(2), 52–61. [in Ukrainian]

Valyashko, M. G. (1952). Galit, osnovnyye ego raznosti, vstrechayemyye v solyanykh ozerakh, i ikh struktura. Trudy VNIIGalurgii, 23, 25–32. [in Russian]

Vorobyev, Yu. K. (1988). K probleme termometrii po pervichnym vklyucheniyam v mineralakh. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 117(1), 125–132. [in Russian]

Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-32344-9

Xu, Y., Liu, C., Cao, Y., & Zhang, H. (2018). Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm. International Journal of Earth Sciences, 108, 173–182. https://doi.org/10.1007/s00531-018-1648-0

Zambito, J. J., & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590. https://doi.org/10.1130/G34078.1

Zhang, H., Lü, F., Mischke, S., Fan, M., Zhang, F., & Liu, C. (2017). Halite fluid inclusions and the late Aptian sea surface temperatures of the Congo Basin, northern South Atlantic Ocean. Cretaceous Research, 71, 85–95. https://doi.org/10.1016/j.cretres.2016.11.008

Zhao, X., Zhao, Y., Wang, M., Hu, Y., Liu, C., & Zhang, H. (2022). Estimation of the ambient temperatures during the crystallization of halite in the Oligocene salt deposit in the Shulu Sag, Bohaiwan Basin, China. Minerals, 12(4), 410. https://doi.org/10.3390/min12040410

Zinchuk, I. M. (2003). Heokhimiia mineraloutvoriuiuchykh rozchyniv zoloto-polimetalevykh rudoproiaviv Tsentralnoho Donbasu (za vkliuchenniamy u mineralakh) [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]


Posted on

CHEMICAL COMPOSITION OF THE PRECURSOR COMPOUNDS AND MECHANISMS OF HUMIC SUBSTANCES FORMATION AT THE POST-SEDIMENTATION STAGE OF THE ORGANIC COMPOUNDS EVOLUTION

Home > Archive > No. 1–2 (189–190) 2023 > 41–53


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 41–53

https://doi.org/10.15407/ggcm2023.189-190.041

Yurii KHOKHA, Myroslava YAKOVENKO, Oksana SENIV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: khoha_yury@ukr.net; myroslavakoshil@ukr.net

Abstract

The publication is a review that presents in a concise form information about the chemical composition of living matter components and the mechanisms of their transformations, the result of which is the geopolymers formation. Among geopolymers, humic substances, including humic and fulvic acids, attract our attention. The relevance of this review lies in the importance of understanding multidirectional reactions, the result of which is the secondary polymerization of organic matter chemically active components that have passed the biodegradation barrier at the stage of sedimentation and diagenetic transformations. Humic substances, in their turn, are precursors of kerogen, therefore, an understanding of reaction mechanisms and their products provides complete information about the conditions of various types of kerogen formation, which are characterized by different ability to produce oil and gas. We paid special attention to polyphenols, which have high chemical activity and the ability to react with increasing molecular weight. In addition to the traditional Maillard reaction, among the condensation mechanisms we considered oxidative crosslinking of phenols, oxidative condensation of polyunsaturated fatty acids, and esterification of fatty acids with phenols. For each mechanism, the conditions for its implementation and probable contribution to the formation of humic substances are briefly considered. Analysis of probable mechanisms of formation of humic substances showed that condensation reactions can occur under geochemical conditions of sedimentation and early diagenesis. At the same time, their speeds are low, and the precursors necessary for the reactions, formed as a result of biological degradation, are contained in very small concentrations. We conclude that kerogen contains two components – primary, which enters its structure without any significant changes, and secondary, which is the result of a series of complex multidirectional reactions.

Keywords

organic geochemistry, polycondensation, humic substances, depolymerization, kerogen evolution

Referenses

Chen, Z., Wu, J., Ma, Y., Wang, P., Gu, Z., & Yang, R. (2018). Biosynthesis, metabolic regulation and bioactivity of phenolic acids in plant food materials. Shipin Kexue/Food Science, 39(7), 321–328.

Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In B. Durand (Ed.), Kerogen, Insoluble Organic Matter from Sedimentary Rocks (pp. 13–34). Paris: Editions Technip.

Harvey, G. R., & Boran, D. A. (1985). Geochemistry of humic substances in seawater. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 233–247). New York, Chichester: Wiley & Sons.

Harvey, G. R., Boran, D. A., Chesal, L. A., & Tokar, J. M. (1983). The structure of marine fulvic and humic acids. Marine Chemistry, 12(2–3), 119–132. https://doi.org/10.1016/0304-4203(83)90075-0

Hatcher, P. G., Breger, I. A., Maciel, G. E., Szeverenyi, N. M. (1985). Geochemistry of humin. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 275–302). New York, Chichester: Wiley & Sons.

Huc, A. Y., & Durand, B. M. (1977). Occurrence and significance of humic acids in ancient sediments. Fuel, 56(1), 73–80. https://doi.org/10.1016/0016-2361(77)90046-1

Jokic, A., Wang, M. C., Liu, C., Frenkel, A. I., & Huang, P. M. (2004). Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: the role of δ-MnO2. Organic Geochemistry, 35(6), 747–762. https://doi.org/10.1016/j.orggeochem.2004.01.021

Khant, D. (1982). Geokhimiya i geologiya nefti i gaza. Moskva: Mir. [in Russian]

Kononova, M. M. (1963). Organicheskoye veshchestvo pochvy, ego priroda, svoystva i metody izucheniya. Moskva: Izdatelstvo AN SSSR. [in Russian]

Kontorovich, A. E. (2004). Ocherki teorii naftidogeneza. Novosibirsk: IGiG SO AN SSSR. [in Russian]

van Krevelen, D. W. (1961). Coal: typology, chemistry, physics, constitution. Elsevier Publishing Company.

Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and Biological Functions in Plants. International journal of molecular sciences, 19(2), 335. https://doi.org/10.3390/ijms19020335

Maillard, L.C. (1912). Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodique. Comptes rendus de l’Académie des Sciences, 154, 66–68.

Martin, J. P., & Haider, K. (1971). Microbial activity in relation to soil humus formation. Soil Science, 111(1), 54–63. https://doi.org/10.1097/00010694-197101000-00007

Romankevich, E. A. (1977). Geokhimiya organicheskogo veshchestva v okeane. Moskva: Nauka. [in Russian]

Schnitzer, M. (1978). Humic substances: chemistry and reactions. In M. Schnitzer & S. U. Khan (Eds.), Developments in Soil Science: Vol. 8. Soil Organic Matter (pp. 1–64). Amsterdam: Elsevier. https://doi.org/10.1016/S0166-2481(08)70016-3

Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

Tisso, B., & Velte, D. (1981). Obrazovaniye i rasprostraneniye nefti. Moskva: Mir. [in Russian]

Vandenbroucke, M. (2003). Kerogen: from types to models of chemical structure. Oil & gas science and technology, 58(2), 243–269. https://doi.org/10.2516/ogst:2003016

Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833. https://doi.org/10.1016/j.orggeochem.2007.01.001

Vandenbroucke, M., Pelet, R., & Debyser, Y. (1985). Geochemistry of humic substances in marine sediments. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 249–273). New York, Chichester: Wiley & Sons.

