Posted on

GEOCHEMICAL FEATURES OF EURASIAN EVAPORITES IN THE CONTEXT OF THE CHEMICAL EVOLUTION OF SEAWATER IN PHANEROZOIC

Home > Archive > No. 1–2 (183–184) 2021 > 110–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 110–129.

https://doi.org/10.15407/ggcm2021.01-02.110

Аnatoliy GALAMAY, Andriy POBEREZHSKYY, Sofiya HRYNIV, Serhiy VOVNYUK, Dariya SYDOR, Iaroslava IAREMCHUK, Sofiya MAKSYMUK, Oksana OLIYOVYCH-HLADKA, Lyudmila BILYK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Studies of evaporites provide new data to characterize the seawater chemistry in the Early Paleozoic and Middle Mesozoic. In particular, we studied the fluid inclusions in halite from Ordovician (China) and Cretaceous (Laos) evaporites. The corresponding sections on the plot of Ca/SO4 oscillations curve in the Phanerozoic seawater are updated. The calcium content in seawater concentrated to halite precipitation stage was 45.6 mol %, 485 million years ago and 24.3 mol % 112.2–93.5 million years ago.

By analyzing the previously published and new factual material, it is established that in Permian evaporites the sulfur isotopic composition is inversely correlated with the sulfate ion content in evaporite basin brines. Thus, the evolution of seawater chemistry in Permian is confirmed by the evolution of the isotopic composition of dissolved seawater sulfate.

According to the generalization of 38 Phanerozoic marine evaporite formations, it was found that the peculiarities of the clay minerals associations correlate with the change of the seawater chemical type. Clay minerals associations precipitated from the SO4-rich seawater are characterized by a larger set of minerals, among which smectite and mixed- layered minerals often occur; Mg-rich clay minerals (corensite, paligorskite, sepiolite, talc) also occur. Instead, in the associations of evaporite clay minerals formed from the Ca-rich seawater are represented by the smaller amount of minerals, and Mg-rich minerals are extremely rare. The increased content of magnesium in seawater of SO4-rich type is the main factor in the formation of Mg-rich silicates in evaporites.

The composition of clay minerals associations depends on the evaporate basin brine concentration; with its increase, unstable minerals are transformed, which theoretically leads to a decrease in the number of minerals in the associations. However, it was found that evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals – products of incomplete transformation of a significant amount of pyroclastic material from coeval volcanic activity.

The main factor determining the composition of clay minerals associations of Phanerozoic evaporites was the seawater (and basin brines) chemical type.

Geochemical studies of scattered organic matter and fluid inclusions with hydrocarbon phase in evaporites of the Upper Pechora Basin (overlying oil and gas deposits) indicate the presence of allochthonous bitumoids and allow to use this method to predict oil and gas potential of other areas. Analysis of the results of oil and gas exploration in a number of areas of the Transcarpathian Trough indicates the presence of fluid-saturated reservoirs and the prospects for the discovery of new accumulations of hydrocarbons. Geochemical studies proved the effectiveness of gas-flow survey method for oil and gas exploration, assessing the prospects for fluid saturation of seismic structures.

Keywords

fluid inclusions, halit, salt Basin, seawater.

Referenses

Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving” – a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279–288.

Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557–558. https://doi.org/10.1126/science.1140273

Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33(11), 877–880. https://doi.org/10.1130/G21945.1

Duchuk, S. V., & Maksymuk, S. V. (2019). Naftohazovyi potentsial Zakarpatskoho prohynu. In Mineralno-syrovynni bahatstva Ukrainy: shliakhy optymalnoho vykorystannia: tezy dopovidei naukovo-praktychnoi konferentsii (4 zhovtnia 2019 r., smt Khoroshiv) (pp. 55–61). Kyiv. [in Ukrainian]

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol., 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

