Posted on


Home > Archive > No. 1–2 (189–190) 2023 > 54–65

Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 54–65


Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail:


It was established that in order to avoid errors in the interpretation of paleotectonic conditions of salt formation based on fluid inclusions in halite, the primary stage of the research should be the genetic identification of the sedimentation textures of halite and fluid inclusions in this mineral. For the thermometric study of inclusions and to determine the depth of the sedimentation basin based on the obtained data, only thermal test chambers are suitable which provide the possibility of observing groups of inclusions in different zones of sedimentary halite, as, for example, in the micro thermal test chamber designed by Prof. V. A. Kalyuzhny.

In the course of the research, the equipment of the thermometric method, which is based on the use of a microthermal test chamber designed by V. A. Kalyuzhny, was modernized. In particular, the material of the thermal chamber (stainless steel) was replaced with copper, which made it possible to avoid excessive thermal gradients into chamber and to increase the permissible heating rate by 20 times due to the higher thermal conductivity of copper. For the same purpose, the glass optical windows of the camera were replaced with leukosapphire windows, which have a much higher thermal conductivity. The measuring system of the installation is made on a miniature platinum resistance thermometer with an electronic measuring unit. These improvements made it possible to achieve high system stability and good reproducibility of measurement results.

Using the thermometric method, it was established that the temperature of sedimentation at the bottom of the Badenian salt basin of the Carpathian region was 19.5–20.5; 20.0–22.0; 24.0–26.0 °C, and on the surface of the brine was 34.0–36.0 °C. On this basis, a model of the basin with a pronounced thermocline and a total thickness of the water column of up to 30 meters was built, which is the most likely to establish the features of sedimentation. Crystallization of halite at different depths in basins with a thermocline can explain the presence of so-called “low-temperature” (24.0–25.0 °C) and “high-temperature” (37.8–42.6 °C) bottom halite in a number of ancient salt-bearing basins.


halite, fluid inclusions, thermometric method, thermal chamber, homogenization temperature


Acros, D., & Ayora, C. (1997). The use of fluid inclusions in halite as environmental thermometer: an experimental study. In XIV ECROFI: proceedings of the XIVth European Current Research on Fluid Inclusions (Nancy, France, July 1–4, 1997) (pp. 10–11). CNRS-CREGU.

Benison, K. C., & Goldstein, R. H. (1999). Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1–4), 113–132.

Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823.

Galamay, A. R., Meng, F., Bukowski, K., Lyubchak, A., Zhang, Y., & Ni, P. (2019). Calculation of salt basin depth using fluid inclusions in halite from the Ordovician Ordos Basin in China. Geological Quarterly, 63(3), 619–628.

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A., Sydor, D., & Liubchak, O. (2014). Osoblyvosti poiavy hazovoi fazy v odnofazovykh ridkykh vkliuchenniakh u haliti (dlia vyznachennia temperatury yoho krystalizatsii). In Mineralohiia: sohodennia i maibuttia: materialy VIII naukovykh chytan imeni akademika Yevhena Lazarenka (prysviacheno 150-richchiu zasnuvannia kafedry mineralohii u Lvivskomu universyteti) (pp. 34–36). Lviv; Chynadiieve. [in Ukrainian]

Kaliuzhnyi, V. A. (1960). Metody vyvchennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Khrushchov, D. P. (1980). Litologiya i geokhimiya galogennykh formatsiy Predkarpatskogo progiba. Kiev: Naukova dumka. [in Russian]

Korenevskiy, S. M., Zakharova, V. M., & Shamakhov, V. A. (1977). Miotsenovyye galogennyye formatsii predgoriy Karpat. Leningrad: Nedra. [in Russian]

Kovalevich, V. M. (1978). Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya. Kiev: Naukova dumka. [in Russian]

Kovalevych, V., Paul, J., & Peryt, T. M. (2009). Fluid inclusions in the halite from the Röt (Lower Triassic) salt deposit in Central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporates, 24(1), 45–57.

Lowenstein, T. K., Li, J., & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245.

Meng, F., Ni, P., Schiffbauer, J. D., Yuan, X., Zhou, C., Wang, Y., & Xia, M. (2011). Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research, 184(1–4), 63–69.

Meng, F., Zhang, Y., Galamay, A. R., Bukowski, K., Ni, P., Xing, E., & Ji, L. (2018). Ordovician seawater composition: evidence from fluid inclusions in halite. Geological Quarterly, 62(2), 344–352.

