Posted on

ON CONTENT, MIGRATION AND CONCENTRATION OF HEAVY METALS IN OILS (by the example of the Dnieper-Donets Depression)

Home > Archive > No. 4 (181) 2019 > 96-103


Geology & Geochemistry of Combustible Minerals No. 4 (181) 2019, 96-103.

цифровий ідентифікатор DOI цієї статті

Artem Yerofieiev

V. N. Karazin Kharkiv National University,
e-mail: pro100graf@gmail.com

Ihor Berezovsky

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine,
e-mail: igggk@mail.lviv.ua

Abstract

Literature review and analysis of previous studies of the problem was carried. The main scientific works on the research topic, as well as the main directions and stages of the study are indicated. Similar studies that were conducted on the territory of Ukraine are considered.

The results of the study of heavy metals in oil samples taken from a large oil and gas region from more than thirty deposits of Ukraine are presented. All current and non-working fields are considered.

The geological structure of the oil and gas province, as well as the main geochemical features of the formation of mineral deposits are considered. The main forms of finding target metals, as well as possible ways of transferring these elements in the earth’s crust are given.

Samples were investigated using x-ray fluorescence and neutron activation analysis. The obtained research data in the framework of two selected methods are combined for analysis. The results obtained within the same geological structure are compared with each other to determine the effect of the physical conditions of sediment formation on the microcomponent composition of crude oil. They also compared the effect of physical conditions on the properties of oil and their ability to accumulate heavy metals. Possible causes of the abnormal accumulation of heavy metals due to the close occurrence of oil and formation water are noted.

According to the results obtained, a graph is constructed of the dependence of the mineralization of oil on its depth. An exponential graphical approximation is presented to display the general trend of dependence.

Possible sources and ways of migration and accumulation of heavy metals in hydrocarbons are analyzed. The concept of the migration of heavy metals in oil is proposed in conjunction with the ore mineralization of adjacent and adjacent deposits.

Possible causes of differences in the concentrations of heavy metals in oil of various geological structures are indicated, as well as the main possible causes of measurement errors and complications in the selection of each of the analysis methods are specified.

Keywords

migration, heavy metals, petroleum, X-ray fluorescence spectroscopy, petroleum geochemistry, organometallic compounds.

REFERENCES

Ahmad, D. M., Hafizan, J., & Kamaruzaman, Y. (2015). Oil spill related Heavy Metal: a Review. Malaysian Journal of Analytical Sciences, 48 (1), 1348–1360.

Akpoveta, O. V., & Osakwe, S. A. (2014). Determination of Heavy Metal Contents in Refined Petroleum. IOSR Journal of Applied Chemistry, 7 (6), 1–2.

Barwise, A. J. G. (1990). Role of nickel and vanadium in petroleum classification. Energy Fuels, 4 (6), 647–652.

Ishchenko, L. V. (2018). Oreolni vody rtutnykh rudnykh poliv Donbasu yak rezultat evoliutsii hidrotermalnykh system. Science Rise, 9, 6–10. [in Ukrainian]

Khlibyshyn, Yu. Ya., Mokhamad Shakir Abd Al-Ameri, Hrynyshyn, O. B., & Pochapska, I. Ya. (2013). Doslidzhennia dystyliatnoi chastyny vysokosirkovoi nafty Orkhovytskoho naftovoho rodovyshcha. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 761, 462–465. [in Ukrainian]

Lazarenko, E. K., Panov, B. S., & Pavlishin, V. I. (1975). Mineralogiya Donetskogo basseyna. Kiev: Naukova dumka. [in Russian]

Madu, A. N., & Iwuoha, G. A. (2011). Extent of heavy metals in oil samples in escravos, Abiteye and Malu Platforms in Delta State Nigeria Njoku. Learning Publics Journal of Agriculture and Environmental Studies, 2 (2), 41–44.