D’yakonov, A. I., Tskhadaya, N. D., Ovcharova, T. A., Yudin, V. M., Ivanov, V. V., & Kuznetsov, N. I. (2002). Sovremennyi evolyutsionno-dinamicheskii metod prognoza neftegazonosnosti geologo-ekologicheskikh regionov osobo slozhnogo stroeniya (na primere yuga Verkhnepechorskoi vpadiny). Ukhta: UGTU. [in Russian]

Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]

Galamai, A. R., Shanina, S. N., & Ignatovich, O. O. (2013). Sostav mineraloobrazuyushchikh rassolov Verkhnepechorskogo solerodnogo basseina na stadii kristallizatsii galita. Zapiski Rossiiskogo mineralogicheskogo obshchestva, 142(4), 32–46. [in Russian]

Galamay, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37(2), 245–267.

Galamay, A. R., Meng, F., Bukowski, K., Ni, P., Shanina, S. N., & Ignatovich, O. O. (2016). The sulphur and oxygen isotopic composition of anhydrite from the Upper Pechora Basin (Russia): new data in the context of the evolution of the sulphur isotopic record of Permian evaporites. Geological Quarterly, 60(4), 990–999. https://doi.org/10.7306/gq.1309

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Extended abstract of сandidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A. R., & Baranenko, O. B. (2004). Proiavy vuhlevodniv u badenskykh soliakh Peredkarpattia i Zakarpattia. Mineralohichnyi zbirnyk, 54(1), 132–136. [in Ukrainian]

Halamai, A. R., & Meng, F. (2020). Khimichnyi sklad pivdenno-skhidnoi chastyny kreidovoho Sakon Nakhon solerodnoho baseinu Laosu u konteksti evoliutsii skladu okeanichnoi vody. In Vid mineralohii i heohnozii do heokhimii, petrolohii, heolohii ta heofizyky: fundamentalni i prykladni trendy XXI stolittia (MinGeoIntegration XXI): tezy dopovidei Vseukrainskoi konferentsii (Kyiv, 23–25 veresnia 2020 r.) (pp. 20–24). Kyiv. [in Ukrainian]

Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279–283. https://doi.org/10.1016/S0016-7037(01)00884-5

Iaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138–146. https://doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]

Iaremchuk, I., Tariq, M., Hryniv, S., Vovnyuk, S., & Meng, F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan). Carbonates Evaporites, 32(1), 63–74. https://doi.org/10.1007/s13146-016-0294-5

Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (pp. 60–69). Moskva: Nauka. [in Russian]

Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoe. Kiev: Naukova dumka. [in Russian]

Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695–712. https://doi.org/10.1086/516054

Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseinov i vod mirovogo okeana. Litologiya, 4, 95–109. [in Russian]

Kovalevych, V. M., Peryt, T. M., Carmona, V., Sydor, D. V., Vovnyuk, S. V., & Halas, S. (2002). Evolution of Permian seawater: evidence from fluid inclusions in halite. N. Jb. Miner. Abh., 178(1), 27–62. https://doi.org/10.1127/0077-7757/2002/0178-0027

Kovalevych, V. M., Peryt, T. M., Shanina, S. N., Wieclaw, D., & Lytvyniuk, S. F. (2008). Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in rock salt. Journal of Petrolium Geology, 31(3), 245–262. https://doi.org/10.1111/j.1747-5457.2008.00419.x

Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real microdroplets of ancient sea water? Geological Quarterly, 54(4), 401–410.

Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485–506. https://doi.org/10.1007/s00126-019-00873-9

Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci Rev., 178, 1–28. https://doi.org/10.1016/j.earscirev.2017.12.004

Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., Demicco, R. V. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086–1088. https://doi.org/10.1126/science.1064280

Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69(7), 1701–1719. https://doi.org/10.1016/j.gca.2004.09.015

Lytvyniuk, S. V. (2007). Heokhimichni oreoly u soliakh nad pokladamy vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 95–111. [in Ukrainian]

Maksymuk, S. V. (2012). Osoblyvosti vidobrazhennia fliuidonasychenosti horyzontiv Vyshnianskoi ploshchi Zovnishnoi zony Peredkarpatskoho prohynu v heokhimichnykh poliakh prypoverkhnevykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(160–161), 109–117. [in Ukrainian]

