Posted on

GIBBS FREE ENERGY OF NATURAL GAS COMPONENTS FORMATION IN SEDIMENTARY STRATA

Home > Archive > No. 2 (179) 2019 > 37-46


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 37-46.

https://doi.org/10.15407/ggcm2019.02.037

Yuri KHOKHA, Oleksandr LYUBCHAK, Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The main methods of calculating the composition of geochemical systems in the thermodynamic equilibrium state were considered in the article. It was shown that the basis for such calculations was the determination of the Gibbs Free Energy of each system components at given temperatures and pressures. The methods of Gibbs Free Energy calculation at standard pressure and under conditions that are realized within the sedimentary strata were analyzed. The equations of state for natural gas individual components were selected and their Gibbs Free Energies for heat fluxes ranging from 40 to 100 mW/m2 and depths of 0–20 km were calculated. The results showed that the pressure significantly affects the value of Gibbs Free Energies formation of natural gas components within the sedimentary strata. Changes of the Gibbs Free Energies of natural gas components formation, as a function of depth, subordinated to the same laws for each compound. This regularity was better expressed in more heated areas.
It was shown that with depth increasing the Gibbs Free Energy of natural gas components formation first rapidly decreases and reaches its minimum ranging from 2 to 6 km. Moreover, as the value of the heat flux increases, the maximum value of the Gibbs Free Energy of formation of natural gas components, expressed in kilometers, decreases. With further immersion/deepening to depths greater than 6 km, the Gibbs Free Energy of the formation of natural gas components gradually increases, and in areas with greater heat flux, a sharp increase was characteristic, and with less, it was slow and weakly expressed. There is a stability area for hydrocarbon and non-hydrocarbon components of natural gas ranging from 2 to 6 km. With the increase of Carbon number in the hydrocarbon chain, the value of Gibbs Free Energy of the natural gas hydrocarbon components formation decreases, which indicates the presence of a stability zone for heavy natural gas components (it should be expected that oil also) within the depths of 2–6 km.

Keywords

Gibbs Free Energy, heat flow, natural gas, sedimentary strata.

REFERENCES

Bell I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498-2508.
https://doi.org/10.1021/ie4033999
 
Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A code for calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225 (1). doi:10.3847/0067-0049/225/1/4.
https://doi.org/10.3847/0067-0049/225/1/4
 
Buecker, D., & Wagner, W. (2006). Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. J. Phys. Chem. Ref. Data, 35 (2), 929-1019.
https://doi.org/10.1063/1.1901687
 
Chekalyuk, E. B. (1967). Neft verhney mantii Zemli [Oil of the Earth’s upper mantle]. Kiev: Naukova dumka. [in Russian]
 
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 (4), 297-356.
https://doi.org/10.1016/0031-9201(81)90046-7
 
Hasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307, 59-70.
https://doi.org/10.1016/j.epsl.2011.04.034
 
Glushko, V. P. (1979). Termodinamicheskiye svoystva individualnykh veshchestv. T. 1 (1) [Thermodynamic properties of individual substances. Vol. 1 (1)]. Moskva: Nauka. [in Russian]
 
Koukkari, P. (2014). Introduction to constrained Gibbs energy methods in process and materials research. Espoo: VTT Technical Research Centre of Finland. VTT Technology, N 160.
 
Lemmon, E. W., McLinden, & M. O., Wagner, W. (2009). Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. J. Chem. Eng. Data, 54, 3141-3180.
https://doi.org/10.1021/je900217v
 
Lemmon, E. W., & Span, R. (2006). Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data, 51, 785-850.
https://doi.org/10.1021/je050186n
 
Lyubchak, O. V. (2009). Termobarychni umovy utvorennia pryrodnogo gazu v nadrakh Zemli [Thermobaric conditions of natural gas formation in the subsoils of the Earth]. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 18-24. [in Ukrainian]
 
Sanford, G., & McBride, B. J. (1994). Computer program for Calculation of Complex Chemical Equilibrium Composition and Application. NASA Reference Publication 1311, 58.
 
Setzmann, U., & Wagner W. (1991). A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20 (6), 1061-1151.
https://doi.org/10.1063/1.555898
 
Sokolov, V. A. (1971). Geokhimiya prirodnykh gazov [The geochemistry of natural gases]. Moskva: Nedra. [in Russian]
 
Span, R., (2000). Multiparameter Equations of State – An Accurate Source of Thermodynamic Property Data. Berlin: Springer.
https://doi.org/10.1007/978-3-662-04092-8
 
Span, R., & Wagner, W. (1996). A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25, 1509-1596.
https://doi.org/10.1063/1.555991
 
Stull, D. R., Westrum Jr., E. F., & Sinke, G.C. (1969). The chemical thermodynamics of organic compounds. New York: John Wiley and Sons, Inc.
 