Shnyukov, E. F., Gozhik, P. F., & Krayushkin, V. A. (2007). Vanadiy i nikel v prirodnykh neftyakh Azii. Afriki. Evropy. Severnoy i Yuzhnoy Ameriki. Dopovidi NAN Ukrainy, 3, 137–141. [in Russian]

Suiarko, V. H., Zahnitko, V. M., & Lysychenko, H. V. (2010). Strukturno-heokhimichne prohnozuvannia skupchen vuhlevodniv (na prykladi Zakhidno-Donetskoho hrabenu). Kyiv: IHNS NAN ta MNS Ukrainy. [in Ukrainian]

Suiarko, V. H., Zahnitko, V. M., & Reshetov, I. K. (2008). Ridkisni elementy v hidrotermalnykh vodakh Donbasu. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, 803, 70–74. [in Ukrainian]

Sukhanov, A. A., & Petrova, Yu. E. (2008). Resursnaya baza poputnykh komponentov tyazhelykh neftey Rossii. Neftegazovaya geologiya. Teoriya i praktika, 3, 1–11. [in Russian]

Suyarko, V. G. (1988). Geokhimicheskiye osobennosti podzemnykh vod Donbassa. Geokhimiya, 5, 738–746. [in Russian]

Suyarko, V. G. (2006). Geokhimiya podzemnykh vod vostochnoy chasti Dneprovsko-Donetskogo avlakogena. Kharkov: KhNU imeni V. N. Karazina. [in Russian]

Wilberforce, J. O. (2016). Profile of Heavy Metals in Crude Oil Commonly Consumed for Medicinal Purposes in Abakaliki. IOSR Journal of Pharmacy and Biological Sciences, 11 (3), 43–44.

Yakutseni, S. P. (2010). Glubinnaya zonalnost v obogashchennosti uglevodorodov tyazhelymi elementami-primesyami. Neftegazovaya geologiya. Teoriya i praktika, 5 (2), 1–7. [in Russian]

Zalia, M. A., Kamaruzaman, W., & Ahmad, W. (2015). Concentration of heavy metals in virgin, used, recovered and waste oil: a spectroscopic study. Procedia Environmental Sciences, 30, 201–204.

Posted on

QUANTITATIVE INDEX OF TOC CONTENT OF DIFFERENT AGE THICKNESSES OF TRANSCARPATHIAN DEPRESSION AS OIL GAS GENERATION ESTIMATION CRITERIA

Home > Archive > No. 1 (178) 2019 > 41-46


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 41-46.

цифровий ідентифікатор DOI цієї статті

Andrii Andriiovych LOKTIEV

ТзОВ «Компанія «Геопошук ЛТД», смт Рожнятів, Івано-Франківська обл.,
e-mail: shon327@hotmail.com

Abstract

The Transcarpathian foredeep of Ukraine is a geological unit within the Carpathian folded structure, presented by Neogene molasses, which cover Pre-Neogene folded base.

Five deposits of combustible gas were discovered within the foredeep – Russko-Komarivske, Stanivske and Korolevskoye within the Mukachevo depression and Solotvino and Dibrovske fields within the Solotvino depression. Despite the fact that most domestic researchers adhere to the view of gas migration along deep tectonic faults into the sedimentary cover of the Transcarpathian foredeep, it is important to analyze the basin for favourable conditions for the generation of natural gases within the sedimentary cover.

Samples of core material, selected from 57 intervals of different age complexes of rocks from Transcarpathian wells for quantitative estimation of total organic carbon in rock, were analyzed in the department of sedimentary strata of IGGCM NASU. The results of the studies indicate the presence of rocks with low as well as good and even very good oil and gas potential for total organic carbon content, which are overwhelmingly related to the deposits of Pre-Neogene folded base. In general, a wide range of TOC content is established by the analysis. Rocks with TOC content of more than 1% are found both in rocks of the Pre-Neogene base (w. № 22-, 23-Solotvino, 1-Bushtinska, 1-Borodivsko-Novosilska), and in the molar thickness of the Neogene (St. No. 1-Velyko-Dobronska, 8-Tyachivska), which indicates sufficient content to generate hydrocarbons.

Further research aimed at determining the oil and gas potential will allow to determine the priority directions of oil and gas exploration within the Transcarpathian foredeep.