Maksymuk, S. V., & Bodlak, P. M. (2015). Dosvid zastosuvannia heokhimichnykh metodiv u kompleksnykh poshukovykh robotakh na naftu i haz u Karpatskomu rehioni. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu im. Ivana Franka (Lviv, 7–8 zhovtnia 2015 r.) (pp. 151–152). Lviv. [in Ukrainian]

McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D

Moskovskii, G. A. (1983). Issledovaniya fiziko-khimicheskikh uslovii sedimentatsii kungurskikh galogennykh otlozhenii zapadnoi chasti Prikaspiiskoi sineklizy po vklyucheniyam v mineralakh [Extended abstract of сandidateʼs thesis]. Moskovskii gossudarstvennyi universitet. Moskva. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Pozo, M., & Calvo, J. P. (2018). An Overview of Authigenic Magnesian Clays. Minerals, 8(11), 520. https://doi.org/10.3390/min8110520

Raevskii, V. I., Fiveg, M. P., & Gerasimova, V. V. (1973). Mestorozhdeniya kaliinykh solei SSSR. Leningrad: Nedra. [in Russian]

Robinson, D., Schmidt, Th., & Santana de Zambora, A. (2002). Reaction pathways and reaction progress for the smectite-to chlorite transformation: evidence from hydrothermally altered metabasites. J. Metamorph. Geol., 20, 167–174. https://doi.org/10.1046/j.0263-4929.2001.00361.x

Schiffman, P., & Staudigel, H. (1995). The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487–498. https://doi.org/10.1111/j.1525-1314.1995.tb00236.x

Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]

Sone, M., & Metcalfe, I. (2008). Parallel Tethyan sutures in mainland South-East Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340, 166–179. https://doi.org/10.1016/j.crte.2007.09.008

Więcław, D., Lytvyniuk, S. F., Kovalevych, V. M., & Peryt, T. M. (2008). Incluzje w halicie oraz bituminy w solach ewaporatόw mioceńskich ukraińskiego Przedkarpacia jako wskaźnik występowania nagromadzeń węglowodorόw w niżey leżących utworach. Przegląd Geologiczny, 56(9), 837–841.

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020a). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974

Yaremchuk, Ya., Vovniuk, S., Hryniv, S., Tarik, M., Menh, F., Bilyk, L., & Kochubei, V. (2017). Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh, Pakystan. Mineralohichnyi zbirnyk, 67(2), 72–90. [in Ukrainian]

Yaremchuk, Ya. V., Vovniuk, S. V., & Tariq, M. (2020b). Hlynysti mineraly eotsenovoi kamianoi soli formatsii Bakhadar Khel, Pakystan. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 87–99. https://doi.org/10.15407/ggcm2020.01.087 [in Ukrainian]

Yaremchuk, Ya. V., Vovnyuk, S. V., & Hryniv, S. P. (2020c). The peculiarities of high-magnesium clay minerals occurrence in Phanerozoic evaporite formation. Geodynamics, 1(28), 52–61. https://doi.org/10.23939/jgd2020.01.052


Posted on

PECULIARITIES OF CHEMICAL COMPOSITION OF EARLY PALEOZOIC SEAWATER (study of fluid inclusions in halite of Ordovician Ordos salt basin, China)

Home > Archive > No. 4 (181) 2019 > 78-95


Geology & Geochemistry of Combustible Minerals No. 4 (181) 2019, 78-95.

https://doi.org/10.15407/ggcm2019.04.078

Anatoliy GALAMAY, Daria SYDOR

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine,
e-mail: igggk@mail.lviv.ua

Fanwei MENG

State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, CAS, Nanjing 210008, China,
e-mail: mengfanwei2004@hotmail.com

Yongsheng ZHANG

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract

The fluid inclusions in the marine Middle Ordovician halite of the Majiagou Salt Formation of the Ordos Basin (China) have been investigated. In addition to the primary inclusions the secondary ones of several generations were also detected. The fluid inclusions brine chemistry of halite was studied using an ultramicrochemical (UMCA) method, and the homogenization temperature of fluid inclusions was determined in a special thermal chamber designed by V. A. Kalyuzhny

