Posted on


Home > Archive > No. 3–4 (191–192) 2023 > 45–60

Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 45–60

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology & Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail:;


This article discusses the features of peat analysis using X-ray fluorescence (XRF) analysis in order to study its qualitative and quantitative elemental composition, including heavy metals. The distribution of chemical elements is an indicator of various processes in geochemical and biological systems, by using of which it is possible to reproduce the conditions of accumulation of mineral deposits. This analysis is an important component of a comprehensive study of peat formation features, the environmental friendliness of peat extraction, and also for determining the suitability of peat for industrial use.

We analyzed the content of chemical elements in peat samples taken at different depths using a portable X-ray fluorescence spectrometer. The article considers the main characteristics of the spectrum of individual elements, depending on the atomic number.

In order to establish the general regularity of the distribution of 20 chemical elements in peat samples, we performed a mathematical and statistical analysis of the obtained data: calculation of the main statistical characteristics of chemical elements distribution (average, minimum and maximum values, median, variance, coefficient of variation, etc.), calculation of correlation matrices, selection of typomorphic geochemical associations of chemical elements using cluster and factor analyses. We singled out two types of factors that are decisive and influence the accumulation of chemical elements in the investigated peat: “organogenic” and “natural” (lithological), which are decisive, and a secondary factor –anthropogenic.

We compared the obtained results with the average values obtained from the results of spectral semi-quantitative analysis of peat ash samples taken at depths of 0.1–7 m in the same region. We evaluated the possibility and efficiency of using a portable X-ray fluorescence spectrometer for the analysis of the macro- and microelement composition of peats with different ash content.

It has been established that portable X-ray fluorescence analysis is a powerful tool for fast and high-quality elemental analysis of peat, and the range of its application depends on specific research goals and tasks.


peat, X-ray fluorescence spectroscopy, XRF, microelement composition, spectrum interpretation


Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavleniye geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (Lvovskaya oblast) [Research report]. Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]

Kaiser, B., & Wright, A. (2008). Draft Bruker XRF spectroscopy user guide: Spectral interpretation and sources of interference. BRUKER, Madison, WI.

Shand, C. A., & Wendler, R. (2014). Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31–42.

Van Loon, L. L., McIntyre, N. S., Bauer, M., Sherry, N. S., & Banerjee, N. R. (2019). Peakaboo: Advanced software for the interpretation of X-ray fluorescence spectra from synchrotrons and other intense X-ray sources. Software Impacts, 2, 100010.

Yakovenko, M. (2022). Heokhimichni osoblyvosti nahromadzhennia i mihratsii Strontsiiu v torfakh Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(187–188), 58–70. [in Ukrainian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk of V. N. Karazin Kharkiv National University, Series “Geology. Geography. Ecology”, 56, 105–121. [in Ukrainian]

Posted on

ON CONTENT, MIGRATION AND CONCENTRATION OF HEAVY METALS IN OILS (by the example of the Dnieper-Donets Depression)

Home > Archive > No. 4 (181) 2019 > 96-103

Geology & Geochemistry of Combustible Minerals No. 4 (181) 2019, 96-103.

Artem Yerofieiev

V. N. Karazin Kharkiv National University,

Ihor Berezovsky

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine,


Literature review and analysis of previous studies of the problem was carried. The main scientific works on the research topic, as well as the main directions and stages of the study are indicated. Similar studies that were conducted on the territory of Ukraine are considered.

The results of the study of heavy metals in oil samples taken from a large oil and gas region from more than thirty deposits of Ukraine are presented. All current and non-working fields are considered.

The geological structure of the oil and gas province, as well as the main geochemical features of the formation of mineral deposits are considered. The main forms of finding target metals, as well as possible ways of transferring these elements in the earth’s crust are given.

Samples were investigated using x-ray fluorescence and neutron activation analysis. The obtained research data in the framework of two selected methods are combined for analysis. The results obtained within the same geological structure are compared with each other to determine the effect of the physical conditions of sediment formation on the microcomponent composition of crude oil. They also compared the effect of physical conditions on the properties of oil and their ability to accumulate heavy metals. Possible causes of the abnormal accumulation of heavy metals due to the close occurrence of oil and formation water are noted.

According to the results obtained, a graph is constructed of the dependence of the mineralization of oil on its depth. An exponential graphical approximation is presented to display the general trend of dependence.

