Posted on

PETROPHYSICAL MODELS OF DEPOSITS OF THE MENILITE SUITE OF THE OLIGOCENE FLYSH OF THE CARPATHIANS AND THE PRECARPATHIAN DEEP

Home > Archive > No. 3–4 (185–186) 2021 > 33–43


Geology & Geochemistry of Combustible Minerals No. 3–4 (185–186) 2021, 33–43.

https://doi.org/

Ihor KUROVETS, Ihor HRYTSYK, Oleksandr PRYKHODKO, Pavlo CHEPUSENKO, Zoryana KUCHER, Stepan MYKHALCHUK, Svitlana MELNYCHUK, Yulia LYSAK, Lyudmyla PETELKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: i.kurovets@gmail.com

Abstract

Petrophysical and collecting properties of the reservoir rocks of low-porous, low-permeable deposits of the Menilite suite of the Oligocene flysh of the Carpathians and the Precarpathian deep were studied as well as their interconnections and interactions under normal conditions and in conditions that simulated the formation conditions, and their typical geological-geophysical cross-sections were constructed.

Creation of identical petrophysical models of reservoir rocks was based on the system integrated approach with which the reservoir rock is considered as a system formed in the geological time and consists of interconnected and interacted elements. Petrophysical investigation of the reservoir rocks as the system includes the studies of the characteristics of their elements, the character of interconnections between them taking the conditions of their occurrence into consideration.

On the basis of statistical processing and analysis of the results of laboratory studies of core material, the parametric petrophysical models of “core-core”-type were constructed: statistical dependences between porosity factor, permeability factor, water-saturation, specific weight, parameter of porosity, interval time for arriving acoustic waves and parameter of oil-saturation for atmospheric conditions and effective pressures being comparable to formational ones. Using the method of basic components of factor analysis it was possible to study the influence of geological factors upon geophysical parameters of the reservoir rocks in terrigenous sections and the informative value of geophysical methods while singling-out producing seams in the geological section.

Oil- and gas-saturation of the reservoir rocks, their mineralogical composition and porosity of the reservoir rocks have the most influence on the indications of geophysical methods in the boreholes, somewhat lesser: a depth of their occurrence and the thickness of the seams. Producing and water-bearing beds differ in the value of electrical resistance most of all. The influence of lithogeodynamic factors upon the collecting and physical properties of the reservoir rocks was studied. The main geological factors that determine collecting parameters of terrigenous rocks and their physical properties are the following: a mineral composition, a shape, a size of fragmental grains and pores and their mutual position, a type of fluid-saturation, a rate of catagenetic transformations and a thermodynamic state.

Keywords

Precarpathian deep, Menilite suite, petrophysical models, low-porous, low-permeable deposits

Referenses

Artym, I. V., Kurovets, S. S., Zderka, T. V., Yarema, A. V., & Kurovets, I. M. (2019). Development of the rocks fracturing model on the Carpathian region example. In 18th International Conference on Geoinformatics − Theoretical and Applied Aspects (Kyiv, May 2019) (pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201902064

Ivaniuta, M. M. (Ed.). (1998). Atlas rodovyshch nafty i hazu Ukrainy (Vol. 4). Lviv: Tsentr Yevropy. [in Ukrainian]

Krupskyi, Yu. Z. (2001). Heodynamichni formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Chepil, P. M., Dryhant, D. M., Shlapinskyi, V. Ye., Koltun, Yu. V., Chepil, V. P., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kurovets, I. M., Mykhailov, V. A., Zeikan, O. Yu., Krupskyi, Yu. Z., Hladun, V. V., Chepil, P. M., Hulii, V. M., Kurovets, S. S., Kasianchuk, S. V., Hrytsyk, I. I., & Naumko, I. M. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 1. Netradytsiini dzherela vuhlevodniv: ohliad problemy. Kyiv: Nika-Tsentr. [in Ukrainian]

Kurovets, I., Prykhodko, O., Hrytsyk, I., & Chepil, P. (2017). Teoretyko-eksperymentalni zasady diahnostyky netradytsiinykh pokladiv vuhlevodniv za petrofizychnymy kryteriiamy. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 82–84. [in Ukrainian]

Kurovets, I., Prytulka, H., Sheremeta, O., Zubko, O., Osadchyi, V., Hrytsyk, I., Prykhodko, O., Kosianenko, H., Chepusenko, P., Shyra, A., Kucher, Z., & Oliinyk, K. (2006). Petrofizychni modeli skladnopobudovanykh kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 119–139. [in Ukrainian]

Kurovets, S. S., Artym, I. V., & Kurovets, I. M. (2018). Researching the fracturing of the reservoir rocks. Journal of Hydrocarbon Power Engineering, 5(1), 1–6.

Naumko, I. M., Kurovets’, I. M., Zubyk, M. I., Batsevych, N. V., Sakhno, B. E., & Chepusenko, P. S. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv Paleozoic depression. Geodynamics, 1(22), 26–41. https://doi.org/10.23939/jgd2017.01.036

Polivtsev, A. V., & Bulmasov, V. A. (1984). Radiogeokhimicheskaya kharakteristika osadochnykh porod Vnutrennei zony Predkarpatskogo progiba. In Geofizicheskie issledovaniya neftegazonosnykh provintsii Ukrainy (pp. 131–139). Kiev: Naukova dumka. [in Russian]


Posted on

GEOCHEMICAL CHARACTERISTIC OF RIVER AND GROUND WATERS (OUTER ZONE OF THE PRECARPATHIAN DEEP)

Home > Archive > No. 1 (182) 2020 > 76-86


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 76-86.

https://doi.org/10.15407/ggcm2020.01.076

Maria KOST’, Halyna MEDVID, Vasyl HARASYMCHUK,Olga TELEGUZ, Iryna SAKHNYUK, Orysia MAYKUT

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Geochemical peculiarities of river and groundwaters of the Outer zone of the Precarpathian deep have been established. It is revealed that the main feature of the distribution of salt composition indicators in the Dniester River and its influxes is hydrochemical zonality, which does not depend on the flow direction of the rivers, but is consistent with the physics-geographical and geological features of the area to which the man-made factor is imposed.