At the post-sedimentation stage, the studied salt strata were exposed to high temperature (58–72 °C) and high (up to several tens of MPa) pressure. Although there are opinions of the inability of primary inclusions in such halite to determine the physical and chemical conditions of sedimentation, however, the informative value of primary inclusions in halite of the Majiagou Formation has remained. The preservation of the integrity (and thus the informative value) of primary inclusions in halite is evidenced by the same chemistry of their brines, which differs from that of secondary inclusions The sedimentation brines of the basin were concentrated to the middle of halite stage and points to the Na-K-Mg-Ca-Cl seawater.

The physical and chemical conditions of evaporites formation are not known enough. Currently, the results of the brine chemistry of primary fluid inclusions in marine halite are the best indicators of seawater composition in the Phanerozoic. It is established that the magnesium content in the brines of the Lower Paleozoic basins is lower comparing to modern seawater of the corresponding concentration, and the potassium ion concentration is higher. The chemical composition of the concentrated seawater from which the halite was crystallized in the Ordovician salt basin of Ordos, with the exception of the calcium ion content, is similar to the seawater chemistry of the Cambrian and Silurian basins, which indicates the relative constancy of Early Paleozoic seawater chemistry.

Age-related changes in the chemical composition of seawater are always consistent with many quantitatively or qualitatively characterized processes of the Earth’s crust evolution. So we believe that the causes that led to more than twice the potassium content of Riphean-Devonian clays, unlike the younger ones, it were also the reason for the increase in potassium content in the Lower Paleozoic marine brines.

The studies conducted also clarify the limits of oscillation of calcium ion content, which determines the type of seawater. Its content in the sedimentary brines of the Ordos basin of the Middle Ordovician reaches 66 g/l at the middle of halite stage. Therefore, at the beginning of the stage of halite precipitation, its content should be approximately 20 g/l (considering its theoretical content of 10 g/l with the modern composition of the atmosphere). Apparently, the cause of the abnormally high calcium content in the early Paleozoic Ocean was the direct flow of it with hydrothermal solutions into the ocean during the activation of global tectonics of the Earth and the increase of solubility of carbonates of continents and ocean floor due to high carbon dioxide atmospheric content.

Keywords

halite, primary inclusions, homogenization temperature, seawater.

REFERENCES

Acros, D., & Ayora, C. (1997). The use of fluid inclusions in halite as environmental thermometer: an experimental study. In XIV ECROFI (pp. 10-11). Nancy.
 
Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving”- a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279-288. [in Chinese with English abstract].
 
Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557-558.
https://doi.org/10.1126/science.1140273
 
Brennan, S. T., & Lowenstein, T. K. (2002). The major-ion composition of Silurian seawater composition. Geochimica et Cosmochimica Acta, 6, 2683-2700.
https://doi.org/10.1016/S0016-7037(02)00870-0
 
Claypool, G. E., Holser, W. T., Kaplan, І. R., Sakaі, H., & Zak, І. (1980). The age curves of sulfur and oxygen іsotopes іn marіne sulfate and theіr mutual іnterpretatіon. Chem. Geol., 28, 199-260.
https://doi.org/10.1016/0009-2541(80)90047-9
 
Das, N., Horita, J., & Holland, H. D. (1990). Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin: Implications of Late Silurian seawater and the origin of Sedimentary brines. Geochimica et Cosmochimica Acta, 54, 319-327.
https://doi.org/10.1016/0016-7037(90)90321-B
 
Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33 (11), 877-880.
https://doi.org/10.1130/G21945.1
 
Eugster, H. P., Harvie, C. E., & Weare J. H. (1980). Mineral equilibria in a sixcomponent seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25 ºС. Geochimica et Cosmochimica Acta, 44, 1335-1347.
https://doi.org/10.1016/0016-7037(80)90093-9
 
Feng, Z. Z., Zhang, Y. S., & Jin, Z. K. (1998). Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China platform. Sedimentary Geology, 118, 127-140.
https://doi.org/10.1016/S0037-0738(98)00009-8
 
Fox, J. S., & Videtich, P. E. (1997). Revised estimate of δ34S for marine sulfates from the Upper Ordovician: data from the Williston Basin, North Dakota, USA. Applied Geochemistry, 12, 97-103.
https://doi.org/10.1016/S0883-2927(96)00065-0
 
Galamаy, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37 (2), 245-267.
 