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin; Heildelberg; New York; Tokyo: Springer-Verlag.
https://doi.org/10.1007/978-3-642-87813-8
 
Wagner, W., & Buecker, D. (2006). A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data, 35 (1), 205-266.
https://doi.org/10.1063/1.1859286
 
Wagner, W., & Pruß, A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data, 31, 387-535.
https://doi.org/10.1063/1.1461829
Posted on

ON THE LITHOFLUID AHD THERMODYNAMIC SYSTEM IN GEOLOGY AND GEOCHEMISTRY

Home > Archive > No. 2 (179) 2019 > 28-36


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 28-36.

https://doi.org/10.15407/ggcm2019.02.028

Іhor NAUMKO

ІInstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The researcher’s approaches to the term “fluid systems” as a prototype of the fluid medium of crystallization of minerals, naturally preserved relics – inclusions of fluids reflect the features of the fluid regime of mineralogenesis of rock-ore complexes are analyzed. It is emphasized that the term “fluid” characterizes the main property of the substance of the medium of mineralogenesis, the most important substance of the Earth’s crust, its highest mobility, the maximum disorder of structure, fluidity, and covers the liquid or gas state of the lightweight components (gas, aqueous solution), as well as the melt of magmatic (silicate, salt, carbonate) substance. Under the fluid regime, the author understands the physical and chemical nature, the spatial-temporal sequence of manifestation and the variability of the parametric characteristics of the fluids, that is, the entire set of physico-chemical and geological phenomena and processes that determine the regular (discrete, periodic, evolutionary) changes in aggregate state, PT-parameters and the composition of the fluid medium of crystallization of minerals and their identified (certain, specific) parageneses. Our long-term studies show that the physico-chemical system of the fluid medium of mineral-ore-narhtidgenesis should cover lithoid (rocky), fluid (genetic) and thermodynamic (temperature, pressure, concentration) components that determine the mass, heat and the energy exchange between the fluid and of its host rock. In view of this, we define this physico-chemical system as a “lithofluid and thermodynamic system” and we believe that this definition takes into account all known phenomena of generation, migration, differentiation and accumulation of fluids, in particular hydrocarbons (hydrocarbon-containing), in the lithosphere of the Earth. An example of such a lithofluid and thermodynamic system in the Earth’s bowels – the natural high-energy physicochemical reactor is the hydrocarbon-generating and mineral-ore-forming system of the deep abiogenic high-termobaric fluid.

Keywords

inclusion in minerals, fluid systems, fluids, fluid regime, lithofluid and thermodynamic system, lithosphere of the Earth.

REFERENCES

Bagdasarova, M. V., & Sidorov, V. A. (2002). Gidrotermalnaya priroda mestorozhdeniy uglevodorodov i novyye geodinamicheskiye kriterii ikh poiskov. In Novyye idei v geologii i geokhimii nefti i gaza. K sozdaniyu obshchey teorii neftegazonosnosti nedr: materialy VI Mezhdunarodnoy konferentsii (Moskva, 28-31 maya 2002 g.) (Kn. 1.) (s. 54-57). Moskva: GEOS. [in Russian]
 
Chekalyuk, E. B. (1971). Termodinamicheskiye osnovy teorii mineralnogo proiskhozhdeniya nefti. Kiev: Naukova dumka. [in Russian]
 
Dmitriyevskiy, A. N., Valyayev, B. M., & Smirnova, M. N. (2003). Mekhanizmy, masshtaby i tempy vospolneniya neftegazovykh zalezhey v protsesse ikh razrabotki. In Genezis nefti i gaza (s. 106-109). Moskva: GEOS. [in Russian]
 
Ermakov, N. P. (1972). Geokhimicheskiye sistemy vklyucheniy v mineralakh (vklyucheniya mineraloobrazuyushchikh sred – istochnik geneticheskoy informatsii). Moskva: Nedra. [in Russian]
 
Hryhorchuk, K. H. (2010). Osoblyvosti litofliuidodynamiky eksfiltratsiinoho katahenezu. Heolohiia i heokhimiia horiuchykh kopalyn, 1 (150), 60-68. [in Ukrainian]
 
