Posted on

CLAY MINERALS FROM ROCK SALT OF BAHADUR KHEL FORMATION, EOCENE, PAKISTAN

Home > Archive > No. 1 (182) 2020 > 87-100


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 87-100.

https://doi.org/10.15407/ggcm2020.01.087

Yaroslava YAREMCHUK, Serhiy VOVNYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, е-mail: slava.yaremchuk@gmail.com

Mohammad TARIQ

Baluchistan University of Information Technology, Engineering and Management Sciences, Department of Petroleum and Gas Engineering, Quetta, Pakistan

Abstract

According to studies of the pelitic fraction of the water-insoluble residue of 10 samples of Eocene rock salt of the Bahadur Khel Formation (Pakistan), it was determined that the clay minerals association contains swelling chlorite, chlorite-smectite, illite and kaolinite; chlorite was identified in three samples. Non-clay minerals are represented by quartz, dolomite, less often – magnesite; one sample contains impurities of both carbonates. Swelling chlorite, chlorite and mixed-layer minerals are trioctahedral, and illite and kaolinite are dioctahedral. All identified clay minerals, with the exception of kaolinite, are authigenic.

The presence of swelling chlorite in Eocene rock salt is probably caused by changes in the concentration of brines in the basin against the background of complex geological processes of this era (climate change from thermal maximum to global cooling, changes in water circulation in oceans, changes in isotopic composition of carbonates).

The association of clay minerals of Eocene rock salt, taking into account the peculiarities of its composition and the presence of swelling chlorite in it, we attributed to that formed during the SO4-rich seawater chemical type. This is also confirmed by two finds of swelling chlorite in the Triassic evaporites (rock salt of the Western Moroccan Basin, Midland marl) described in the literature, which are known to have been deposited from SO4-rich seawater.

The presence of kaolinite in almost all samples is caused by its largest accumulation in sediments of this time period – terrigenous kaolinite came in large quantities from dry land and did not transform even at the stage halite precipitation.

Keywords

clay minerals, swelling chlorite, rock salt, Eocene, Bahadur Khel Salt, Pakistan.

REFERENCES

Bain, D. C., & Russell, J. D. (1981). Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite. Clay Miner., 16 (2), 203-212. doi.org/10.1180/claymin.1981.016.2.08
https://doi.org/10.1180/claymin.1981.016.2.08
 
Bilonizhka, P. M. (1973). Nekotorye osobennosti mineral’nogo sostava glin nizhnemolasovykh otlozhenii Prikarpat’ya. In Voprosy litologii i petrografii (Kn. 2, s. 113-120). L’vov: Izdatel’stvo L’vovskogo universiteta. [in Russian]
 
Brindley, G. W. (1961). Chlorite minerals. In G. Brown (ed.), The X-ray identification and crystal structures of clay minerals (pp. 242-296). The Mineralogical Society, London.
 
Brindli, G. V. (1965). Khloritovye mineraly. In G. Braun (red.), Rentgenovskie metody izucheniya i struktura glinistykh mineralov. (V. A. Drits i dr., per. s angl.; V. A. Frank-Kamenetskii, red.) (s. 284-344). Moskva: Mir. [in Russian]
 
Carroll, D. (1970). Clay Minerals: A Guide to Their X-ray Identification (Special Paper 126). Boulder, Colorado: Geological Society of America.
https://doi.org/10.1130/SPE126-p1
 
Frank-Kamenetskii, V. A. (red.). (1983). Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty). Leningrad: Nedra. [in Russian]
 
Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]
 
Gavrilov, Yu. O., & Shcherbinina, E. A. (2004). Global’noe biosfernoe sobytie na granitse paleotsena i eotsena. In Yu. O. Gavrilov & M. D. Khutorskoi (red.), Sovremennye problemy geologii (s. 493-531). Moskva: Nauka. [in Russian]
 
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279-283.
https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
 
Holland, H. D. (2003). The geologic history of seawater. Treatise on Geochemistry, 6, 583-625.
 