Vassoyevich, N. B. (1986). Izbrannyye trudy: Geokhimiya organicheskogo veshchestva i proiskhozhdeniye nefti. Moskva: Nauka. [in Russian]

Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Foodchemistry, 128(3), 573–584. https://doi.org/10.1016/j.foodchem.2011.03.075


Posted on

NON-ORE MINERALS OF VEINLET-IMPREGNATED MINERALIZATION IN THE DEPOSITS OF THE KROSNO ZONE OF THE UKRAINIAN CARPATHIANS (district of the new Beskydy railway tunnel)

Home > Archive > No. 1–2 (187–188) 2022 > 103–114


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 103–114.

https://doi.org/10.15407/ggcm2022.01-02.103

Ihor NAUMKO1, Halyna ZANKOVYCH1, Oksana KOКHAN1, Olexandеr VOVK2, Yaroslav KUZEMKO1, Bohdan SAКHNO1, Roman SERKIZ3

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Lesya Ukrainka Volyn National University, Lutsk, Ukraine, е-mail: geologygeochemistry@gmail.com
3 Ivan Franko National University of Lviv, Lviv, Ukraine, е-mail: rserkiz@gmail.com

Abstract

The construction of the new Beskydy railway tunnel, which revealed the indigenous deposits of the Krosno formation of the Ukrainian Carpathians, provided an opportunity to obtain new results from the study of another prospective oil and gas-bearing areas of the flysch formation within the Krosno structural-facies unit. There is a second tunnel in length in Ukraine and passes under the Verkhovyna watershed ridge of the Ukrainian Carpathians. Its section is represented by the rocks of the Krosno formation, namely the stratification of sandstones, argillites and silt stones. There are two fracture zones have been indentified here, in which developed veinle-impregnated mineralization of ore (sulfides) and non-ore (calcite and quartz type of the “Marmarosh diamonds”) minerals. Calcite and quartz formas monominerals veins and in paragenesis calcite-quartz type of the “Marmarosh diamonds” ‒ sulfides. Quartz occurs in the form of splice sand well-faceted crystals, transparent, in yellow, brown, black, green colour. Calcite of a milky, translucent colour in the form of veins, veinlets, impregnation, powder on quartz, druz. Contains significant impurities of magnesium, manganese and iron which means the presence of a rhodochrosite-magnesite-siderite component. Hydrocarbon fluids are present in all calcite and quartz crystals of the “Marmarosh diamonds” type. By chemical composition, it is methane with impurities of higher hydrocarbons (up to hexane). Sometimes the manifestations of the outflow of a black substance with the smell of oil from the cracks in the veinlet-impregnated mineralization are recorded studied rock complexes of the flysch formation of the Krosno zone of the Ukrainian Carpathians (construction area of the new branch of the Beskydy railway tunnel), which acquires an important genetic significance.

Keywords

veinlet-impregnated mineralization, calcite, “Marmarosh diamonds”, new Beskydy railway tunnel, Krosno zone, Ukrainian Carpathians

Referenses

Beskydskyi tunel. (2021, 9 hrudnia). In Vikipediia. https://uk.wikipedia.org/wiki/Beskydskyi_tunel [in Ukrainian]

Hnylko, O. (2010). Pro pivnichno-skhidnu hranytsiu Krosnenskoi tektonichnoi zony v Ukrainskykh Karpatakh. Heolohiia i heokhimiia horiuchykh kopalyn, 2(151), 44–57. [in Ukrainian]

Hulii, V., Kuzemko, Ya., Stepanov, V., Petruniak, H., Menshov, O., & Ohorilko, R. (2015). Heoloho-strukturni osoblyvosti ta rechovynnyi sklad porid Krosnenskoi zony v raioni novoho Beskydskoho tuneliu. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu imeni Ivana Franka (Lviv, 7–9 zhovtnia 2015 r.) (pp. 69–71). Lviv: Vydavnychyi tsentr LNU imeni Ivana Franka. [in Ukrainian]

Naumko, I. M., Zankovych, H. O., Kuzemko, Ya. D., Diakiv, V. O., Sakhno, B. E. (2017). Vuhlevodnevi hazy fliuidnykh vkliuchen u “marmaroskykh diamantakh” z zhyl u vidkladakh flishovoi formatsii raionu novoho Beskydskoho tuneliu (Krosnenska zona Ukrainskykh Karpat). Dopovidi NAN Ukrainy, 10, 70–77. https://doi.org/10.15407/dopovidi2017.10.070 [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2005). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii – pryrodnyi fenomen litosfery Zemli. Dopovidi NAN Ukrainy, 2, 109–113. [in Ukrainian]

Vovk, O., Zankovych, H., & Naumko I. (2018). Osoblyvosti krystalomorfolohii marmaroskykh «diamantiv» iz zhyl u flishovykh vidkladakh Krosnenskoi strukturno-fatsialnoi odynytsi Ukrainskykh Karpat (raion novoho Beskydskoho tuneliu). Mineralohichnyi zbirnyk, 68(1), 72–75. [in Ukrainian]

Vovk, O. P., Zankovych, H. O., & Naumko, I. M. (2019). Materialy do porivnialnoi kharakterystyky krystalomorfolohii “marmaroskykh diamantiv” Ukrainskykh i Slovatskykh Karpat. In Zdobutky i perspektyvy rozvytku heolohichnoi nauky v Ukraini: zbirnyk tez naukovoi konferentsii, prysviachenoi 50-richchiu Instytutu heokhimii, mineralohii ta rudoutvorennia imeni M. P. Semenenka NAN Ukrainy (Kyiv, 14–16 travnia 2019 r.) (Vol. 1, pp. 130–131). Kyiv. [in Ukrainian]

Zankovych, H. O. (2016). Heokhimiia fliuidiv prozhylkovo-vkraplenoi mineralizatsii perspektyvno naftohazonosnykh kompleksiv pivnichno-zakhidnoi chastyny Krosnenskoi zony Ukrainskykh Karpat [Extended abstract of Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Zankovych, H. O., & Cheremisska, O. M. (2021). Typy vtorynnoi mineralizatsii v kreidovo-paleohen-neohenovykh vidkladakh Krosnenskoi zony Ukrainskykh Karpat. In Scientific Trends and Trends in the Context of Clobalization: III International Scientific and Practical Conference (Umea, Kingdom of Sweden, December 21–22, 2021) (pp.  74–379). Umea. [in Ukrainian]

Zankovych, H. O., & Kokhan, O. M. (2021). Nerudni mineraly prozhylkovo-vkraplenoi mineralizatsii Beskydskoho tuneliu Krosnenskoi zony Ukrainskykh Karpat. In Heolohichna nauka v nezalezhnii Ukraini: zbirnyk tez naukovoi konferentsii (Kyiv, 8–9 veresnia 2021 r.) (pp. 282–284). Kyiv. [in Ukrainian]


Posted on

INNOVATIVE TECHNOLOGIES OF THE PROSPECTING FOR MINERAL DEPOSITS BASED ON DATA OF FLUID INCLUSIONS RESEARCH

Home > Archive > No. 3–4 (185–186) 2021 > 92–108


Geology & Geochemistry of Combustible Minerals No. 3–4 (185–186) 2021, 92–108.

https://doi.org/10.15407/ggcm2021.03-04.092

Ihor NAUMKO, Yosyp SVOREN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The innovative approach to the development of prospective technologies (methods) was substantiated on crystallogenic and physicochemical principles of the knowledge of mineral forming environments (fluids) (thermobarogeochemistry – mineralofluidology – fluid inclusions) as a new branch of geological knowledge within the framework of the new scientific direction in the geology – thermobarometry and geochemistry of gases of veinlet-impregnated mineralization in deposits of oil- and gas-bearing areas and metallogenic provinces” as a natural phenomenon of the Earth’s lithosphere. According to him, the creation of radically new technologies and realization of prospecting for mineral deposits (first of all hydrocarbons and gold) simultaneously with the elucidation of the problem of genesis and synthesis of hydrocarbons at the atomic-molecular level fixed by such defects in the mineral crystals as fluid inclusions. Developed technologies, namely: determination of genesis of hydrocarbon gases; determination of prospects of oil and gas presence of a local area; local forecast of enriched areas of gold ore fields; express determination of potassium ions in inclusions for identification of gold-enriched and barren veinlet formations, – belong to the branch of the exploration geology and geochemistry and are used to ascertain genetic guestions, to solve tasks of the mineralogical-geochemical prediction and prospecting for mineral deposits in the local structures of oil- and gas-bearing areas and metallogenic provinces. The comparison of fluid inclusions of veinlets and host rocks based on the sections of a number of wells has shown the considerable possibilities of the developed technologies and prospects of the usage of thermobarogeochemical-mineralofluidological indicators in the complex with the geochemical and geophysical (petrophysical) methods, data of geological survey, deep-seated drilling while predicting hydrocarbon deposits in the local structures of the sedimentary strata promising for oil and gas and making necessary amendments in the directions of the following geological-prospecting works.