Hryhorchuk, К., Hnidets, V., & Balandyuk, L. (2018). Litogenetic aspects of oil and systems formation in the Volyno-Podolia Sylurian deposits. Geogynamics, 2 (25), 37-48.
https://doi.org/10.23939/jgd2018.02.037
 
Kabyshev, B. P., & Kabyshev, Yu. B. (2001). Osadochno-flyuidodinamicheskaya kontseptsiya naftidogeneza. In Henezys nafty i hazu ta formuvannia yikh rodovyshch v Ukraini yak naukova osnova prohnozu ta poshukiv novykh skupchen: tezy dopovidei Mizhnarodnoi naukovo-praktychnoi konferentsii (Chernihiv, liutyi 2001 r.) (s. 12-15). Chernihiv. [in Russian]
 
Kalyuzhnyy, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. [in Russian]
 
Kudelskiy, A. V., Garetskiy, R. G., & Aysberg, R. E. (1997). Geoflyuidodinamika i neftegazoobrazovaniye. Minsk: Izdatelstvo IGN NAN Belarusi. [in Russian]
 
Kurdyukov, A. A. (1991). Flyuidy i flyuidnyye sistemy v protsessakh rudoobrazovaniya. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 120 (1), 123-128. [in Russian]
 
Lemmleyn, G. G. (1959). Klassifikatsiya zhidkikh vklyucheniy v mineralakh. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 88 (2), 137-143. [in Russian]
 
Lukin, A. E. (1999). O proiskhozhdenii nefti i gaza (geosinergeticheskaya kontseptsiya prirodnykh uglevodorodno-generiruyushchikh sistem). Geologicheskiy zhurnal, 1, 30-42. [in Russian]
 
Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv). (Extended abstract of Doctorʼs thesis). Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy, Lviv. [in Ukrainian]
 
Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi NAN Ukrainy, 8, 117-120. [in Ukrainian]
 
Naumko, І. М., Кurovets’, І. М., Zubyk, М. І., Batsevych, N. V., Sakhno, B. Е., & Chepusenko, P. S. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv Paleozoic depression. Geodynamics, 1 (22), 21-41.
 
Naumko, I. M., Pavliuk, M. I., Svoren, Y. M., & Zubyk, M. I. (2015). Metan hazovuhilnykh rodovyshch – potuzhne dodatkove dzherelo vuhlevodniv v Ukraini. Visnyk NAN Ukrainy, 6, 43-54. [in Ukrainian]
 
Naumko, I. M., & Svoren, I. M. (2003). O vazhnosti glubinnogo vysokotemperaturnogo flyuida v sozdanii usloviy dlya formirovaniya mestorozhdeniy prirodnykh uglevodorodov v zemnoy kore. In Novyye idei v naukakh o Zemle: materialy VI Mezhdunarodnoy konferentsii (Moskva, 8-12 aprelya 2003 g.) (T. 1) (s. 249). Moskva. [in Russian]
 
Naumko, I. M., & Svoren, Y. M. (2005). O litoflyuidotermodinamicheskoy sisteme v geologii i geokhimii. In Novyye idei v geologii i geokhimii nefti i gaza. Neftegazonosnyye sistemy osadochnykh basseynov: materialy VIII Mezhdunarodnoy konferentsii k 60-letiyu kafedry geologii i geokhimii goryuchikh iskopayemykh MGU (Moskva, 31 maya- 2 iyunya 2005 g.) (s. 341-343). Moskva: GEOS. [in Russian]
 
Popivniak, I. V. (2002). Fizyko-khimichne modeliuvannia fliuidodynamichnykh rudoheneruiuchykh paleosystem ta prohnozuvannia poviazanoho z nymy zrudeninnia (na prykladi rodovyshch zolota). (Extended abstract of Doctorʼs thesis). Lvivskyi natsionalnyi universytet imeni Ivana Franka, Lviv. [in Ukrainian]
 
Roedder, E. (1984). Fluid inclusions. In Reviews in Mineralogy (Vol. 12). Virginia: Mine-ralogical Society of America. (perevod rus.: Redder, E. (1987). Flyuidnyye vklyucheniya v mineralakh (T. 1-2). Moskva: Nedra.). [in Russian]
 
Smit, F. G. (1968). Fizicheskaya geokhimiya. Moskva: Nedra. [in Russian]
 