Garrels, R., & Mackenzie, F. (1974). Evolyutsiya osadochnykh porod [Evolution of sedimentary rocks]. Moscow: Mir. [in Russian]
 
Geological Survey of Western Australia. Petroleum Operations Division. & Western Australia. Department of Industry and Resources. (2004). Summary of petroleum prospectivity onshore Western Australia and State waters 2004: Bonaparte, Canning, Officer, Perth, Southern Carnarvon and Northern Carnarvon Basins : 2003. Geological Survey of Western Australia.
 
Goncharenko, G. A., & Moskovsky, O. P. (2004). Osobennosti evolyutsii sostava morskikh rastvorov v fanerozoye [Evolution features of marine solutions composition in the Phanerozoic]. Proceedings of Voronezh University. Geology, 2, 48-62. [in Russian]
 
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279-283.
https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
 
Holdoway, K. A. (1974). Behavior of fluid inclusions in salt during heating and irradiation. In Fourth International Symposium on salt (Vol. 1, pp. 303-312). Cleveland Ohio: Northern Ohio Geological Society.
 
Holland, H. D. (2003). The geologic history of seawater. Treatise on Geochemistry, 6, 583-625.
 
Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66, 3733-3756.
https://doi.org/10.1016/S0016-7037(01)00884-5
 
Kalyuzhny, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh [The foundations of teaching about mineral-forming fluids]. Kiev: Naukova dumka. [in Russian]
 
Kovalevich, V. M. (1978). Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya [Physical and chemical conditions of salts formation of the Stebnik potash deposit]. Kiev: Naukova dumka.
 
Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoye [Halogenesis and chemical evolution of ocean in the Phanerozoic]. Kiev: Naukova dumka. [in Russian]
 
Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695-712.
https://doi.org/10.1086/516054
 
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovyye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseynov i vod mirovogo okeana [Secular variations in the chemical brines composition of marine evaporite basins and oceans waters]. Lithology, 4, 95-109. [in Russian]
 
Kovalevych, V. M., Peryt, T. M., & Dzhinoridze, N. M. (2003). Chemical characteristics of seawater in the Early Cambrian: results of a fluid-inclusion study of halite from the Tyret’ Deposit (East Siberia). In D. G. Eliopoulos et al. (Eds). Mineral Exploration and Sustainable Development (pp. 693-695). Rotterdam: Millpress.
 
Kovalevych, V. M., Peryt, T. M., Zang, W., & Vovnyuk, S. V. (2006). Composition of brines in halite-hosted fluid inclusions in the Upper Ordovician, Canning Basin, Western Australia: new data on seawater chemistry. Terra Nowa, 18 (2), 95-103.
https://doi.org/10.1111/j.1365-3121.2006.00668.x
 
Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real micro-droplets of ancient sea water? Geological Quarterly, 54 (4), 401-410.
 