Honeyborne, D. B. (1951). The clay minerals in the Keuper marl. Clay min. Bull., 1 (5), 150-157.
https://doi.org/10.1180/claymin.1951.001.5.05
 
Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta, 66, 3733-3756.
https://doi.org/10.1016/S0016-7037(01)00884-5
 
Jaumé, S. C., & Lillie, R. J. (1988). Mechanics of the Salt Range-Potwar Plateau, Pakistan: A fold-and-thrust belt underlain by evaporites. Tectonics, 7, 57-71.
https://doi.org/10.1029/TC007i001p00057
 
Kazmi, A. H., & Jan, M. Q. (1997). Geology and Tectonics of Pakistan. Nazimabad; Karachi: Graphic Publishers.
 
Khrushcheva, M. O., & Nebera, T. S. (2019). Swelling clay minerals of bottom sediments of Uskol lake (Republic of Khakassia). IOP Conference Series: Earth and Environmental Science, 319, Article 012010. doi:10.1088/1755-1315/319/1/012010
https://doi.org/10.1088/1755-1315/319/1/012010
 
Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (s. 60-69). Moskva: Nauka. [in Russian]
 
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimizma morskikh evaporitovykh basseinov i vod Mirovogo okeana. Geologiya i poleznye iskopaemye Mirovogo okeana, 4, 50-64. [in Russian]
 
Kovalevych, V. M., Peryt, T. M., & Petrychenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. The Journal of Geology, 106 (6), 695-712.
https://doi.org/10.1086/516054
 
Krupskaya, V. V., Krylov, A. A., & Sokolov, V. N. (2011). Glinistye mineraly kak indikatory uslovii osadkonakopleniya na rubezhakh mel-paleotsen-eotsen na khrebte Lomonosova (Severnyi ledovityi okean). Problemy Arktiki i Antarktiki, 2 (88), 23-35. [in Russian]
 
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T. et al. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086-1088.
https://doi.org/10.1126/science.1064280
 
Lucas, J. (1962). La transformation des mineraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem. Serv. Carte Geol. Als. et Lorraine, 20.
 
Meissner, C. R., Master J. M., Rashid, M. A., & Hussain, M. (1974). Stratigraphy of the Kohat Quadrangle, Pakistan. Geological survey professional paper, 716-D. Washington: U.S. Govt. Print. Off.
https://doi.org/10.3133/pp716D
 
Millo, Zh. (1968). Geologiya glin (vyvetrivanie, sedimentologiya, geokhimiya). (M. E. Kaplan, per. s frants.). Leningrad: Nedra. [in Russian]
 
Moore, D. M., & Reynolds, R. C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford; New York: Oxford University Press.
 
Pastukhova, M. V. (1965). K poznaniyu autigennykh silikatnykh i alyumosilikatnykh mineralov v solenosnykh porodakh. Litologiya i poleznye iskopaemye, 3, 78-90. [in Russian]
 
Premovi, P. I., Todorovi, B. Z., & Stankovi, M. N. (2008). Cretaceous-Paleogene boundary (KPB) Fish Clay at Hjerup (Stevns Klint, Denmark): Ni, Co, and Zn of the black marl. Geologica Acta, 6 (4), 369-382.
 
Shah, S. M. I. (ed.). (1977). Memoirs of the geological survey of Pakistan. Vol. 12. Stratigraphy of Pakistan. Quetta
 
Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]
 
Strakhov, N. M. (1962). Osnovy teorii litogeneza. T. 3. Zakonomernosti sostava i razmeshcheniya aridnykh otlozhenii. Moskva: AN SSSR. [in Russian]
 
Suchecki, R. K., Perry, E. A., & Hubert, J. F. (1977). Clay Petrology of Cambro-Ordovician Continental Margin, Cow Head Klippe, Western Newfoundland. Clays and Clay Minerals, 25, 163-170. doi.org/10.1346/CCMN.1977.0250301
https://doi.org/10.1346/CCMN.1977.0250301
 
Velde, B. (1977). A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed layered minerals. Clays and Clay Minerals, 25, 264-270.
https://doi.org/10.1346/CCMN.1977.0250403
 
Weaver, C. E., & Beck, K. C. (Eds.). (1977). Developments in Sedimentology. Vol. 22. Miocene of the S.E. United States: A Model for Chemical Sedimentation in a Peri-Marine Environment. New York: Elsevier.
 
Yaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138-146. doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]
https://doi.org/10.30836/igs.2522-9753.2010.147301
 
Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292 (5517), 686-693. doi.org/10.1126/science.1059412
https://doi.org/10.1126/science.1059412
Posted on

THE GEOCHEMICAL CRITERIA OF CONNECTION OF HYDROCARBON DEPOSITS WITH EVAPORITES AND SEDIMENTARY FORMATIONS OF PHANEROZOIC (ON THE EXAMPLE OF OIL AND GAS BEARING BASINS OF CENTRAL AND EASTERN EUROPE)

Home > Archive > No. 3-4 (172-173) 2017 > 56-75


Geology & Geochemistry of Combustible Minerals No. 3-4 (172-173) 2017, 56-75.

Serhiy VOVNYUK, Anatoliy HALAMAY, Sophia HRYNIV, Ihor DUDOK, Sophia MAKSYMUK, Andriy POBEREZHSKYY, Daria SYDOR, Iaroslava IAREMCHUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, е-mail: igggk@mail.lviv.ua

Abstract

Based on the results of mineralogical, petrological and fluid inclusion studies of Phanerozoic evaporates and sedimentary deposits the geochemical criteria of connection of hydrocarbons with evaporite and sedimentary formations have been defined. The study of fluid inclusions containing hydrocarbons has been conducted; the peculiarities of hydrocarbon gases distribution in subsurface sedimentary rocks and their possible connection to potential deep hydrocarbon deposits have been studied in regions of hydrocarbon deposits occurrence; the interaction between organic matter and clay minerals has been studied on the example of evaporate and terrigenous deposits of Carpathian region; the geochemistry of processes of vein minerals forming of different structural zones of Carpathians has been studied in relation to oil- and gas-bearing.

Based on geochemical study of peculiarities of fluid inclusions in halite we can reconstruct PT parameters of alteration and migration of hydrocarbons. The criteria of the hydrocarbon deposits prognosis are as follows: occurrence of bitumen bubbles (or droplets of oil with the hard bitumen crust) in fluid inclusions in halite together with elevated content of methane (above 50 %) and other hydrocarbon gases in inclusions. For the reliable estimation of oil and gas deposits occurrence in the underlying rocks it is important to have correlation between the results of complex geochemical study of fluid inclusions and bitumens in salt.

The direct features of oil and gas bearing (fields of anomalous concentrations of hydrocarbon compounds) determined in subsurface sedimentary complexes allow us to outline prioritized fields of potential hydrocarbon accumulation. The use of gas-geochemical method of study in complex oil and gas prospecting works allows to increase their effectiveness.

It is important to keep in mind during prospecting works for hydrocarbons that trapping of organic compounds (including gases) by interlayer space of clay minerals (in particular smectite) impacts the gas production ability of clay strata.

 Mineralogical and geochemical studies of vein formations in sedimentary complexes show that Crosno and Duklya zones and Marmarosh crystalline massive are the most promising oil- and gas-bearing regions of the Eastern Carpathians.

The determined geochemical criteria of hydrocarbon deposits occurrence allow increasing the effectiveness of prospecting works for oil and gas.

Keywords

sedimentary formations, evaporites, Phanerozoic, hydrocarbons, fluid inclusions in halite, geochemical anomalies, clay minerals, vein formations.