Possible sources and ways of migration and accumulation of heavy metals in hydrocarbons are analyzed. The concept of the migration of heavy metals in oil is proposed in conjunction with the ore mineralization of adjacent and adjacent deposits.

Possible causes of differences in the concentrations of heavy metals in oil of various geological structures are indicated, as well as the main possible causes of measurement errors and complications in the selection of each of the analysis methods are specified.


migration, heavy metals, petroleum, X-ray fluorescence spectroscopy, petroleum geochemistry, organometallic compounds.


Ahmad, D. M., Hafizan, J., & Kamaruzaman, Y. (2015). Oil spill related Heavy Metal: a Review. Malaysian Journal of Analytical Sciences, 48 (1), 1348-1360.
Akpoveta, O. V., & Osakwe, S. A. (2014). Determination of Heavy Metal Contents in Refined Petroleum. IOSR Journal of Applied Chemistry, 7 (6), 1-2.
Barwise, A. J. G. (1990). Role of nickel and vanadium in petroleum classification. Energy Fuels, 4 (6), 647-652.
Ishchenko, L. V. (2018). Oreolni vody rtutnykh rudnykh poliv Donbasu yak rezultat evoliutsii hidrotermalnykh system. Science Rise, 9, 6-10. [in Ukrainian]
Khlibyshyn, Yu. Ya., Mokhamad Shakir Abd Al-Ameri, Hrynyshyn, O. B., & Pochapska, I. Ya. (2013). Doslidzhennia dystyliatnoi chastyny vysokosirkovoi nafty Orkhovytskoho naftovoho rodovyshcha. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 761, 462-465. [in Ukrainian]
Lazarenko, E. K., Panov, B. S., & Pavlishin, V. I. (1975). Mineralogiya Donetskogo basseyna. Kiev: Naukova dumka. [in Russian]
Madu, A. N., & Iwuoha, G. A. (2011). Extent of heavy metals in oil samples in escravos, Abiteye and Malu Platforms in Delta State Nigeria Njoku. Learning Publics Journal of Agriculture and Environmental Studies, 2 (2), 41-44.
Shnyukov, E. F., Gozhik, P. F., & Krayushkin, V. A. (2007). Vanadiy i nikel v prirodnykh neftyakh Azii. Afriki. Evropy. Severnoy i Yuzhnoy Ameriki. Dopovidi NAN Ukrainy, 3, 137-141. [in Russian]
Suiarko, V. H., Zahnitko, V. M., & Lysychenko, H. V. (2010). Strukturno-heokhimichne prohnozuvannia skupchen vuhlevodniv (na prykladi Zakhidno-Donetskoho hrabenu). Kyiv: IHNS NAN ta MNS Ukrainy. [in Ukrainian]
Suiarko, V. H., Zahnitko, V. M., & Reshetov, I. K. (2008). Ridkisni elementy v hidrotermalnykh vodakh Donbasu. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, 803, 70-74. [in Ukrainian]
Sukhanov, A. A., & Petrova, Yu. E. (2008). Resursnaya baza poputnykh komponentov tyazhelykh neftey Rossii. Neftegazovaya geologiya. Teoriya i praktika, 3, 1-11. [in Russian]
Suyarko, V. G. (1988). Geokhimicheskiye osobennosti podzemnykh vod Donbassa. Geokhimiya, 5, 738-746. [in Russian]
Suyarko, V. G. (2006). Geokhimiya podzemnykh vod vostochnoy chasti Dneprovsko-Donetskogo avlakogena. Kharkov: KhNU imeni V. N. Karazina. [in Russian]
Wilberforce, J. O. (2016). Profile of Heavy Metals in Crude Oil Commonly Consumed for Medicinal Purposes in Abakaliki. IOSR Journal of Pharmacy and Biological Sciences, 11 (3), 43-44.
Yakutseni, S. P. (2010). Glubinnaya zonalnost v obogashchennosti uglevodorodov tyazhelymi elementami-primesyami. Neftegazovaya geologiya. Teoriya i praktika, 5 (2), 1-7. [in Russian]
Zalia, M. A., Kamaruzaman, W., & Ahmad, W. (2015). Concentration of heavy metals in virgin, used, recovered and waste oil: a spectroscopic study. Procedia Environmental Sciences, 30, 201-204.