Posted on


Home > Archive > No. 3–4 (191–192) 2023 > 45–60

Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 45–60

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology & Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail:;


This article discusses the features of peat analysis using X-ray fluorescence (XRF) analysis in order to study its qualitative and quantitative elemental composition, including heavy metals. The distribution of chemical elements is an indicator of various processes in geochemical and biological systems, by using of which it is possible to reproduce the conditions of accumulation of mineral deposits. This analysis is an important component of a comprehensive study of peat formation features, the environmental friendliness of peat extraction, and also for determining the suitability of peat for industrial use.

We analyzed the content of chemical elements in peat samples taken at different depths using a portable X-ray fluorescence spectrometer. The article considers the main characteristics of the spectrum of individual elements, depending on the atomic number.

In order to establish the general regularity of the distribution of 20 chemical elements in peat samples, we performed a mathematical and statistical analysis of the obtained data: calculation of the main statistical characteristics of chemical elements distribution (average, minimum and maximum values, median, variance, coefficient of variation, etc.), calculation of correlation matrices, selection of typomorphic geochemical associations of chemical elements using cluster and factor analyses. We singled out two types of factors that are decisive and influence the accumulation of chemical elements in the investigated peat: “organogenic” and “natural” (lithological), which are decisive, and a secondary factor –anthropogenic.

We compared the obtained results with the average values obtained from the results of spectral semi-quantitative analysis of peat ash samples taken at depths of 0.1–7 m in the same region. We evaluated the possibility and efficiency of using a portable X-ray fluorescence spectrometer for the analysis of the macro- and microelement composition of peats with different ash content.

It has been established that portable X-ray fluorescence analysis is a powerful tool for fast and high-quality elemental analysis of peat, and the range of its application depends on specific research goals and tasks.


peat, X-ray fluorescence spectroscopy, XRF, microelement composition, spectrum interpretation


Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavleniye geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (Lvovskaya oblast) [Research report]. Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]

Kaiser, B., & Wright, A. (2008). Draft Bruker XRF spectroscopy user guide: Spectral interpretation and sources of interference. BRUKER, Madison, WI.

Shand, C. A., & Wendler, R. (2014). Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31–42.

Van Loon, L. L., McIntyre, N. S., Bauer, M., Sherry, N. S., & Banerjee, N. R. (2019). Peakaboo: Advanced software for the interpretation of X-ray fluorescence spectra from synchrotrons and other intense X-ray sources. Software Impacts, 2, 100010.

Yakovenko, M. (2022). Heokhimichni osoblyvosti nahromadzhennia i mihratsii Strontsiiu v torfakh Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(187–188), 58–70. [in Ukrainian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk of V. N. Karazin Kharkiv National University, Series “Geology. Geography. Ecology”, 56, 105–121. [in Ukrainian]