Petrichenko, O. Y. (1988). Fiziko-khimicheskiye usloviya osadkoobrazovaniya v drevnikh solerodnykh basseynakh. Kiev: Naukova dumka. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Roberts, S. M., & Spencer, R. J. (1995). Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19), 3929–3942.

Shanina, S. N., Sokerina, N. V., Galamay, A. R., Ledentsov, V. N., & Onosov, D. V. (2014). Opredeleniye temperatur gomogenizatsii vklyucheniy v galite Yakshinskogo mestorozhdeniya. Vestnik Instituta geologii Komi NTs UrO RAN, 8, 3–6. [in Russian]

Sirota, I., Enzel, Y., & Lensky, N. G. (2017). Temperature seasonality control on modern halite layers in the Dead Sea: In situ observations. GSA Bulletin, 129(9–10), 1181–1194.

Sydor, D. V., Halamai, A. R., & Meng, F. (2018). Pirotynova mineralizatsiia u halohennykh vidkladakh Verkhnokamskoho rodovyshcha kaliino-mahniievykh solei (termobaroheokhimichni doslidzhennia). Mineralohichnyi zbirnyk, 68(2), 52–61. [in Ukrainian]

Valyashko, M. G. (1952). Galit, osnovnyye ego raznosti, vstrechayemyye v solyanykh ozerakh, i ikh struktura. Trudy VNIIGalurgii, 23, 25–32. [in Russian]

Vorobyev, Yu. K. (1988). K probleme termometrii po pervichnym vklyucheniyam v mineralakh. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 117(1), 125–132. [in Russian]

Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg.

Xu, Y., Liu, C., Cao, Y., & Zhang, H. (2018). Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm. International Journal of Earth Sciences, 108, 173–182.

Zambito, J. J., & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590.

Zhang, H., Lü, F., Mischke, S., Fan, M., Zhang, F., & Liu, C. (2017). Halite fluid inclusions and the late Aptian sea surface temperatures of the Congo Basin, northern South Atlantic Ocean. Cretaceous Research, 71, 85–95.

Zhao, X., Zhao, Y., Wang, M., Hu, Y., Liu, C., & Zhang, H. (2022). Estimation of the ambient temperatures during the crystallization of halite in the Oligocene salt deposit in the Shulu Sag, Bohaiwan Basin, China. Minerals, 12(4), 410.

Zinchuk, I. M. (2003). Heokhimiia mineraloutvoriuiuchykh rozchyniv zoloto-polimetalevykh rudoproiaviv Tsentralnoho Donbasu (za vkliuchenniamy u mineralakh) [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Posted on

PECULIARITIES OF CHEMICAL COMPOSITION OF EARLY PALEOZOIC SEAWATER (study of fluid inclusions in halite of Ordovician Ordos salt basin, China)

Home > Archive > No. 4 (181) 2019 > 78-95

Geology & Geochemistry of Combustible Minerals No. 4 (181) 2019, 78-95.

Anatoliy GALAMAY, Daria SYDOR

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine,

Fanwei MENG

State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, CAS, Nanjing 210008, China,

Yongsheng ZHANG

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China


The fluid inclusions in the marine Middle Ordovician halite of the Majiagou Salt Formation of the Ordos Basin (China) have been investigated. In addition to the primary inclusions the secondary ones of several generations were also detected. The fluid inclusions brine chemistry of halite was studied using an ultramicrochemical (UMCA) method, and the homogenization temperature of fluid inclusions was determined in a special thermal chamber designed by V. A. Kalyuzhny

At the post-sedimentation stage, the studied salt strata were exposed to high temperature (58–72 °C) and high (up to several tens of MPa) pressure. Although there are opinions of the inability of primary inclusions in such halite to determine the physical and chemical conditions of sedimentation, however, the informative value of primary inclusions in halite of the Majiagou Formation has remained. The preservation of the integrity (and thus the informative value) of primary inclusions in halite is evidenced by the same chemistry of their brines, which differs from that of secondary inclusions The sedimentation brines of the basin were concentrated to the middle of halite stage and points to the Na-K-Mg-Ca-Cl seawater.

The physical and chemical conditions of evaporites formation are not known enough. Currently, the results of the brine chemistry of primary fluid inclusions in marine halite are the best indicators of seawater composition in the Phanerozoic. It is established that the magnesium content in the brines of the Lower Paleozoic basins is lower comparing to modern seawater of the corresponding concentration, and the potassium ion concentration is higher. The chemical composition of the concentrated seawater from which the halite was crystallized in the Ordovician salt basin of Ordos, with the exception of the calcium ion content, is similar to the seawater chemistry of the Cambrian and Silurian basins, which indicates the relative constancy of Early Paleozoic seawater chemistry.