Keywords

innovative technologies, fluid inclusions, geochemistry, thermobarometry, fluids, hydrocarbons, gold, mineral-ore-naphthidogenesis, Earth’s lithosphere

Referenses

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren, Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Chebanenko, I. I., Shestopalov, V. M., Bahrii, I. D., & Palii, V. M. (2000). Rozlomni zony pidvyshchenoi pronyknosti hirskykh porid ta yikh znachennia dlia vyiavlennia ekolohonebezpechnykh dilianok. Dopovidi Natsionalnoi akademii nauk Ukrainy, 10, 136–139. [in Ukrainian]

Davydenko, M. M., & Svoren, Y. M. (1994). Sposib lokalnoho prohnozuvannia zbahachenykh dilianok zolotorudnykh poliv (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 3, 27. [in Ukrainian]

Ermakov, N. P., & Dolgov, Yu. A. (1979). Termobarogeokhimiya. Moskva: Nedra. [in Russian]

Galimov, E. M. (1968). Geokhimiya stabil’nykh izotopov ugleroda. Moskva: Nedra. [in Russian]

Kadik, A. A. (1986). Fraktsionirovanie letuchikh komponentov pri plavlenii verkhnei mantii. Geologiya i geofizika, 7, 70–73. [in Russian]

Kalyuzhnyi, V. A. (1979). Dinamika mineralogeneza na osnove izucheniya mineraloobrazuyushchikh flyuidov (granitnye zanoryshevye pegmatity i rudonosnye gidrotermality Ukrainy) [Extended abstract of Doctorʼs thesis]. IGFM AN URSR. Kiev. [in Russian]

Kalyuzhnyi, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. [in Russian]

Kalyuzhnyi, V. A., Vynar, O. N., Zinchuk, I. N., Kovalishin, Z. I., & Matvienko, A. D. (1987). Geokhimicheskaya spetsializatsiya endogennykh mineraloobrazuyushchikh flyuidov i poiskovye kriterii na poleznye iskopaemye. Mineralogicheskii sbornik L’vovskogo universiteta, 41(2), 54–58. [in Russian]

Kovalishin, Z. I., & Bratus’, M. D. (1984). Flyuidnyi rezhim gidrotermal’nykh protsessov Zakarpat’ya. Kiev: Naukova dumka. [in Russian]

Kovalishin, Z. I., & Vishtalyuk, S. D. (1985). O sostave rudoobrazuyushchikh flyuidov severo-zapadnoi chasti Marmaroshskogo massiva. Mineralogicheskii sbornik, 39(2), 76–80. [in Russian]

Kovalyshyn, Z. I., & Naumko, I. M. (2001). The peculiarities of fluid composition in gold ore mineralization within metamorphic rocks of north-western part among Marmarosh massif (Ukrainian Carpathians). In Tezisy dokladov X mezhdunarodnoi konferentsii po termobarogeokhimii (Aleksandrov, 10–14 sentyabrya 2001 g.) (pp. 85–88). Aleksandrov: VNIISIMS.

Kovalyshyn, Z. I., Naumko, I. M., & Kovalevych, V. M. (1999). Metodyka ekspresnoho vyznachennia kaliiu v mineralotvornykh fliuidakh dlia rozbrakuvannia zbahachenykh zolotom i bezrudnykh utvoren. In Naukovi osnovy prohnozuvannia, poshukiv ta otsinky rodovyshch zolota: materialy mizhnarodnoi naukovoi konferentsii (Lviv, 27–30 veresnia 1999 r.) (pp. 65–66). Lviv: Vydavnychyi tsentr LDU im. Ivana Franka. [in Ukrainian]

Kulchetska, H. O. (2009). Letki komponenty mineraliv yak indykatory umov mineraloutvorennia [Extended abstract of Doctorʼs thesis]. Kyiv. [in Ukrainian]

Maliuk, B. I., Klochko, V. P., Dovzhok, Ye. M., Okrepkyi, R. M., Dvorianyn, Ye. S., Marukhniak, M. Y., Karavaieva, T. Ye., Ponomarenko, M. I., Tokovenko, V. S., Naumko, I. M., & Hladun, V. V. (1996). Kompleksna interpretatsiia ta naukove obgruntuvannia rezultativ poshukovo-rozviduvalnykh robit na naftu i haz u krystalichnykh kompleksakh Okhtyrskoho naftohazopromyslovoho raionu Dniprovsko-Donetskoi zapadyny [Preprint № 96-1]. Ukrainskyi naftohazovyi instytut. Kyiv. [in Ukrainian]

Mamchur, G. P., Svoren’, I. M., Kalyuzhnyi, V. A., Naumko, I. M., Yarynych, O. A., & Shnyukov, E. F. (1981). Izotopnyi sostav ugleroda svobodnoi uglekisloty iz bazal’ta dna Indiiskogo okeana. In Vsesoyuznoe soveshchanie po geokhimii ugleroda: tezisy dokladov (Moskva, 14–16 dekabrya 1981 g.) (pp. 234–235). Moskva: GEOKhI AN SSSR. [in Russian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis]. Lviv. [in Ukrainian]

Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi Natsionalnoi akademii nauk Ukrainy, 8, 117–120. [in Ukrainian]

Naumko, I. M., & Kaliuzhnyi, V. A. (2001). Pidsumky ta perspektyvy doslidzhen termobarometrii i heokhimii paleofliuidiv litosfery (za vkliuchenniamy u mineralakh). Heolohiia i heokhimiia horiuchykh kopalyn, 2, 162–175. [in Ukrainian]

Naumko, I., Kaliuzhnyi, V., Bratus, M., Zinchuk, I., Kovalyshyn, Z., Matviienko, O., Redko, L., & Svoren, Y. (2000). Uchennia pro mineralotvorni fliuidy: priorytetni zavdannia rozvytku na suchasnomu etapi. Mineralohichnyi zbirnyk, 50(2), 22–30. [in Ukrainian]

Naumko, I., Kaliuzhnyi, V., Svoren, Y., Zinchuk, I., Bekesha, S., Redko, L., Sakhno, B., Druchok, L., Telepko, L., Beletska, Yu., Matviishyn, Z., Sava, N., Bondar, R., & Stepaniuk, V. (2007). Fliuidy postsedymentohennykh protsesiv v osadovykh ta osadovo-vulkanohennykh verstvakh pivdenno-zakhidnoi okrainy Skhidnoievropeiskoi platformy i prylehlykh heostruktur (za vkliuchenniamy u mineralakh). Heolohiia i heokhimiia horiuchykh kopalyn, 4, 63–94. [in Ukrainian]

Naumko, I., Kovalyshyn, Z., Sava, N., Bratus, M., Shashorin, Yu., & Sakhno, B. (2007). Termometrychna i heokhemichna kharakterystyka fliuidiv mineraloutvoriuvalnoho seredovyshcha kvartsovo-zhylnykh rudoproiaviv pivdennoi chastyny Kirovohradskoho bloku Ukrainskoho shchyta. Pratsi Naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 19, 136–146. [in Ukrainian]

Naumko, I. M., Kurovets, I. M., Sakhno, B. E., & Chepusenko, P. S. (2009). Kompleksuvannia mineralofliuidolohichnykh i petrofizychnykh metodiv: netradytsiinyi pidkhid do vyvchennia porid-kolektoriv (na prykladi Lvivskoho paleozoiskoho prohynu). Dopovidi Natsionalnoi akademii nauk Ukrainy, 1, 106–113. [in Ukrainian]

Naumko, I. M., & Popivniak, I. V. (2008). Vahomyi vnesok u vidtvorennia protsesiv endohennoho mineraloutvorennia (retsenziia na monohrafiiu D. K. Vozniaka “Mikrovkliuchennia ta rekonstruktsiia umov endohennoho mineraloutvorennia”). Mineralohichnyi zhurnal, 30(4), 104–107. [in Ukrainian]

Naumko, I. M., & Svoren’, I. M. (2003). O vazhnosti glubinnogo vysokotemperaturnogo flyuida v sozdanii uslovii dlya formirovaniya mestorozhdenii prirodnykh uglevodorodov v zemnoi kore. In Novye idei v naukakh o Zemle: materialy VI mezhdunarodnoi konferentsii (Moskva, 8–12 aprelya 2003 g.) (Vol. 1, p. 249). Moskva. [in Russian]

Naumko, I. M., & Svoren, Y. M. (2008). Pro shliakhy vtilennia hlybynnoho vysokotemperaturnoho fliuidu u zemnu koru. Dopovidi Natsionalnoi akademii nauk Ukrainy, 9, 112–114. [in Ukrainian]