Referenses

Alekseeva, T. V., Kabanov, B. P., Zolotareva, B. N., Alekseev, A. O., & Alekseeva, V. P. (2009). Guminovye veshchestva v sostave palygorskitovogo organo-mineral’nogo kompleksa iz iskopaemoi pochvy verkhnego karbona yuzhnogo Podmoskov’ya. Doklady Akademii nauk, 425 (2), 265–270. [in Russian]

Borkovskyi, O. O. (1995). Dosvid zastosuvannia heokhimichnykh metodiv poshukiv vuhlevodniv u Karpatskomu rehioni. In Stan, problemy i perspektyvy rozvytku naftohazovoho kompleksu Zakhidnoho rehionu Ukrainy: tezy dopovidei naukovo-praktychnoi konferentsii (Lviv, 28–30 bereznia 1995 r.) (pp. 51–52). Lviv. [in Ukrainian]

Cygan, R. T., Guggenheim, S., & van Groos, A. F. K. (2004). Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay. J. Phys. Chem. B, 108 (39), 15141−15149.

Devid, D. (1990). Statisticheskii analiz dannykh v geologii. (Vols. 1–2). Moskva: Nedra. [in Russian]

Dudok, I. V. (2011a). Morfohenetychni typy vuhlevodnevykh vkliuchen u “marmaroskykh diamantakh” Skhidnykh Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (156–157), 96–111. [in Ukrainian]

Dudok, I. (2011b). Poslidovnist formuvannia vuhlevodnevykh vkliuchen u “marmaroskykh diamantakh” Skhidnykh Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2 (154–155), 54–56. [in Ukrainian]

Dudok, I. V., & Vovniuk, S. V. (2000). Heokhimiia izotopiv vuhletsiu i kysniu u zhylnykh utvorenniakh flishu Ukrainskykh Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 30–37. [in Ukrainian]

Grim, R. E. (1959). Mineralogiya glin. (V. A. Frank-Kamenetskii, Ed). Moskva: IL. [in Russian]

Halamai, A. R. (2010). Fizyko-khimichni umovy osadzhennia ta postsedymentatsiinoi perekrystalizatsii badenskykh solei ukrainskoho Peredkarprattia. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 64–77. [in Ukrainian]

Hryhorchuk, K. (2015). Rol mineraliv klasu sylikativ u formuvanni potentsialu hazonosnykh «slantsiv». In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopjdsltq Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu imeni Ivana Franka (Lviv, 7–9 zhovtnia 2015 r.) (pp. 66–67). Lviv. [in Ukrainian]

Hryhorchuk, K. H., & Senkovskyi, Yu. M. (2013). Dyskretne formuvannia rezervuariv “slantsevoho” hazu v eksfiltratsiinomu katahenezi. Heodynamika, 1, 61–67. [in Ukrainian]

Jarmolowicz-Szulc, K., & Dudok, I. (2001). The importance of vein minerals for reconstruction of the diagenetic and catagenetic processes in the carpathian flych. Biul. Panstw. Inst. Geol., 396, 73–74.

Jarmolowicz-Szulc, K., & Dudok, I. (2005). Migration of paleofluids in the contact zone between the Dukla and Silesian units, Western Carpathians – avidence from fluid inclusions and stable isotopes in quartz and calcite. Geol. Quart., 49 (3), 291–304.

Keleberda, V. S. (2001). Heokhimichni poshuky nafty i hazu. Istorychnyi aspekt. Kharkiv. [in Ukrainian]

Kityk, V. I., & Petrychenko, O. Y. (1978). Vykorystannia vkliuchen u mineralakh dlia ziasuvannia umov formuvannia naftohazovykh rodovyshch. Visnyk Akademii nauk URSR, 1, 55–60. [in Ukrainian]

Klubova, T. T. (1973). Glinistye mineraly i ikh rol’ v genezise, migratsii i akkumulyatsii nefti. Moskva: Nedra. [in Russian]

Koltun, Y. V., Dudok, I. V., Kotarba, M. J., Adamenko, О. М., Pavlyuk, М. І., Burzewski, W., & Stelmakh, O. R. (2005). Geological setting and petroleum occurrence of the Starunia area, fore-Carpathian region, Ukraine. In Kotarba, M. J. (Ed.). Polish and Ukrainian geological studies (2004–2005) at Starunia – the area of discoveries of woolly rhinoceroses (pp. 61–78). Warszawa; Krakow: Pol. Geol. Inst. and “Geosphere” Society.