Kovalevych, V. M., Zang, W-L., Peryt, T. M., Khmelevska, O. V., Halas, S., Iwasinska-Budzyk, I. … Heithersay, P. S. (2006). Deposition and chemical composition of Early Cambrian salt in the eastern Officer Basin, South Australia. Australian Journal of Earth Sciences, 53, 577-593.
https://doi.org/10.1080/08120090600686736
 
Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485-506. https://doi.org/10.1007/s00126-019-00873-9
https://doi.org/10.1007/s00126-019-00873-9
 
Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178, 1-28.
https://doi.org/10.1016/j.earscirev.2017.12.004
 
Li, R. X., Guzmics, T., Liu, X. J., & Xie, G. C. (2011). Migration of immiscible hydrocarbons recorded in calcite-hostedfluid inclusions, Ordos Basin: a case study from Northern China. Russian Geology and Geophysics, 52, 1491-1503.
https://doi.org/10.1016/j.rgg.2011.10.016
 
Lowenstein, T. K., & Timofeeff, M. N. (2008). Secular variations in seawater chemistry as a control on the chemistry of basinal brines: test of the hypothesis. Geofluids, 8, 77-92.
https://doi.org/10.1111/j.1468-8123.2007.00206.x
 
Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69 (7), 1701-1719.
https://doi.org/10.1016/j.gca.2004.09.015
 
Matukhin, R. G., Petrichenko, O. Y., & Sokolov, P. N. (1985). Gazovo-zhidkiye vklyucheniya v galite kak pokazatel usloviy formirovaniya devonskikh solenosnykh otlozheniy Sibiri [Gas-liquid inclusions in halite as an indicator of the conditions of the Siberia Devonian salt sediments formation]. In Litologo-fatsialnyye i geokhimicheskiye problemy solenakopleniya [Lithological-facies and geochemical problems of salt accumulation] (pp. 194-203). Moscow: Nauka. [in Russian]
 
McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928-937.
https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D
 
Ogg, J. G., Scotese, C. R., Hou, M., Chen, A., Ogg, G. M., & Zhong, H. (2019). Global Paleogeography through the Proterozoic and Phanerozoic: Goals and Challenges.Acta Geologica Sinica (English Edition), 93 (1), 59-60.
https://doi.org/10.1111/1755-6724.14245
 
Petrichenko, O. Y. (1989). Epigenez evaporitov [Epigenesis of evaporites]. Kiev: Naukova dumka. [in Russian]
 
Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid [Methods of inclusions investigation in salt rock minerals]. Kyiv: Naukova dumka. [in Ukrainian]
 
Petrychenko, O. Y., Peryt, T. M., & Chechel, E. I. (2005). Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporates. Chem. Geol., 219, 149-161.
https://doi.org/10.1016/j.chemgeo.2005.02.003
 
Roedder, E. (1984). The fluids in salt. Am. Mineralogist, 69, 413-439.
 
Scotese, C. R. (2014). Atlas of Silurian and Middle-Late Ordovician Paleogeographic Maps (Mollweide Projection). (Maps 73-80, Vol. 5). The Early Paleozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL.
 
Strakhov, N. M. (1962). Osnovy teorii litogeneza [Fundamentals of the theory of lithogenesis] (Vol. 3). Moscow: AS USSR. [in Russian]
 
Valyashko, M. G. (1962). Zakonomernosti formirovaniya mestorozhdeniy soley [The principle of forming of salt deposits]. Moscow: MGU. [in Russian]
 
Vinogradov, A. P., & Ronov, A. B. (1956). Evolyutsiya khimicheskogo sostava glin Russkoy platformy [Evolution of the chemical composition of clays of the Russian Platform]. Geochemistry, 2, 3-18. [in Russian]
 
Wang, B. Q., & Al-Aasm, I. S. (2002). Karst-controlled diagenesis and reservoir development; example from the Ordovician mainreservoir carbonate rocks on the eastern margin of the Ordos basin, China. AAPG Bulletin, 86, 1639-1658.
https://doi.org/10.1306/61EEDD28-173E-11D7-8645000102C1865D
 
Yang, Y., Li, W., & Ma, L. (2005). Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: a multicycle cratonic basin in central China. AAPG Bulletin, 89, 255-269.
https://doi.org/10.1306/10070404027
 
Zharkov, M. A., Zharkova, T. M., & Merzlyakov, G. A. (1978). K probleme evolyutsii solevogo sostava vod Mirovogo okeana [To the problem of waters salt composition evolution of the World Ocean]. Geology and Geophysics, 3, 3-18. [in Russian]