Naumko, I., & Svoren, Y. (2014). Novi tekhnolohii poshukiv korysnykh kopalyn, osnovani na doslidzhenniakh fliuidnykh vkliuchen u mineralakh. In Aktual’nye problemy poiskovoi i ekologicheskoi geokhimii: sbornik tezisov Mezhdunarodnoi nauchnoi konferentsii (Kiev, 1–2 iyulya 2014 g.) (s. 23–25). Kiev: Interservis. [in Ukrainian]

Naumko, I. M., Svoren, Y. M., Kovalyshyn, Z. I., & Krupskyi, Yu. Z. (2001). Peredumovy zastosuvannia kompleksu termobaroheokhimichnykh danykh dlia prohnozuvannia pokladiv vuhlevodniv na poshukovii stadii. In Henezys nafty i hazu ta formuvannia yikh rodovyshch v Ukraini yak naukova osnova prohnozu ta poshukiv novykh skupchen: tezy dopovidei Mizhnarodnoi naukovo-praktychnoi konferentsii (Chernihiv, liutyi 2001 r.) (pp. 208–209). Chernihiv. [in Ukrainian]

Naumko, I., Svoren, Y., & Stepaniuk, V. (2006). Pro kompleksuvannia mineralofliuidolohichnykh i heokhimichnykh metodiv poshukiv vuhlevodniv. In Problemy heolohii ta naftohazonosnosti Karpat: tezy dopovidei Mizhnarodnoi naukovoi konferentsii do 100-richchia vid dnia narodzhennia chlen-korespondenta Natsionalnoi akademii nauk Ukrainy Mykoly Romanovycha Ladyzhenskoho ta 55-richchia Instytutu heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy (Lviv, 26–28 veresnia 2006 r.) (pp. 161–164). Lviv: PROMAN–Pres-Ekspres-Lviv. [in Ukrainian]

Naumko, I. M., Svoren, Y. M., Zinchuk, I. M., & Krupskyi, Yu. Z. (2004). Do obgruntuvannia budivnytstva sverdlovyn na naftu i haz za danymy analizu fliuidnykh vkliuchen u mineralakh. In Nafta i haz Ukrainy – 2004: materialy VIII mizhnarodnoi naukovo-praktychnoi konferentsii (Sudak, 29 veresnia–1 zhovtnia 2004 r.) (Vol. 1, pp. 203–204). Kyiv. [in Ukrainian]

Pavliuk, M. I., Rizun, B. P., Varichev, S. O., & Savchak, O. Z. (2002). Polia heodynamichnykh napruzhen, pronyknist hirskykh porid, hlybynni termalni fliuidy i naftohazonosnist. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 3–13. [in Ukrainian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Reshenie Mezhdunarodnoi konferentsii “Krym–2003” “Problemy geodinamiki i neftegazonosnosti Chernomorsko-Kaspiiskogo regiona”. (2004). In Problemy geodinamiki i neftegazonosnosti Chernomorsko-Kaspiiskogo regiona: sbornik dokladov V Mezhdunarodnoi konferentsii “Krym–2003” (pp. 11–13). Simferopol’. [in Russian]

Roedder, E. (1984). Fluid inclusions [Monograph]. Reviews in Mineralogy, 12, 1–644. https://doi.org/10.1515/9781501508271

Shnyukov, E. F., Kalyuzhnyi, V. A., Shchiritsa, A. S., Telepko, L. F., Kruglov, A. S., Svoren’, I. M., & Alaui, G. G. (1987). Gazovye flyuidy kontaktovykh bazal’tov dna Indiiskogo okeana (po reliktovym vklyucheniyam). Doklady Akademii nauk SSSR, 297(6), 1457–1460. [in Russian]

Svoren’, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh (ikh sposoby izvlecheniya, sostav, formy nakhozhdeniya i vliyanie na svoistva veshchestv) [Extended abstract of candidateʼs thesis]. Institut geologii i geokhimii goryuchikh iskopaemykh AN USSR. L’vov. [in Russian]

Svoren, Y. M., & Davydenko, M. M. (1994). Sposib vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 4, 2.45. [in Ukrainian]

Svoren, Y. M., & Davydenko, M. M. (1995). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Dopovidi Natsionalnoi akademii nauk Ukrainy, 9, 72–73. [in Ukrainian]

Svoren, Y. M., & Davydenko, M. M. (1998). Poshukove znachennia termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. In Nafta i haz Ukrainy–98: materialy V Mizhnarodnoi konferentsii (Poltava, 15–17 veresnia 1998 r.) (Vol. 1, pp. 110–111). Poltava: UNHA. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2000). Nova tekhnolohiia vyznachennia henezysu vuhlevodnevykh haziv. In Nafta i haz Ukrainy – 2000: materialy VI Mizhnarodnoi naukovo-praktychnoi konferentsii (Ivano-Frankivsk, 31 zhovtnia–3 lystopada 2000 r.) (Vol. 1, pp. 108). Ivano-Frankivsk: Fakel. [in Ukrainian]

Svoren’, I. M., & Naumko, I. M. (2002). Termobarometriya i geokhimiya gazov prozhilkovo-vkraplennoi mineralizatsii v otlozheniyakh neftegazonosnykh oblastei i metallogenicheskikh provintsii: problema genezisa i poiska uglevodorodov. In Novye idei v geologii i geokhimii nefti i gaza. K sozdaniyu obshchei teorii neftegazonosnosti nedr: materialy VI mezhdunarodnoi konferentsii (Moskva, 28–31 maya 2002 g.) (Vol. 2, pp. 156–159). Moskva: GEOS. [in Russian]

Svoren, Y. M., & Naumko, I. M. (2005). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii – pryrodnyi fenomen litosfery Zemli. Dopovidi Natsionalnoi akademii nauk Ukrainy, 2, 109–113. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi Natsionalnoi akademii nauk Ukrainy, 2, 111–116. [in Ukrainian]

Svoren, Y. M., Naumko, I. M., & Davydenko, M. M. (1998). Nova tekhnolohiia vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi. In Nafta i haz Ukrainy–98: materialy V Mizhnarodnoi konferentsii (Poltava, 15–17 veresnia 1998 r.) (Vol. 1, pp. 111–112). Poltava: UNHA. [in Ukrainian]

Svoren’, J. M., Naumko I. M., Kovalyshyn, Z. I., Bratus’, M. D., & Davydenko, M. M. (1999). New technology of local forecast of enriched areas of gold ore fields. In Naukovi osnovy prohnozuvannia, poshukiv ta otsinky rodovyshch zolota: materialy mizhnarodnoi naukovoi konferentsii (Lviv, 27–30 veresnia 1999 r.) (pp. 120–121). Lviv: Vydavnychyi tsentr LDU im. Ivana Franka.

Svoren, Y. M., Naumko, I. M., Kurovets, I. M., & Krupskyi, Yu. Z. (2005). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: problema henezysu ta poshuku vuhlevodniv. Dopovidi Natsionalnoi akademii nauk Ukrainy, 3, 115–120. [in Ukrainian]

Vozniak, D. K. (2003). Fliuidni vkliuchennia u mineralakh yak indykatory endohennoho mineraloutvorennia [Extended abstract of Doctorʼs thesis]. Kyiv. [in Ukrainian]


Posted on

GEOCHEMICAL FEATURES OF EURASIAN EVAPORITES IN THE CONTEXT OF THE CHEMICAL EVOLUTION OF SEAWATER IN PHANEROZOIC

Home > Archive > No. 1–2 (183–184) 2021 > 110–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 110–129.

https://doi.org/10.15407/ggcm2021.01-02.110

Аnatoliy GALAMAY, Andriy POBEREZHSKYY, Sofiya HRYNIV, Serhiy VOVNYUK, Dariya SYDOR, Iaroslava IAREMCHUK, Sofiya MAKSYMUK, Oksana OLIYOVYCH-HLADKA, Lyudmila BILYK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Studies of evaporites provide new data to characterize the seawater chemistry in the Early Paleozoic and Middle Mesozoic. In particular, we studied the fluid inclusions in halite from Ordovician (China) and Cretaceous (Laos) evaporites. The corresponding sections on the plot of Ca/SO4 oscillations curve in the Phanerozoic seawater are updated. The calcium content in seawater concentrated to halite precipitation stage was 45.6 mol %, 485 million years ago and 24.3 mol % 112.2–93.5 million years ago.