Sokolov, B. A. (2002). K sozdaniyu obshchey teorii neftegazonosnosti nedr. In Novyye idei v geologii i geokhimii nefti i gaza. K sozdaniyu obshchey teorii neftegazonosnosti nedr: materialy VI Mezhdunarodnoy konferentsii (Moskva, 28-31 maya 2002 g.) (Kn. 1) (s. 6-8). Moskva: GEOS. [in Russian]
 
Sokolov, V. A., & Guseva, A. N. (1993). O vozmozhnoy bystroy sovremennoy generatsii nefti i gaza. Vestnik MGU. Seriya 4. Geologiya, 3, 39-46. [in Russian]
 
Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh (ikh sposoby izvlecheniya, sostav, formy nakhozhdeniya i vliyaniye na svoystva veshchestv). (Avtoreferat dissertatsii … kandidata tekhnicheskikh nauk). Institut geologii i geokhimii goryuchikh iskopayemykh NAN Ukrainy. Lvov. [in Russian]
 
Svoren, Y. M. (2017). Yavyshche utvorennia pryrodnykh vuhlemetaniv pid diieiu abiohennoho vysokotermobarnoho hlybynnoho fliuidu. In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy II Mizhnarodnoi naukovoi konferentsii (Kyiv, 6-8 veresnia 2017 r.) (s. 225-229). Kyiv: IHN NAN Ukrainy. [in Ukrainian]
 
Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111-116. [in Ukrainian]
 
Svoren, Y. M., & Naumko, I. M. (2009). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor. Dopovidi NAN Ukrainy, 9, 138-143. [in Ukrainian]
 
Teplov, V. P., & Leiie, Yu. A. (1974). Pro prostorovyi i henetychnyi zviazok endohennykh rudnykh i naftohazovykh proiaviv Zakarpattia. Dopovidi AN URSR. Seriia B, 5, 433-436. [in Ukrainian]
Posted on

PROSPECTS OF THE POTENTIAL FOR OIL AND GAS PRESENCE IN THE NORTH-WESTERN PART OF INNER FLYSH COVERS OF THE UKRAINIAN CARPATHIANS

Home > Archive > No. 2 (179) 2019 > 5-27


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 5-27.

https://doi.org/10.15407/ggcm2019.02.005

Myroslav PAVLYUK, Volodymyr SHLAPINSKY, Olesya SAVCHAK, Myroslav TERNAVSKY

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Here the Cretaceous and Paleogene flysh of the Duklya-Chornohora, Burkut, Magura, Marmarosh and Pieniny covers was studied that in the north-western sector of the Ukrainian Carpathians near the border of Poland and Slovakia (Lemkivsky segment) distinguish themselves by very inclined thrusts. Spatially the given tectonic units are within the limits of so called hydrothermal field unfavourable as a whole, as to the presence of hydrocarbons on a large scale here. But there were distinguished small plots with prevalence of hydrocarbons in the gas composition. Prospects of the potential for gas presence in the region should be connected with the areas that spatially gravitate towards Transcarpathian deep. Studied area consists of several tectonic units of the first order. These are covers located farther south-west of Krosno cover: Duklya-Chornohora, Burkut (Porkulets), Magura, Marmarosh and Pieniny covers, in the south-west the studied terrane is limited by the Transcarpathian deep, and farther west – by the state border of Ukraine and Slovakia, in the south-east – by the Rika Rriver, in the north-east – by the zone of joining of Duklya-Chornohora and Krosno covers. Prospects of the potential for oil end gas presence in the given area, as in the Folded Carpathians on the whole, should be determined by the complex of all accompanying parameters: structural, collecting and covering, hadrochemical and geochemical. For the given area of the Carpathians the geochemical factor is the most important.

Keywords

inner flysh covers, hydrothermal fluid, composition of free gases, oil and gas presence, perspective areas, Transcarpathian deep.

REFERENCES

Baranov, I. G. (1954). Geologicheskoye stroyeniye severo-zapadnoy chasti Vostochnykh flishevykh Karpat i perspektivy neftegazonosnosti. Lvov: VNIGRI, Zap. Ukr. eksped. [in Russian]

Deneha, B. I., Vyshniakov, I. B., Hodyna, Yu. M. et al. (1993). Rozrobyty novi ta vidkorektuvaty tradytsiini napriamky poshukiv vuhlevodniv na sumizhnykh terytoriiakh Ukrainy, Polshchi ta Slovachchyny na osnovi dosvidu storin, analizu naftohazonosnosti ta rozrobky modeli budovy pidnasuvu Karpat (Kn. 1–2). Lviv: UkrDHRI, Fondy DP  “Zakhidukrheolohiia”. [in Ukrainian]