Koster van Groos, A. F., & Guggenheim, S. (2009). The stability of methane hydrate intercalates of montmorillonite and nontronite: Implications for carbon storage in ocean-floor environments. Am. Mineral., 94, 372–379.

Kotarba, M. J., Wieclaw, D., Koltun, Y. V., Kusmierek, J., Marynowski, L., & Dudok, I. V. (2008). Organic geochemical study and genetic correlation of natural gas, oil and Menilite source rocks in the San and Stryi rivers doab (Polish and Ukrainian Carpathians). Organic Geochemistry, 38, 1431–1456.

Kotarba, M. J., Wieclaw, D., Koltun, Y. V., Lewan, M. D., Marynowski, L., & Dudok, I. V. (2005). Organic geochemical study and genetic correlations between source rocks and hydrocarbons from surface seeps and deep accumulations in the Starunia area, fore-Carpathian region, Ukraine. In M. J. Kotarba (Ed.), Polish and Ukrainian geological studies (2004–2005) at Starunia – the area of discoveries of woolly rhinoceroses (pp. 125–146). Warszawa; Krakow: Pol. Geol. Inst. and “Geosphere” Society.

Kovalevich, V. M., & Sidor, D. V. (1992). Mikrovklyuchennye uglevodorody v kamennoi soli Solikamskoi vpadiny i ikh geneticheskaya informativnost’. Heolohiia i heokhimiia horiuchykh kopalyn, 1 (78), 89–95. [in Russian]

Kovalevych, V., Dudok, I., Poberezhskyi, A., Vovniuk, S., Halamai, A., Hryniv, S., Lytvyniuk, S., Sydor, D., & Yaremchuk, Ya. (2012). Khimiko-paleoheohrafichni indykatory prohnozu pokladiv vuhlevodniv ta korysnykh kopalyn vidkladiv kontynentalnykh okrain (za rezultatamy mineraloho-heokhimichnykh doslidzhen sulfatno-karbonatnykh i solenosnykh tovshch fanerozoiu Tsentralnoi ta Skhidnoi Yevropy). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (160–161), 66–81. [in Ukrainian]

Kovalevych, V., Peryt, T. M., Shanina, S., Więcław, D., & Lytvyniuk, S. (2008). Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in rock salt. Journal of Petroleum Geology, 31 (3), 245–262.

Krupskyi, Yu. Z. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]

Kukovskii, E. G. (1966). Osobennosti stroeniya i fiziko-khimicheskie svoistva glinistykh mineralov. Kiev: Naukova dumka. [in Russian]

Lagaly, G., Ogawa, M., & Dékány I. (2006). Clay Mineral Organic Interactions. In F. Bergaya, B. K. G. Theng, G. Lagaly (Eds.), Handbook of Clay Science (pp. 309–378). Amsterdam: Elsevier.

Lytvyniuk, S. F. (2007). Heokhimichni oreoly u soliakh nad pokladamy vuhlevodniv (za rezultatamy doslidzhen vkliuchen u haliti). Heolohiia i heokhimiia horiuchykh kopalyn, 4, 95–111. [in Ukrainian]

Maksymuk, S. V. (2012). Osoblyvosti vidobrazhennia fliuidonasychenosti horyzontiv Vyshnianskoi ploshchi Zovnishnoi zony Peredkarpatskoho prohynu v heokhimichnykh poliakh prypoverkhnevykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (160–161), 109–117. [in Ukrainian]

Maksymuk, S. V. (2013). Vuhlevodnevi hazy prypoverkhnevykh vidkladiv Lipchanskoi ploshchi Zakarpatskoho prohynu). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (164–165), 62–73. [in Ukrainian]

Maksymuk, S. V., & Bodlak, P. M. (2015). Dosvid zastosuvannia heokhimichnykh metodiv pid chas kompleksnykh rozshukovykh robit na naftu i haz u Karpatskomu rehioni. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu imeni Ivana Franka (Lviv, 7–9 zhovtnia 2015 r.) (s. 151–152). Lviv. [in Ukrainian]

Moore, D. M., & Reynolds, Jr. R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford New York: Oxford University Press.