By analyzing the previously published and new factual material, it is established that in Permian evaporites the sulfur isotopic composition is inversely correlated with the sulfate ion content in evaporite basin brines. Thus, the evolution of seawater chemistry in Permian is confirmed by the evolution of the isotopic composition of dissolved seawater sulfate.

According to the generalization of 38 Phanerozoic marine evaporite formations, it was found that the peculiarities of the clay minerals associations correlate with the change of the seawater chemical type. Clay minerals associations precipitated from the SO4-rich seawater are characterized by a larger set of minerals, among which smectite and mixed- layered minerals often occur; Mg-rich clay minerals (corensite, paligorskite, sepiolite, talc) also occur. Instead, in the associations of evaporite clay minerals formed from the Ca-rich seawater are represented by the smaller amount of minerals, and Mg-rich minerals are extremely rare. The increased content of magnesium in seawater of SO4-rich type is the main factor in the formation of Mg-rich silicates in evaporites.

The composition of clay minerals associations depends on the evaporate basin brine concentration; with its increase, unstable minerals are transformed, which theoretically leads to a decrease in the number of minerals in the associations. However, it was found that evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals – products of incomplete transformation of a significant amount of pyroclastic material from coeval volcanic activity.

The main factor determining the composition of clay minerals associations of Phanerozoic evaporites was the seawater (and basin brines) chemical type.

Geochemical studies of scattered organic matter and fluid inclusions with hydrocarbon phase in evaporites of the Upper Pechora Basin (overlying oil and gas deposits) indicate the presence of allochthonous bitumoids and allow to use this method to predict oil and gas potential of other areas. Analysis of the results of oil and gas exploration in a number of areas of the Transcarpathian Trough indicates the presence of fluid-saturated reservoirs and the prospects for the discovery of new accumulations of hydrocarbons. Geochemical studies proved the effectiveness of gas-flow survey method for oil and gas exploration, assessing the prospects for fluid saturation of seismic structures.

Keywords

fluid inclusions, halit, salt Basin, seawater.

Referenses

Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving” – a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279–288.

Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557–558. https://doi.org/10.1126/science.1140273

Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33(11), 877–880. https://doi.org/10.1130/G21945.1

Duchuk, S. V., & Maksymuk, S. V. (2019). Naftohazovyi potentsial Zakarpatskoho prohynu. In Mineralno-syrovynni bahatstva Ukrainy: shliakhy optymalnoho vykorystannia: tezy dopovidei naukovo-praktychnoi konferentsii (4 zhovtnia 2019 r., smt Khoroshiv) (pp. 55–61). Kyiv. [in Ukrainian]

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol., 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

D’yakonov, A. I., Tskhadaya, N. D., Ovcharova, T. A., Yudin, V. M., Ivanov, V. V., & Kuznetsov, N. I. (2002). Sovremennyi evolyutsionno-dinamicheskii metod prognoza neftegazonosnosti geologo-ekologicheskikh regionov osobo slozhnogo stroeniya (na primere yuga Verkhnepechorskoi vpadiny). Ukhta: UGTU. [in Russian]

Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]

Galamai, A. R., Shanina, S. N., & Ignatovich, O. O. (2013). Sostav mineraloobrazuyushchikh rassolov Verkhnepechorskogo solerodnogo basseina na stadii kristallizatsii galita. Zapiski Rossiiskogo mineralogicheskogo obshchestva, 142(4), 32–46. [in Russian]

Galamay, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37(2), 245–267.

Galamay, A. R., Meng, F., Bukowski, K., Ni, P., Shanina, S. N., & Ignatovich, O. O. (2016). The sulphur and oxygen isotopic composition of anhydrite from the Upper Pechora Basin (Russia): new data in the context of the evolution of the sulphur isotopic record of Permian evaporites. Geological Quarterly, 60(4), 990–999. https://doi.org/10.7306/gq.1309

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Extended abstract of сandidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A. R., & Baranenko, O. B. (2004). Proiavy vuhlevodniv u badenskykh soliakh Peredkarpattia i Zakarpattia. Mineralohichnyi zbirnyk, 54(1), 132–136. [in Ukrainian]

Halamai, A. R., & Meng, F. (2020). Khimichnyi sklad pivdenno-skhidnoi chastyny kreidovoho Sakon Nakhon solerodnoho baseinu Laosu u konteksti evoliutsii skladu okeanichnoi vody. In Vid mineralohii i heohnozii do heokhimii, petrolohii, heolohii ta heofizyky: fundamentalni i prykladni trendy XXI stolittia (MinGeoIntegration XXI): tezy dopovidei Vseukrainskoi konferentsii (Kyiv, 23–25 veresnia 2020 r.) (pp. 20–24). Kyiv. [in Ukrainian]

Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279–283. https://doi.org/10.1016/S0016-7037(01)00884-5

Iaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138–146. https://doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]

Iaremchuk, I., Tariq, M., Hryniv, S., Vovnyuk, S., & Meng, F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan). Carbonates Evaporites, 32(1), 63–74. https://doi.org/10.1007/s13146-016-0294-5

Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (pp. 60–69). Moskva: Nauka. [in Russian]

Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoe. Kiev: Naukova dumka. [in Russian]

Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695–712. https://doi.org/10.1086/516054

Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseinov i vod mirovogo okeana. Litologiya, 4, 95–109. [in Russian]

Kovalevych, V. M., Peryt, T. M., Carmona, V., Sydor, D. V., Vovnyuk, S. V., & Halas, S. (2002). Evolution of Permian seawater: evidence from fluid inclusions in halite. N. Jb. Miner. Abh., 178(1), 27–62. https://doi.org/10.1127/0077-7757/2002/0178-0027

Kovalevych, V. M., Peryt, T. M., Shanina, S. N., Wieclaw, D., & Lytvyniuk, S. F. (2008). Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in rock salt. Journal of Petrolium Geology, 31(3), 245–262. https://doi.org/10.1111/j.1747-5457.2008.00419.x

Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real microdroplets of ancient sea water? Geological Quarterly, 54(4), 401–410.

Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485–506. https://doi.org/10.1007/s00126-019-00873-9

Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci Rev., 178, 1–28. https://doi.org/10.1016/j.earscirev.2017.12.004

Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., Demicco, R. V. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086–1088. https://doi.org/10.1126/science.1064280

Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69(7), 1701–1719. https://doi.org/10.1016/j.gca.2004.09.015

Lytvyniuk, S. V. (2007). Heokhimichni oreoly u soliakh nad pokladamy vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 95–111. [in Ukrainian]

Maksymuk, S. V. (2012). Osoblyvosti vidobrazhennia fliuidonasychenosti horyzontiv Vyshnianskoi ploshchi Zovnishnoi zony Peredkarpatskoho prohynu v heokhimichnykh poliakh prypoverkhnevykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(160–161), 109–117. [in Ukrainian]

Maksymuk, S. V., & Bodlak, P. M. (2015). Dosvid zastosuvannia heokhimichnykh metodiv u kompleksnykh poshukovykh robotakh na naftu i haz u Karpatskomu rehioni. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu im. Ivana Franka (Lviv, 7–8 zhovtnia 2015 r.) (pp. 151–152). Lviv. [in Ukrainian]

McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D

Moskovskii, G. A. (1983). Issledovaniya fiziko-khimicheskikh uslovii sedimentatsii kungurskikh galogennykh otlozhenii zapadnoi chasti Prikaspiiskoi sineklizy po vklyucheniyam v mineralakh [Extended abstract of сandidateʼs thesis]. Moskovskii gossudarstvennyi universitet. Moskva. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Pozo, M., & Calvo, J. P. (2018). An Overview of Authigenic Magnesian Clays. Minerals, 8(11), 520. https://doi.org/10.3390/min8110520

Raevskii, V. I., Fiveg, M. P., & Gerasimova, V. V. (1973). Mestorozhdeniya kaliinykh solei SSSR. Leningrad: Nedra. [in Russian]

Robinson, D., Schmidt, Th., & Santana de Zambora, A. (2002). Reaction pathways and reaction progress for the smectite-to chlorite transformation: evidence from hydrothermally altered metabasites. J. Metamorph. Geol., 20, 167–174. https://doi.org/10.1046/j.0263-4929.2001.00361.x

Schiffman, P., & Staudigel, H. (1995). The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487–498. https://doi.org/10.1111/j.1525-1314.1995.tb00236.x

Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]

Sone, M., & Metcalfe, I. (2008). Parallel Tethyan sutures in mainland South-East Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340, 166–179. https://doi.org/10.1016/j.crte.2007.09.008

Więcław, D., Lytvyniuk, S. F., Kovalevych, V. M., & Peryt, T. M. (2008). Incluzje w halicie oraz bituminy w solach ewaporatόw mioceńskich ukraińskiego Przedkarpacia jako wskaźnik występowania nagromadzeń węglowodorόw w niżey leżących utworach. Przegląd Geologiczny, 56(9), 837–841.