Keywords

gas, generation, migration, Transcarpathian foredeep, field, source rocks, TOC.

REFERENCES

Boiko, H. Yu. et al. (2003). Hlybynna heolohichna budova Karpatskoho rehionu. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 12–22. [in Ukrainian]

Dembicki, Jr. H. (2009). Three common source rock evaluation errors made by geologist during prospect or play appraisals. AAPG Bulletin, 93, 341–356.

Dolenko, G. N. et al. (1980). Glubinnoye stroyeniye razvitiye i neftegazonosnost Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Dolton, G. L. (2006). Pannonian Basin Province, Central Europe (Province 4808) – Petroleum geology, total petroleum systems, and petroleum resource assessment. U.S. Geological Survey, Bulletin 2204–B, 47 p.

Krupskyi, Yu., & Krupska, O. (2008). Vydilennia perspektyvnykh terytorii dlia poshuku rodovyshch zi znachnymy zapasamy vuhlevodniv u Zakhidnomu naftohazonosnomu rehioni. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 5–10. [in Ukrainian]

Misiura, Ya. B. (2008). Do pytannia naftohazonosnosti Zakarpatskoho neohenovoho prohynu. Zbirnyk naukovykh prats UkrDHRI, 1, 13–14. [in Ukrainian]

Posted on

GEOLOGICAL-GEOCHEMICAL FEATURES OF MIGRATION AND FORMATION OF GAS FIELDS IN OIL- AND GAS-BEARING REGIONS OF UKRAINE

Home > Archive > No. 1 (178) 2019 > 21-40


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 21-40.

цифровий ідентифікатор DOI цієї статті

Olesya SAVCHAK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

Geochemical composition of main components of natural gas has been analysed for three oil- and gas-bearing regions of the Ukraine, namely: Western (40 fields of the Precarpathian deep, 4 gas fields of the Transcarpathian deep and 2 gas fields located within the limits of the Lviv Paleozoic deep), Eastern (composition of natural gases at 12 fields) and Southern (analysis of data on chemical composition of natural gases from 8 fields in the water area of the deep and 13 fields on land).

Comparative analysis of the composition of natural hydrocarbons has been carried out within the limits of the Western region based on the main structural-tectonic elements of the region: outer and inner zones of the Precarpathian deep, the Transcarpathian deep and the Lviv Paleozoic deep; within the Eastern region – the Northern edge of the deep and the deep itself; within the Southern region – water area and land. On this basis the definite zonality of the distribution of hydrocarbon components of natural gases within the bounds of the oil-gas regions has been determined. Such different composition of gases testifies to independent sources of hydrocarbon supply and different duration of migration of the latter.

The analyses of the features of the distribution of the components of natural gas of main oil- and gas-bearing regions of the Ukraine and of the gas presence in the aggregate have enabled us to determine main aspects of the processes both of lateral and vertical migration of hydrocarbons.

Keywords

geochemical features, migration, hydrocarbons, Western, Eastern and Southern oil-gas regions of Ukraine.

REFERENCES

Atlas rodovyshch nafty i hazu Ukrainy. T. 4–5. Zakhidnyi naftohazonosnyi rehion. (1998). Lviv: UHNA. [in Ukrainian]

Pavliuk, M. I., Varichev, S. O., Rizun, B. P., & Savchak, O. Z. (2002). Naftohazonosni provintsii Ukrainy (heodynamichnyi aspekt). Heolohiia i heokhimiia horiuchykh kopalyn, 1, 3–12. [in Ukrainian]

Pavliuk, M. et al. (2008). Heodynamichni umovy formuvannia naftohazonosnykh provintsii Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3 (144), 16–25. [in Ukrainian]

Savchak, O. Z. (2003). Heokhimichni osoblyvosti naft i kondensativ Pivdennoho naftohazonosnoho rehionu Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 27–37. [in Ukrainian]