Age-related changes in the chemical composition of seawater are always consistent with many quantitatively or qualitatively characterized processes of the Earth’s crust evolution. So we believe that the causes that led to more than twice the potassium content of Riphean-Devonian clays, unlike the younger ones, it were also the reason for the increase in potassium content in the Lower Paleozoic marine brines.

The studies conducted also clarify the limits of oscillation of calcium ion content, which determines the type of seawater. Its content in the sedimentary brines of the Ordos basin of the Middle Ordovician reaches 66 g/l at the middle of halite stage. Therefore, at the beginning of the stage of halite precipitation, its content should be approximately 20 g/l (considering its theoretical content of 10 g/l with the modern composition of the atmosphere). Apparently, the cause of the abnormally high calcium content in the early Paleozoic Ocean was the direct flow of it with hydrothermal solutions into the ocean during the activation of global tectonics of the Earth and the increase of solubility of carbonates of continents and ocean floor due to high carbon dioxide atmospheric content.


halite, primary inclusions, homogenization temperature, seawater.


Acros, D., & Ayora, C. (1997). The use of fluid inclusions in halite as environmental thermometer: an experimental study. In XIV ECROFI (pp. 10-11). Nancy.
Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving”- a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279-288. [in Chinese with English abstract].
Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557-558.
Brennan, S. T., & Lowenstein, T. K. (2002). The major-ion composition of Silurian seawater composition. Geochimica et Cosmochimica Acta, 6, 2683-2700.
Claypool, G. E., Holser, W. T., Kaplan, І. R., Sakaі, H., & Zak, І. (1980). The age curves of sulfur and oxygen іsotopes іn marіne sulfate and theіr mutual іnterpretatіon. Chem. Geol., 28, 199-260.
Das, N., Horita, J., & Holland, H. D. (1990). Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin: Implications of Late Silurian seawater and the origin of Sedimentary brines. Geochimica et Cosmochimica Acta, 54, 319-327.
Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33 (11), 877-880.
Eugster, H. P., Harvie, C. E., & Weare J. H. (1980). Mineral equilibria in a sixcomponent seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25 ºС. Geochimica et Cosmochimica Acta, 44, 1335-1347.
Feng, Z. Z., Zhang, Y. S., & Jin, Z. K. (1998). Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China platform. Sedimentary Geology, 118, 127-140.
Fox, J. S., & Videtich, P. E. (1997). Revised estimate of δ34S for marine sulfates from the Upper Ordovician: data from the Williston Basin, North Dakota, USA. Applied Geochemistry, 12, 97-103.
Galamаy, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37 (2), 245-267.
Garrels, R., & Mackenzie, F. (1974). Evolyutsiya osadochnykh porod [Evolution of sedimentary rocks]. Moscow: Mir. [in Russian]
Geological Survey of Western Australia. Petroleum Operations Division. & Western Australia. Department of Industry and Resources. (2004). Summary of petroleum prospectivity onshore Western Australia and State waters 2004: Bonaparte, Canning, Officer, Perth, Southern Carnarvon and Northern Carnarvon Basins : 2003. Geological Survey of Western Australia.
Goncharenko, G. A., & Moskovsky, O. P. (2004). Osobennosti evolyutsii sostava morskikh rastvorov v fanerozoye [Evolution features of marine solutions composition in the Phanerozoic]. Proceedings of Voronezh University. Geology, 2, 48-62. [in Russian]
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279-283.<0279:SVISCA>2.3.CO;2
Holdoway, K. A. (1974). Behavior of fluid inclusions in salt during heating and irradiation. In Fourth International Symposium on salt (Vol. 1, pp. 303-312). Cleveland Ohio: Northern Ohio Geological Society.
Holland, H. D. (2003). The geologic history of seawater. Treatise on Geochemistry, 6, 583-625.
Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66, 3733-3756.
Kalyuzhny, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh [The foundations of teaching about mineral-forming fluids]. Kiev: Naukova dumka. [in Russian]
Kovalevich, V. M. (1978). Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya [Physical and chemical conditions of salts formation of the Stebnik potash deposit]. Kiev: Naukova dumka.
Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoye [Halogenesis and chemical evolution of ocean in the Phanerozoic]. Kiev: Naukova dumka. [in Russian]
Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695-712.
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovyye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseynov i vod mirovogo okeana [Secular variations in the chemical brines composition of marine evaporite basins and oceans waters]. Lithology, 4, 95-109. [in Russian]
Kovalevych, V. M., Peryt, T. M., & Dzhinoridze, N. M. (2003). Chemical characteristics of seawater in the Early Cambrian: results of a fluid-inclusion study of halite from the Tyret’ Deposit (East Siberia). In D. G. Eliopoulos et al. (Eds). Mineral Exploration and Sustainable Development (pp. 693-695). Rotterdam: Millpress.
Kovalevych, V. M., Peryt, T. M., Zang, W., & Vovnyuk, S. V. (2006). Composition of brines in halite-hosted fluid inclusions in the Upper Ordovician, Canning Basin, Western Australia: new data on seawater chemistry. Terra Nowa, 18 (2), 95-103.
Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real micro-droplets of ancient sea water? Geological Quarterly, 54 (4), 401-410.
Kovalevych, V. M., Zang, W-L., Peryt, T. M., Khmelevska, O. V., Halas, S., Iwasinska-Budzyk, I. … Heithersay, P. S. (2006). Deposition and chemical composition of Early Cambrian salt in the eastern Officer Basin, South Australia. Australian Journal of Earth Sciences, 53, 577-593.
Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485-506.
Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178, 1-28.
Li, R. X., Guzmics, T., Liu, X. J., & Xie, G. C. (2011). Migration of immiscible hydrocarbons recorded in calcite-hostedfluid inclusions, Ordos Basin: a case study from Northern China. Russian Geology and Geophysics, 52, 1491-1503.
Lowenstein, T. K., & Timofeeff, M. N. (2008). Secular variations in seawater chemistry as a control on the chemistry of basinal brines: test of the hypothesis. Geofluids, 8, 77-92.
Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69 (7), 1701-1719.
Matukhin, R. G., Petrichenko, O. Y., & Sokolov, P. N. (1985). Gazovo-zhidkiye vklyucheniya v galite kak pokazatel usloviy formirovaniya devonskikh solenosnykh otlozheniy Sibiri [Gas-liquid inclusions in halite as an indicator of the conditions of the Siberia Devonian salt sediments formation]. In Litologo-fatsialnyye i geokhimicheskiye problemy solenakopleniya [Lithological-facies and geochemical problems of salt accumulation] (pp. 194-203). Moscow: Nauka. [in Russian]
McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928-937.
Ogg, J. G., Scotese, C. R., Hou, M., Chen, A., Ogg, G. M., & Zhong, H. (2019). Global Paleogeography through the Proterozoic and Phanerozoic: Goals and Challenges.Acta Geologica Sinica (English Edition), 93 (1), 59-60.
Petrichenko, O. Y. (1989). Epigenez evaporitov [Epigenesis of evaporites]. Kiev: Naukova dumka. [in Russian]
Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid [Methods of inclusions investigation in salt rock minerals]. Kyiv: Naukova dumka. [in Ukrainian]
Petrychenko, O. Y., Peryt, T. M., & Chechel, E. I. (2005). Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporates. Chem. Geol., 219, 149-161.
Roedder, E. (1984). The fluids in salt. Am. Mineralogist, 69, 413-439.
Scotese, C. R. (2014). Atlas of Silurian and Middle-Late Ordovician Paleogeographic Maps (Mollweide Projection). (Maps 73-80, Vol. 5). The Early Paleozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL.
Strakhov, N. M. (1962). Osnovy teorii litogeneza [Fundamentals of the theory of lithogenesis] (Vol. 3). Moscow: AS USSR. [in Russian]
Valyashko, M. G. (1962). Zakonomernosti formirovaniya mestorozhdeniy soley [The principle of forming of salt deposits]. Moscow: MGU. [in Russian]
Vinogradov, A. P., & Ronov, A. B. (1956). Evolyutsiya khimicheskogo sostava glin Russkoy platformy [Evolution of the chemical composition of clays of the Russian Platform]. Geochemistry, 2, 3-18. [in Russian]
Wang, B. Q., & Al-Aasm, I. S. (2002). Karst-controlled diagenesis and reservoir development; example from the Ordovician mainreservoir carbonate rocks on the eastern margin of the Ordos basin, China. AAPG Bulletin, 86, 1639-1658.
Yang, Y., Li, W., & Ma, L. (2005). Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: a multicycle cratonic basin in central China. AAPG Bulletin, 89, 255-269.
Zharkov, M. A., Zharkova, T. M., & Merzlyakov, G. A. (1978). K probleme evolyutsii solevogo sostava vod Mirovogo okeana [To the problem of waters salt composition evolution of the World Ocean]. Geology and Geophysics, 3, 3-18. [in Russian]