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020a). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974

Yaremchuk, Ya., Vovniuk, S., Hryniv, S., Tarik, M., Menh, F., Bilyk, L., & Kochubei, V. (2017). Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh, Pakystan. Mineralohichnyi zbirnyk, 67(2), 72–90. [in Ukrainian]

Yaremchuk, Ya. V., Vovniuk, S. V., & Tariq, M. (2020b). Hlynysti mineraly eotsenovoi kamianoi soli formatsii Bakhadar Khel, Pakystan. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 87–99. https://doi.org/10.15407/ggcm2020.01.087 [in Ukrainian]

Yaremchuk, Ya. V., Vovnyuk, S. V., & Hryniv, S. P. (2020c). The peculiarities of high-magnesium clay minerals occurrence in Phanerozoic evaporite formation. Geodynamics, 1(28), 52–61. https://doi.org/10.23939/jgd2020.01.052


Posted on

GEOCHEMISTRY Of FLUIDS: INNOVATIVE SOLUTION OF THE FUNDAMENTAL PROBLEM

Home > Archive > No. 1–2 (183–184) 2021 > 130–148


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 130–148.

https://doi.org/10.15407/ggcm2021.01-02.130

Josyp SVOREN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

First of all, has developed a reliable mass spectrometric method for studying fluid inclusions in minerals (on the basis of the author’s certificate of the USSR No. 454446 of 1974 for the invention of the “device for cleaning the content inclusions of solid materials”). Were created and published new scientific directions: 1. Thermobarometry and geochemistry of gases of veinlet-impregnated mineralization in sediments of oil and gas regions and metallogenic provinces. 2. Bowels of the Earth – natural physicochemical reactor. Was developed a “method (technology) for determining the prospects of oil and gas bearing of the local area” and “a method (technology) of local forecasting of enriched areas of gold-ore fields” (together with M. M. Davydenko). Was established unknown before, but objectively existing phenomenon of the material world: 1) “lack of molecular hydrogen in inclusions in minerals in the bowels of the planet Earth” (together with V. A. Kaliuzhny). Independently were established: 2) previously unknown “property of deep abiogenic methane-termobar high-temperature fluid decompose-convert natural organic residues into layers of coal with their simultaneous methane saturation and its conservation in the earth’s crust of the planet Earth”; 3) previously unknown natural “phenomenon of arbitrary formation of natural carbon methane in the coal layers of the earth’s crust of the planet Earth under the influence of abiogenic methane-containing high-temperature fluid with their conservation in them”; 4) previously unknown different chemical properties of carbon isotopes in natural processes of synthesis-formation of various carbon-containing compounds …; 5) “previously unknown pattern of natural processes of synthesis of perfect diamond crystals from astenospheric carbon dioxide ions…”. Was justified “a new way to determine the calorification of natural gas supplied to consumers and its cubic-metre barometry”.

Keywords

geochemistry, fluid inclusions, veinlet-impregnated mineralization, deep abiogenic methane-bearing high-termobaric fluid, searches, new technologies, cubic-metre-barometry, scientific discovery.

Referenses

Davydenko, M. M., & Svoren, Y. M. (1994). Sposib lokalnoho prohnozuvannia zbahachenykh dilianok zolotorudnykh poliv (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 3, 27. [in Ukrainian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi Natsionalnoi akademii nauk Ukrainy, 8, 117–120. [in Ukrainian]

Naumko, I. M., & Kaliuzhnyi, V. A. (2001). Pidsumky ta perspektyvy doslidzhen termobarometrii i heokhimii paleofliuidiv litosfery (za vkliuchenniamy u mineralakh). Heolohiia i heokhimiia horiuchykh kopalyn, 2, 162–175. [in Ukrainian]

Naumko, I., Kaliuzhnyi, V., Bratus, M., Zinchuk, I., Kovalyshyn, Z., Matviienko, O., Redko, L., & Svoren, Y. (2000). Uchennia pro mineralotvorni fliuidy: priorytetni zavdannia rozvytku na suchasnomu etapi. Mineralohichnyi zbirnyk, 50(2), 22–30. [in Ukrainian]

Naumko, I., Pavliuk, M., & Poberezhskyi, A. (2020). Heokhimiia i termobarometriia mineraloutvoriuvalnykh fliuidiv ta termobaroheokhimiia evaporytiv – vsesvitno vidomi naukovi shkoly. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 62–75. https://doi.org/10.15407/ggcm2020.01.062 [in Ukrainian]

Naumko, I. M., & Svoren, Y. M. (2008). Pro shliakhy vtilennia hlybynnoho vysokotemperaturnoho fliuidu u zemnu koru. Dopovidi Natsionalnoi akademii nauk Ukrainy, 9, 112–114. [in Ukrainian]

Pavlyshyn, V. I., Bondarenko, S. M., Bryk, O. B., Vozniak, D. K., Yelchenko, K. O., Kalinichenko, A. M., Kvasnytsia, V. M., Kulchytska, H. O., Lupashko, T. M., Naumko, I. M., Semenenko, V. P., Taran, M. M., Tarashchan, A. M., Khomenko, V. M., & Chernysh, D. S. (2018). Mineralohiia u Natsionalnii akademii nauk Ukrainy (do 100-richchia NAN Ukrainy). Mineralohichnyi zhurnal, 40(3), 3–22. https://doi.org/10.15407/mineraljournal.40.03.003 [in Ukrainian]

Svoren’, I. M. (1974). Ustroistvo dlya ochistki soderzhimogo vklyuchenii tverdykh materialov (Avtorskoe svidetel’stvo SSSR № 454446). Byulleten’, 47. [in Russian]

Svoren’, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyanie na svoistva veshchestv [Extended abstract of сandidateʼs thesis]. Institut geologii i geokhimii goryuchikh iskopaemykh AN USSR. L’vov. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy: tezy dopovidei naukovoi narady (20–22 zhovtnia 1992 r.) (pp. 143–145). Lviv. [in Ukrainian]

Svoren, Y. M. (2008). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: pryroda vuhilnoho metanu. Ugol’ Ukrainy, 8(620), 42–46. [in Ukrainian]

Svoren, Y. (2011a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: izotopy vuhletsiu pro pokhodzhennia planety Zemlia. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 158–159. [in Ukrainian]

Svoren, Y. (2011b). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda zemletrusu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 160–162. [in Ukrainian]

Svoren, Y. (2017a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryrodnyi vuhlevodnevyi fenomen. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 157–160. [in Ukrainian]

Svoren, Y. (2017b). Yavyshche utvorennia pryrodnykh vuhlemetaniv pid diieiu abiohennoho metanovmistnoho vysokotermobarnoho hlybynnoho fliuidu. In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy II Mizhnarodnoi naukovoi konferentsii (Kyiv, 6–8 veresnia 2017 r.) (pp. 225–229). Kyiv. [in Ukrainian]

Svoren, Y. (2019a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: poshuk pryrodnoho metanu – fundamentalna nauka chy tekhnichna problema? Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 104–115. https://doi.org/10.15407/ggcm2019.04.104 [in Ukrainian]

Svoren, Y. (2019b). Pro novyi pidkhid do vyznachennia teplotvornosti pryrodnoho hazu, yakyi postachaiut spozhyvacham ta yoho kubometrobarometriiu. Heolohiia i heokhimiia horiuchykh kopalyn, 2(179), 84–89. https://doi.org/10.15407/ggcm2019.02.084 [in Ukrainian]