Filimonchuk, S. R., & Frolov, M. V. (1962). Mineralnyye i termalnyye vody Zakarpatia: otchet Zakarpatskoy geologicheskoy ekspeditsii za 1959–1962 gg. o rezultatakh poiskovykh rabot na mineralnyye i termalnyye vody. Beregovo: Zakarpatskaya GRE, Fondy GP “Zapukrgeologiya”. [in Russian]

Gabinet, M. P., Kulchitskiy, Ya. O., Matkovskiy, O. I., Yasinskaya, A. A. (1977). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat (Ch. 2). Lvov: Vyshcha shkola. [in Russian]

Hlushko, V. V., Kuzovenko, V. V., & Shlapinskyi, V. Ye. (1998). Novi pohliady na heolohichnu budovu pivnichno-zakhidnoi chastyny Duklianskoho pokrovu Ukrainskykh Karpat. Visnyk Lviviskoho universytetu. Seriia heolohichna, 13, 94–101. [in Ukrainian]

Hlushko, V. V., Kuzovenko, V. V., & Shlapinskyi, V. Ye. (2007). Heolohichna karta Ukrainskykh Karpat, Zakarpatska, Ivano-Frankivska, Lvivska, Chernivetska oblasti Ukrainy (masshtab 1 : 100 000, Yu. Z. Krupskyi (Red.)). Kyiv: Fond ZAT “Kontsern Nadra”. [in Ukrainian]

Kantolinskiy, S. I., & Ponomareva, S. V. (1962). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Polyana, Zakarpatskoy oblasti v 1961 g. Lvov. [in Russian]

Kantolinskiy, S. I., Koval, Zh. S., & Alekseyev, V. L. (1963). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Bereznik, Zakarpatskoy oblasti v 1962 g. (T. 1–2). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Kantolinskiy, S. I., Koval, Zh. S., & Alekseyev, V. L. (1964). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Kushnitsa, Zakarpatskoy oblasti v 1963 g. Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. E. et al. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Kolodii, V. V. (2010). Hidroheolohiia. Lviv: Vydavnychyi tsentr LNU im. I. Franka. [in Ukrainian]

Kuzovenko, V. V., Shlapinskyi, V. Ye., & Machalskyi, D. V. (2001). Detalizatsiia heolohichnoi budovy pivnichno-zakhidnoi chastyny Vnutrishnikh flishovykh pokroviv Ukrainskykh Karpat z metoiu vyiavlennia obiektiv, perspektyvnykh na naftu i haz (1998–2001 rr.). Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]

Kulchitskiy, Ya. O., Lozynyak, P. Yu., & Markhel, M. D. (1966). Tektonika i perspektivy neftegazonosnosti yuzhnogo sklona Ukrainskikh Karpat (T. 1. Tema 804). Lvov: UkrNIGRI, Fondy GP “Zapukrgeologiya”. [in Ukrainian]

Lazarenko, E. A., Gnilko, M. I., & Zaytseva, V. N. (1968). Metallogeniya Zakarpatia. Lvov. [in Russian]

Leye, Yu. A., Naumenko, V. V., Teplov, V. P., & Rogachenko, V. V. (1976). Regmaticheskiye razlomy, morfostruktury i mineralogeniya Ukrainskikh Karpat i Zakarpatia. Kiev. (Preprint AN USSR. Institut geokhimii i fiziki mineralov). [in Russian]

Matskiv, B. V., Kovalov, Yu. V., Pukach, B. D., & Vorobkanych, V. M. (2003). Derzhavna heolohichna karta Ukrainy (masshtab 1 : 200 000. Karpatska seriia. X (Snina), M-34-XXXV (Uzhhorod), L-34-V (Satu Mare), V. V. Kuzovenko (Red.), H. D. Dosyn (ekspert NRR), Lvivske viddilennia UkrDHRI. Kyiv. [in Ukrainian]

Molchanov, V. I. (1981). Generatsiya vodoroda v litogeneze. Novosibirsk: Nauka. [in Russian]