There is an increase in concentrations of sulfate, calcium in the left bank confluent of the river Shchyrka. The waters from the Tysmenytsya, Kolodnitsa and Dniester rivers in the village Kolodrubi are characterized by the highest amounts of sodium and chlorides and are sodium chloride-hydrocarbonate composition. The water composition of the Dniester River (Rozvadiv village), its confluents Bystrytsia and Letnyanka are hydrocarbonate calcium (sodium-magnesium-calcium), Shchyrka, Vereshchitsa – sulfate-hydrocarbonate calcium (magnesium-calcium). The index of biochemical oxygen consumption for 5 days in the waters of Tysmenytsya River reached 4.5 mg O2/dm3, while in other rivers it was 0.70‒3.20 mg O2/dm3. The content of O2 soluble in the waters of the river Vereshchytsya was 0.29 mg/dm3, the value of biochemical oxygen consumption was 11.4 mg O2/dm3.

In the chemical composition of river waters, there is an increase in the concentrations of sodium, potassium and chloride ions from the left bank to the right bank confluents of the Dniester. In the left-bank confluents, in the chemical composition of water dominate the contents of calcium and hydrocarbons ions.

The heterogeneity of the lithological composition, the instability of the thickness of the aquifer both in the horizontal and vertical directions, and the different technogenic influence form the irregularity of pollution and its local distribution in groundwater.

Keywords

river waters, groundwaters, geochemical features, geochemical zonality, Outer zone, Precarpathian deep.

REFERENCES

Babiienko, V. V., Levkovska, V. Yu., & Hanykina, S. O. (2017). Hihiienichna otsinka dzherel zabrudnennia richky Dnister [Hygienic evaluation of sources of pollution of the river Dniester]. Odeskyi medychnyi zhurnal, 4, 64-67. [in Ukrainian]
 
Herenchuk, K. I. (Red.). (1972). Pryroda Lvivskoi oblasti [Nature of Lviv region]. Lviv: Vyshcha shkola. Vydavnytstvo Lvivskoho universytetu. [in Ukrainian]
 
Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu [Hygienic requirements for drinking water intended for human habitation]. (2010). DSanPiN 2.2.4-171-10. Nakaz Ministerstva okhorony zdorovia Ukrainy N 400 vid 2010-05-12. Kyiv. [in Ukrainian]
 
Ivaniuta, M. M. (red.). (1998). Atlas rodovyshch nafty i hazu Ukrainy. T. 4. Zakhidnyi naftohazonosnyi rehion [Atlas of Oil and Gas Fields of Ukraine. Vol. 4. Western Oil-and-Gas-Bearing Region]. Lviv: Tsentr Yevropy. [in Ukrainian]
 
Lototska, O. V. (2019). Hihiienichni problemy okhorony poverkhnevykh i pidzemnykh vod vid antropotekhnohennoho zabrudnennia ta yikh vykorystannia v pytnomu vodopostachanni v Zakhidnomu rehioni Ukrainy [Hygienic problems of protection of surface and underground waters from anthropotechnogenic pollution and their use in drinking water supply in the western region of Ukraine]. (Extended abstract of Doctor’s thesis, National Academy of Medical Sciences of Ukraine, State Institution “O. M. Marzieiev Institute for Public Health NAMSU”). Kyiv. [in Ukrainian]
 
Pankiv, R., Kost, M., Harasymchuk, V., Maikut, O., Mandzia, O., Sakhniuk, I., Kozak, R., & Palchykova, O. (2015). Heokhimichni osoblyvosti poverkhnevykh vod baseinu richky Dnister u mezhakh Ukrainy [Geochemical features of surface waters of the river Dniester basin within Ukraine]. Heolohiia i heokhimiia horiuchykh kopalyn, 1-2 (166-167), 135-144. [in Ukrainian]
 
Perechen’ rybokhozyaistvennykh normativov: predel’no-dopustimykh kontsentratsii (PDK) i orientirovochno bezopasnykh urovnei veshchestv (OBUV) dlya vody vodnykh ob”ektov, imeyushchikh rybokhozyaistvennoe znachenie [List of fishery standards: maximum permissible concentrations (MPC) and tentatively safe levels of substances (TSEL) for water in water bodies of fishery importance]. (1999). Moskva: Izdatel’stvo VNIRO. [in Russian]
 
Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha u Lvivskii oblasti v 2018 rotsi [Regional report on the state of the environment in the Lviv region in 2018]. (2019). Lviv. https://drive.google.com/file/d/1Q7lX0uKWoTbv5rsga5PnSRs l7Tff6qc0/view [in Ukrainian]
 
Shtohryn, O. D., & Havrylenko, K. S. (1968). Pidzemni vody zakhidnykh oblastei Ukrainy [Groundwater of the western regions of Ukraine]. Kyiv: Naukova dumka. [in Ukrainian]
 
Zharkykh, M. I. (Red.). (1998). Doslidzhennia Dnistra: 10 rokiv hromadskoi ekolohichnoi ekspedytsii “Dnister” [Dniester research: 10 years of the public ecological expedition “Dniester”]. Lviv; Kyiv. [in Ukrainian]