Svoren, Y. (2020a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda vody naftovykh i hazovykh rodovyshch. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 08–09 hrudnia 2020 r.) (pp. 158–160). [in Ukrainian]

Svoren, Y. (2020b). Pro znachennia kubometrobarometrii pryrodnoho hazu, yakyi postachaiut spozhyvacham. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 08–09 hrudnia 2020 r.) (pp. 91–94). [in Ukrainian]

Svoren’, J. M. (2020c). Subsoil Natural Physico-Chemical Reactor: Regularity of Natural Processes of Synthesis of Perfect Diamond Crystals. Journal of Geological Resource and Engineering, 8, 133–136. https://doi.org/10.17265/2328-2193/2020.04.005

Svoren’, J. M. (2020d). Various Chemical Properties of Carbon Isotopes in Natural Synthesis of Different Compounds. Journal of Geological Resource and Engineering, 8, 20–23. https://doi.org/10.17265/2328-2193/2020.01.002

Svoren’, J. M. (2021). Subsoil Natural Physico-chemical Reactor: The Property of Deep Abiogenic Methane-Containing High-Thermobaric Fluid to Form Coal Seams. Journal of Geological Resource and Engineering, 9, 25–28. https://doi.org/10.17265/2328-2193/2021.01.003

Svoren, Y. M., & Davydenko, M. M. (1994). Sposib vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 4. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii (novyi naukovyi napriamok v heolohii). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2000). Nova tekhnolohiia vyznachennia henezysu vuhlevodnevykh haziv. In Nafta i haz Ukrainy–2000: materialy VI Mizhnarodnoi naukovo-praktychnoi konferentsii (Ivano-Frankivsk, 31 zhovtnia–3 lystopada 2000 r.) (Vol. 1, pp. 108). Ivano-Frankivsk: Fakel. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006a). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi Natsionalnoi akademii nauk Ukrainy, 2, 111–116. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006b). Rol riznykh form vodniu ta vuhletsiu v pryrodnykh protsesakh: novyi pohliad na pokhodzhennia vuhlevodniv. Dopovidi Natsionalnoi akademii nauk Ukrainy, 1, 131–134. [in Ukrainian]


Posted on

CLAY MINERALS FROM ROCK SALT OF BAHADUR KHEL FORMATION, EOCENE, PAKISTAN

Home > Archive > No. 1 (182) 2020 > 87-100


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 87-100.

https://doi.org/10.15407/ggcm2020.01.087

Yaroslava YAREMCHUK, Serhiy VOVNYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, е-mail: slava.yaremchuk@gmail.com

Mohammad TARIQ

Baluchistan University of Information Technology, Engineering and Management Sciences, Department of Petroleum and Gas Engineering, Quetta, Pakistan

Abstract

According to studies of the pelitic fraction of the water-insoluble residue of 10 samples of Eocene rock salt of the Bahadur Khel Formation (Pakistan), it was determined that the clay minerals association contains swelling chlorite, chlorite-smectite, illite and kaolinite; chlorite was identified in three samples. Non-clay minerals are represented by quartz, dolomite, less often – magnesite; one sample contains impurities of both carbonates. Swelling chlorite, chlorite and mixed-layer minerals are trioctahedral, and illite and kaolinite are dioctahedral. All identified clay minerals, with the exception of kaolinite, are authigenic.

The presence of swelling chlorite in Eocene rock salt is probably caused by changes in the concentration of brines in the basin against the background of complex geological processes of this era (climate change from thermal maximum to global cooling, changes in water circulation in oceans, changes in isotopic composition of carbonates).

The association of clay minerals of Eocene rock salt, taking into account the peculiarities of its composition and the presence of swelling chlorite in it, we attributed to that formed during the SO4-rich seawater chemical type. This is also confirmed by two finds of swelling chlorite in the Triassic evaporites (rock salt of the Western Moroccan Basin, Midland marl) described in the literature, which are known to have been deposited from SO4-rich seawater.

The presence of kaolinite in almost all samples is caused by its largest accumulation in sediments of this time period – terrigenous kaolinite came in large quantities from dry land and did not transform even at the stage halite precipitation.

Keywords

clay minerals, swelling chlorite, rock salt, Eocene, Bahadur Khel Salt, Pakistan.

REFERENCES

Bain, D. C., & Russell, J. D. (1981). Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite. Clay Miner., 16 (2), 203-212. doi.org/10.1180/claymin.1981.016.2.08
https://doi.org/10.1180/claymin.1981.016.2.08
 
Bilonizhka, P. M. (1973). Nekotorye osobennosti mineral’nogo sostava glin nizhnemolasovykh otlozhenii Prikarpat’ya. In Voprosy litologii i petrografii (Kn. 2, s. 113-120). L’vov: Izdatel’stvo L’vovskogo universiteta. [in Russian]
 
Brindley, G. W. (1961). Chlorite minerals. In G. Brown (ed.), The X-ray identification and crystal structures of clay minerals (pp. 242-296). The Mineralogical Society, London.
 
Brindli, G. V. (1965). Khloritovye mineraly. In G. Braun (red.), Rentgenovskie metody izucheniya i struktura glinistykh mineralov. (V. A. Drits i dr., per. s angl.; V. A. Frank-Kamenetskii, red.) (s. 284-344). Moskva: Mir. [in Russian]
 
Carroll, D. (1970). Clay Minerals: A Guide to Their X-ray Identification (Special Paper 126). Boulder, Colorado: Geological Society of America.
https://doi.org/10.1130/SPE126-p1
 
Frank-Kamenetskii, V. A. (red.). (1983). Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty). Leningrad: Nedra. [in Russian]
 
Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]
 
Gavrilov, Yu. O., & Shcherbinina, E. A. (2004). Global’noe biosfernoe sobytie na granitse paleotsena i eotsena. In Yu. O. Gavrilov & M. D. Khutorskoi (red.), Sovremennye problemy geologii (s. 493-531). Moskva: Nauka. [in Russian]
 
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279-283.
https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
 
Holland, H. D. (2003). The geologic history of seawater. Treatise on Geochemistry, 6, 583-625.
 
Honeyborne, D. B. (1951). The clay minerals in the Keuper marl. Clay min. Bull., 1 (5), 150-157.
https://doi.org/10.1180/claymin.1951.001.5.05
 
Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta, 66, 3733-3756.
https://doi.org/10.1016/S0016-7037(01)00884-5
 
Jaumé, S. C., & Lillie, R. J. (1988). Mechanics of the Salt Range-Potwar Plateau, Pakistan: A fold-and-thrust belt underlain by evaporites. Tectonics, 7, 57-71.
https://doi.org/10.1029/TC007i001p00057
 
Kazmi, A. H., & Jan, M. Q. (1997). Geology and Tectonics of Pakistan. Nazimabad; Karachi: Graphic Publishers.
 
Khrushcheva, M. O., & Nebera, T. S. (2019). Swelling clay minerals of bottom sediments of Uskol lake (Republic of Khakassia). IOP Conference Series: Earth and Environmental Science, 319, Article 012010. doi:10.1088/1755-1315/319/1/012010
https://doi.org/10.1088/1755-1315/319/1/012010
 
Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (s. 60-69). Moskva: Nauka. [in Russian]
 
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimizma morskikh evaporitovykh basseinov i vod Mirovogo okeana. Geologiya i poleznye iskopaemye Mirovogo okeana, 4, 50-64. [in Russian]
 
Kovalevych, V. M., Peryt, T. M., & Petrychenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. The Journal of Geology, 106 (6), 695-712.
https://doi.org/10.1086/516054
 
Krupskaya, V. V., Krylov, A. A., & Sokolov, V. N. (2011). Glinistye mineraly kak indikatory uslovii osadkonakopleniya na rubezhakh mel-paleotsen-eotsen na khrebte Lomonosova (Severnyi ledovityi okean). Problemy Arktiki i Antarktiki, 2 (88), 23-35. [in Russian]
 
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T. et al. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086-1088.
https://doi.org/10.1126/science.1064280
 
Lucas, J. (1962). La transformation des mineraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem. Serv. Carte Geol. Als. et Lorraine, 20.
 