Savchak, O. Z. (2015). Heodynamichni aspekty roztashuvannia rodovyshch nafty i hazu naftohazonosnykh provintsii Ukrainy. In Heolohiia horiuchykh kopalyn: Materialy Mizhnar. nauk. konf. (Kyiv, 2–4 veresnia 2015 r.) (pp. 96–98). Kyiv. [in Ukrainian]

Savchak, O. Z. (2017a). Heokhimichni aspekty protsesiv naftohazonahromadzhennia naftohazonosnykh rehioniv Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2 (170–171), 154–156. [in Ukrainian]

Savchak, O. Z. (2017b). Heokhimichni aspekty protsesiv mihratsii ta akumuliatsii vuhlevodniv Skhidnoho naftohazonosnoho rehionu Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (172–173), 9–29. [in Ukrainian]

Savchak, O. Z. (2018). Heodynamichni ta heokhimichni aspekty naftohazonahromadzhennia Zakhidnoho naftohazonosnoho rehionu Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4 (176–177), 5–20. [in Ukrainian]

Savchak, O. Z. (2019). Heoloho-heokhimichni osoblyvosti rozmishchennia rodovyshch nafty i hazu naftohazonosnykh provintsii Ukrainy. In Tezy dop. Nauk. konf., prysviachenoi 50-richchiu In-tu heokhimii, mineralohii ta rudoutvorennia im. M. P. Semenenka NAN Ukrainy (Kyiv, 14–16 travnia 2019 r.) (T. 2, pp. 82–84). Kyiv. [in Ukrainian]

Posted on

GEODYNAMIC AND GEOCHEMICAL ASPECTS OF OIL AND GAS ACCUMULATION OF THE WESTERN OIL AND GAS REGION OF UKRAINE

Home > Archive > No. 3-4 (176-177) 2018 > 5-20


index DOI

Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 5-20.

Olesya SAVCHAK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The Western oil-gas region of Ukraine is the most important oil- and gas-producing region of Ukraine and is the oldest one as to the time of discovery of commercial deposits of hydrocarbons. In all 94 fields were discovered in the region. Six of them belong to great, eight – to middle and eighty – to small. The greatest amount of fields is in the Bilche-Volytsa (47) and the Boryslav-Pokuttya (39) oil-gas regions. In the Transcarpathian gas-bearing region five gas fields are known, in the Carpathian – two oil fields and within the limits of the Volyn-Podillya area – two gas fields. We have analysed the geochemical composition of oil and condensate for 3 structural-tectonic elements of the region: outer, inner zone of the Carpathian Foredeep and Folded Carpathians and the comparative analysis of the composition of natural hydrocarbons within the limits of the region was carried out. The analysis of peculiarities of the geological structure and oil and gas presence in the totality with available geochemical data has allowed us to come to a conclusion that formation of oil and gas deposits in the Western oil- and gas-bearing region is caused both lateral and vertical migration of hydrocarbons.

Keywords

geochemical features, migration, hydrocarbons, Western oil and gas region of Ukraine.

Referenses

Dolenko, G. N. (1990). Geologiya i geokhimiya nefti i gaza. Kiev: Naukova dumka. [in Russian]

Ivaniuta, M. M. (Ed.). (1998). Atlas rodovyshch nafty i hazu. T. 4–5. Zakhidnyi naftohazonosnyi rehion. Lviv. [in Ukrainian]

Pavliuk, M., Halabuda, M., Rizun, B. et al. (2008). Heodynamichni umovy formuvannia naftohazonosnykh provintsii Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3 (144), 16–25. [in Ukrainian]

Savchak, O. Z. (2015). Heodynamichni aspekty roztashuvannia rodovyshch nafty i hazu naftohazonosnykh provintsii Ukrainy. In Heolohiia horiuchykh kopalyn: materialy Mizhnarodnoi naukovoi konferentsii (Kyiv, 2–4 veresnia 2015 r.) (s. 96–98). Kyiv. [in Ukrainian]

Savchak, O. Z. (2017). Heokhimichni aspekty protsesiv naftohazonahromadzhennia naftohazonosnykh rehioniv Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2 (170–171), 154–156. [in Ukrainian]