Odriozola, G., Aguilar, J. F., & Lopez-Lemus, J. (2004). Na-montmorillonite hydrates under ethane rich reservoirs: NPzzT and mu PzzT simulations. J. Chem. Phys., 121 (9), 4266−4275.

Park, S. H., & Sposito, G. (2003). Do montmorillonite surfaces promote methane hydrate formation? Monte Carlo and molecular dynamics simulations. J. Phys. Chem. B, 107 (10), 2281−2290.

Petrichenko, O. I. (1977). Atlas mikrovklyuchenii v mineralakh galogennykh porod. Kiev: Naukova dumka. [in Russian]

Petukhov, A. V., Vanyushin, V. A., & Sirotyuk, V. A. (1981). Kompleksnyi analiz dannykh geokhimicheskikh poiskov mestorozhdenii nefti i gaza. Moskva: Nedra. [in Russian]

Polivtsev, A. V., Pomortsev, G. P., & Borkovskii, A. A. (1990). Gazogeokhimicheskie poiski poleznykh iskopaemykh v Karpatskom regione. Kiev: Naukova dumka. [in Russian]

Rajkiran, R. T., & Kartic, C. K. (2008). Upendra Natarajan Synthesis and characterization of novel organo-montmorillonites. Applied Clay Sci., 38, 203–208.

Shaіdetska, V. S. (1997). The geochemіstry of Neogene evaporіtes of Transcarpathіan trough іn Ukraіne. Slovak Geol. Mag., 3 (3), 193–200.

Sharkina, E. V. (1976). Stroenie i svoistva organomineral’nykh soedinenii. Kiev: Naukova dumka. [in Russian]

Shinkarev, A. A., Giniyatullin, K. G., Mel’nikov, L. V., Krinari, G. A., & Gnevashev, S. G. (2007). Organicheskie komponenty glino-metallo-organicheskogo kompleksa pochv lesostepi (teoreticheskie i eksperimental’nye aspekty izucheniya). Kazan’: Kazanskii gosudarstvennyi universitet. [in Russian]

Sokolov, V. A. (1966). Geokhimiya gazov zemnoi kory i atmosfery. Moskva: Nedra. [in Russian]

Sydor, D. (2013). Termobaroheokhimichni umovy formuvannia halohennykh vidkladiv (nyzhnopermskyi Solikamskyi basein). Mineralohichnyi zbirnyk, 63 (2), 14–32. [in Ukrainian]

Vysotskii, E. A., Garetskii, R. G., & Kislik, V. Z. (1988). Kalienosnye basseiny mira. Minsk: Nauka i tekhnika. [in Russian]

Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Berlin-Heidelberg: Springe.

Więcław, D., Lytvyniuk, S., Kovalevych, V., & Peryt, T. M. (2008). Inkluzje fluidalne w halicie oraz bituminy w solach ewaporatów mioceńskich ukraińskiego Przedkarpacia jako wskaźnik występowania nagromadzeń węglowodorów w niżej leżących utworach. Przegl. Geol., 56 (9), 837–841.

Yaremchuk, Ya. V., & Hryniv, S. P. (2013). Vplyv orhanichnoi rechovyny na sklad ta henezu hlynystykh mineraliv vidkladiv kamianoi soli Karpatskoho rehionu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2 (162–163), 60–70. [in Ukrainian]

Zharkov, M. A. (1974). Paleozoiskie solenosnye formatsii Mira. Moskva: Nedra. [in Russian]