Muravinskiy, E. S., Kuzovenko, V. V., Spas, E. G. et al. (1964). Raschleneniye razrezov ploshchadey glubokogo bureniya, razburennykh v 1963 godu, obrabotka i obobshcheniye materialov po profilnomu bureniyu v Karpatskom regione (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Muravinskiy, E. S., Kuzovenko, V. V., Spas, E. G. et al. (1965). Raschleneniye razrezov ploshchadey glubokogo bureniya i izucheniye glubinnogo stroyeniya Karpatskoy neftegazonosnoy oblasti po rezultatam obrabotki materialov parametricheskogo bureniya (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Nekrasova, L. P., Danysh, V. V., & Baranovskiy, V. I. (1966). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Velikiy Bereznyy Zakarpatskoy oblasti USSR v 1964–1965 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Ozerova, N. A. (1980). O degazatsii rtuti iz glubin Zemli. In Geokhimiya protsessov migratsii rudnykh elementov (s. 43–53). Moskva: Nauka. [in Russian]

Ozerova, N. A., & Pikovskiy, Yu. I. (1982). Rtut v uglevodorodnykh gazakh. In Geokhimiya protsessov rudoobrazovaniya (s. 102–136). Moskva: Nauka. [in Russian]

Petrik, V. P. (1974). Otchet o rezultatakh poiskovykh rabot na mineralnyye vody, vypolnennykh na uchastkakh Velikiy Bereznyy i Simerki v 1973–1974 gg. Kiev: Zakarpatskaya GRE, Fondy GP “Zapukrgeologiya”. [in Russian]

Shcherba, V. M. (1965). Geologicheskiye rezultaty glubokogo razvedochnogo bureniya za 1964 god na ploshchadyakh Khodnovichi, Sadkovichi, Nizhankovichi, Volya-Blazhevskaya, Lomna, Svalyava, Tereblya. Sambor: Fondy GP “Zapukrgeologiya”. [in Russian]

Shlapinskiy, V. E. (1989). Geokhimicheskiye anomalii Skladchatykh Karpat i ikh svyaz s neftegazonosnostyu. In Problemy geologii i geokhimii goryuchikh iskopayemykh zapada Ukrainskoy SSR: tezisy dokladov respublikanskoy konferentsii (Lvov, 2–6 oktyabrya 1989 g.) (T. 3, s. 77–78). Lvov. [in Russian]

Shlapinskyi, V. Ye., Hlushko, V. V., & Kuzovenko, V. V. (1994). Vyvchennia heolohichnoi budovy i perspektyv naftohazonosnosti zony zchlenuvannia Duklianskoho, Chornohorskoho i Krosnenskoho pokroviv Ukrainskykh Karpat v 1991–1994 rr. (T. 1). Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]

Shlapinskiy, V. E. (2003). Pryamyye i nepryamyye priznaki neftegazonosnosti Ukrainskikh Karpat kak novyye kriterii eye otsenki. In Novyye idei v naukakh o Zemle: VI Mezhdunarodnoy konferentsii (T. 1, s. 277). Moskva. [in Russian]

Shlapinskyi, V. (2012). Deiaki pytannia tektoniky Ukrainskykh Karpat. Pratsi Naukovoho tovarystva imeni Shevchenka. Heolohichnyi zbirnyk, 30, 48–68. [in Ukrainian]

Shlapinskyi, V. Ye. (2015). Kompleksna otsinka perspektyv naftohazonosnosti peredovoi chastyny Skladchastykh Ukrainskykh Karpat. In Heolohiia horiuchykh kopalyn: dosiahnennia i perspektyvy: Mizhnarodna naukova konferentsiia (Kyiv, 2–4 veresnia 2015 r.) (s. 248–251). Kyiv. [in Ukrainian]

Slavin, V. I. (1947). Novyye dannyye po stratigrafii i tektonike yurskikh otlozheniy tak nazyvayemoy «klippenovoy zony» Karpat. In Materialy po geologii i gidrogeologii Ukrainskogo geologicheskogo upravleniya za 1946 g. (Sb. 4, s. 135–139). Kiev. [in Russian]

Zatsikha, B. V. (1989). Kristallogenezis i tipomorfnyye osobennosti mineralov rtutnogo i flyuoritovogo orudeneniya Ukrainy. Kiev: Naukova dumka. [in Russian]

Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1966). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Lyuta Zakarpatskoy oblasti USSR v 1964–1965 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1968). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Perechin Zakarpatskoy oblasti USSR v 1966–1967 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhigunova, Z. F., Petrov, V. G., & Koval, Zh. S. (1969). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Turia Polyana Zakarpatskoy oblasti USSR v 1969 g. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhilovskiy, N. I., Dabagyan, N. V., & Smirnov, S. E. (1961). Geologicheskoye stroyeniye i perspektivy neftegazonosnosti ploshchadi Svalyava–Nelipino (Zakarpatskaya oblast) (T. 1). Lvov: Fondy UkrGGRI. [in Russian]