Meissner, C. R., Master J. M., Rashid, M. A., & Hussain, M. (1974). Stratigraphy of the Kohat Quadrangle, Pakistan. Geological survey professional paper, 716-D. Washington: U.S. Govt. Print. Off.
https://doi.org/10.3133/pp716D
 
Millo, Zh. (1968). Geologiya glin (vyvetrivanie, sedimentologiya, geokhimiya). (M. E. Kaplan, per. s frants.). Leningrad: Nedra. [in Russian]
 
Moore, D. M., & Reynolds, R. C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford; New York: Oxford University Press.
 
Pastukhova, M. V. (1965). K poznaniyu autigennykh silikatnykh i alyumosilikatnykh mineralov v solenosnykh porodakh. Litologiya i poleznye iskopaemye, 3, 78-90. [in Russian]
 
Premovi, P. I., Todorovi, B. Z., & Stankovi, M. N. (2008). Cretaceous-Paleogene boundary (KPB) Fish Clay at Hjerup (Stevns Klint, Denmark): Ni, Co, and Zn of the black marl. Geologica Acta, 6 (4), 369-382.
 
Shah, S. M. I. (ed.). (1977). Memoirs of the geological survey of Pakistan. Vol. 12. Stratigraphy of Pakistan. Quetta
 
Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]
 
Strakhov, N. M. (1962). Osnovy teorii litogeneza. T. 3. Zakonomernosti sostava i razmeshcheniya aridnykh otlozhenii. Moskva: AN SSSR. [in Russian]
 
Suchecki, R. K., Perry, E. A., & Hubert, J. F. (1977). Clay Petrology of Cambro-Ordovician Continental Margin, Cow Head Klippe, Western Newfoundland. Clays and Clay Minerals, 25, 163-170. doi.org/10.1346/CCMN.1977.0250301
https://doi.org/10.1346/CCMN.1977.0250301
 
Velde, B. (1977). A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed layered minerals. Clays and Clay Minerals, 25, 264-270.
https://doi.org/10.1346/CCMN.1977.0250403
 
Weaver, C. E., & Beck, K. C. (Eds.). (1977). Developments in Sedimentology. Vol. 22. Miocene of the S.E. United States: A Model for Chemical Sedimentation in a Peri-Marine Environment. New York: Elsevier.
 
Yaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138-146. doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]
https://doi.org/10.30836/igs.2522-9753.2010.147301
 
Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292 (5517), 686-693. doi.org/10.1126/science.1059412
https://doi.org/10.1126/science.1059412
Posted on

GEOCHEMICAL CHARACTERISTIC OF RIVER AND GROUND WATERS (OUTER ZONE OF THE PRECARPATHIAN DEEP)

Home > Archive > No. 1 (182) 2020 > 76-86


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 76-86.

https://doi.org/10.15407/ggcm2020.01.076

Maria KOST’, Halyna MEDVID, Vasyl HARASYMCHUK,Olga TELEGUZ, Iryna SAKHNYUK, Orysia MAYKUT

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Geochemical peculiarities of river and groundwaters of the Outer zone of the Precarpathian deep have been established. It is revealed that the main feature of the distribution of salt composition indicators in the Dniester River and its influxes is hydrochemical zonality, which does not depend on the flow direction of the rivers, but is consistent with the physics-geographical and geological features of the area to which the man-made factor is imposed.

There is an increase in concentrations of sulfate, calcium in the left bank confluent of the river Shchyrka. The waters from the Tysmenytsya, Kolodnitsa and Dniester rivers in the village Kolodrubi are characterized by the highest amounts of sodium and chlorides and are sodium chloride-hydrocarbonate composition. The water composition of the Dniester River (Rozvadiv village), its confluents Bystrytsia and Letnyanka are hydrocarbonate calcium (sodium-magnesium-calcium), Shchyrka, Vereshchitsa – sulfate-hydrocarbonate calcium (magnesium-calcium). The index of biochemical oxygen consumption for 5 days in the waters of Tysmenytsya River reached 4.5 mg O2/dm3, while in other rivers it was 0.70‒3.20 mg O2/dm3. The content of O2 soluble in the waters of the river Vereshchytsya was 0.29 mg/dm3, the value of biochemical oxygen consumption was 11.4 mg O2/dm3.

In the chemical composition of river waters, there is an increase in the concentrations of sodium, potassium and chloride ions from the left bank to the right bank confluents of the Dniester. In the left-bank confluents, in the chemical composition of water dominate the contents of calcium and hydrocarbons ions.

The heterogeneity of the lithological composition, the instability of the thickness of the aquifer both in the horizontal and vertical directions, and the different technogenic influence form the irregularity of pollution and its local distribution in groundwater.

Keywords

river waters, groundwaters, geochemical features, geochemical zonality, Outer zone, Precarpathian deep.

REFERENCES

Babiienko, V. V., Levkovska, V. Yu., & Hanykina, S. O. (2017). Hihiienichna otsinka dzherel zabrudnennia richky Dnister [Hygienic evaluation of sources of pollution of the river Dniester]. Odeskyi medychnyi zhurnal, 4, 64-67. [in Ukrainian]
 
Herenchuk, K. I. (Red.). (1972). Pryroda Lvivskoi oblasti [Nature of Lviv region]. Lviv: Vyshcha shkola. Vydavnytstvo Lvivskoho universytetu. [in Ukrainian]
 
Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu [Hygienic requirements for drinking water intended for human habitation]. (2010). DSanPiN 2.2.4-171-10. Nakaz Ministerstva okhorony zdorovia Ukrainy N 400 vid 2010-05-12. Kyiv. [in Ukrainian]
 
Ivaniuta, M. M. (red.). (1998). Atlas rodovyshch nafty i hazu Ukrainy. T. 4. Zakhidnyi naftohazonosnyi rehion [Atlas of Oil and Gas Fields of Ukraine. Vol. 4. Western Oil-and-Gas-Bearing Region]. Lviv: Tsentr Yevropy. [in Ukrainian]
 
Lototska, O. V. (2019). Hihiienichni problemy okhorony poverkhnevykh i pidzemnykh vod vid antropotekhnohennoho zabrudnennia ta yikh vykorystannia v pytnomu vodopostachanni v Zakhidnomu rehioni Ukrainy [Hygienic problems of protection of surface and underground waters from anthropotechnogenic pollution and their use in drinking water supply in the western region of Ukraine]. (Extended abstract of Doctor’s thesis, National Academy of Medical Sciences of Ukraine, State Institution “O. M. Marzieiev Institute for Public Health NAMSU”). Kyiv. [in Ukrainian]
 
Pankiv, R., Kost, M., Harasymchuk, V., Maikut, O., Mandzia, O., Sakhniuk, I., Kozak, R., & Palchykova, O. (2015). Heokhimichni osoblyvosti poverkhnevykh vod baseinu richky Dnister u mezhakh Ukrainy [Geochemical features of surface waters of the river Dniester basin within Ukraine]. Heolohiia i heokhimiia horiuchykh kopalyn, 1-2 (166-167), 135-144. [in Ukrainian]
 
Perechen’ rybokhozyaistvennykh normativov: predel’no-dopustimykh kontsentratsii (PDK) i orientirovochno bezopasnykh urovnei veshchestv (OBUV) dlya vody vodnykh ob”ektov, imeyushchikh rybokhozyaistvennoe znachenie [List of fishery standards: maximum permissible concentrations (MPC) and tentatively safe levels of substances (TSEL) for water in water bodies of fishery importance]. (1999). Moskva: Izdatel’stvo VNIRO. [in Russian]
 
Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha u Lvivskii oblasti v 2018 rotsi [Regional report on the state of the environment in the Lviv region in 2018]. (2019). Lviv. https://drive.google.com/file/d/1Q7lX0uKWoTbv5rsga5PnSRs l7Tff6qc0/view [in Ukrainian]
 
Shtohryn, O. D., & Havrylenko, K. S. (1968). Pidzemni vody zakhidnykh oblastei Ukrainy [Groundwater of the western regions of Ukraine]. Kyiv: Naukova dumka. [in Ukrainian]
 
Zharkykh, M. I. (Red.). (1998). Doslidzhennia Dnistra: 10 rokiv hromadskoi ekolohichnoi ekspedytsii “Dnister” [Dniester research: 10 years of the public ecological expedition “Dniester”]. Lviv; Kyiv. [in Ukrainian]