Posted on

CLAY MINERALS ASSOCIATIONS OF THE UPPER NEOPROTEROZOIC-LOWER CAMBRIAN MARLS OF THE SALT RANGE FORMATION, PAKISTAN

Home > Archive > No. 1–2 (197–198) 2025 > 91–110


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 91–110

https://doi.org/10.15407/ggcm2025.197-198.091

Yaroslava YAREMCHUK1, Fanwei MENG2, Sophiya HRYNIV1, Serhiy VOVNIUK1, Nadiya HORODECHNA1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: slava.yaremchuk@gmail.com
2 China University of Mining and Technology (CUMT), Xuzhou, Jiangsu Province, China, e-mail: fwmeng@isl.ac.cn

Abstract

The peculiarities of the mineral composition of the pelitic fraction of marls of the Upper Neoproterozoic- Lower Cambrian Salt Range Formation are considered as a reflection of the influence of regional and global factors on the formation of clay minerals.

The pelitic fraction of 53 marl samples of Salt Range Formation taken in the Salt Range in the Khewra Gorge was studied: from the Sahwal Marl Member (48 samples), the Bhandar Kas Gypsum Member (2 samples), and the upper part of the Billianwala Salt Member (3 samples).

According to a set of analyzes (X-ray diffraction (XRD), scanning electron microscopy (SEM) with energydispersive X-ray microanalysis (EDX)), the determined association of clay minerals is represented by illite, chlorite, corrensite, chlorite-corrensite, chlorite-smectite, smectite, illite-smectite and in some samples also defective chlorite and defective corrensite occurs. Smectite, chlorite, and mixed-layer chlorite-smectite are magnesian trioctahedral minerals, illite is ferruginous dioctahedral, indicating their authigenic origin. A significant amount of labile minerals and phases in the associations is caused by a combination of the effects of contemporary volcanism, low brine concentration of the evaporite basin, and the presence of organic matter, mainly bitumen. Volcanic activity together with low brine concentration contributed to the formation of labile clay minerals and mixed-layer phases, and their interaction with organic compounds slowed down the processes of aggradation transformation.

The increased magnesium content and the presence of magnesian clay minerals in the pelitic fraction of the studied deposits are characteristic of evaporite deposits formed from SO4-rich seawater type, which is consistent with the sulfate seawater type in the Neoproterozoic.

Keywords

Neoproterozoic, clay minerals, X-ray diffraction, marls, Salt Range Formation, Pakistan

Referenses

Ahmad, W., & Alam, S. (2007). Organic geochemistry and source rock characteristics of Salt Range Formation, Potwar Basin, Pakistan. Pakistan Journal of Hydrocarbon Research, 17, 37–59.

Allen, P. A. (2007). The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciations. Earth-Science Reviews, 84(3–4), 139–185. https://doi.org/10.1016/j.earscirev.2007.06.005

Baker, D. M., Lillie, R. J., Yeats, R. S., Johnson, G. D., Yousuf, M., & Zamin, A. S. H. (1988). Development of the Himalayan frontal thrust zone: Salt Range, Pakistan. Geology, 16(1), 3–7. https://doi.org/10.1130/0091-7613(1988)016%3C0003:DOTHFT%3E2.3.CO;2

Bilonizhka, P., Iaremchuk, Ia., Hryniv, S., & Vovnyuk, S. (2012). Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine. Biuletyn Państwowego Instytutu Geologicznego, 449, 137–146.

Bodine, M. W., Jr. (1983). Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks. In Sixth International Symposium on Salt (Vol. 1, pp. 267–284). Alexandria: Salt Institute.

Brigatti, M. F., Galan, E., & Theng, B. K. G (2006). Structures and mineralogy of clay minerals. Іn F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Chapter 2, pp. 19–86). Elsevier. https://doi.org/10.1016/S1572-4352(05)01002-0

Brindley, G. W. (1961). Chlorite minerals. In G. Brown (Ed.), The X-ray identification and crystal structures of clay minerals (pp. 242–296). The Mineralogical Society, London.

Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification. In G. W. Brindley & G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-Ray Identification (pp. 305–360). https://doi.org/10.1180/mono-5.5

Calvo, J. P., Blanc-Valleron, M. M., Rodriguez Arandia, J. P., Rouchy, J. M., & Sanz, M. E. (1999). Authigenic clay minerals in continental evaporitic environments. In M. Thiry & R. Simon-Coinçon (Eds.), Palaeoweathering, Palaeosurfaces and Related Continental Deposits (pp. 129–151). International Association of Sedimentologists, Special Publication, 27. https://doi.org/10.1002/9781444304190.ch5

Carrado, K. A., Decarreau, A., Petit, S., Bergaya, F., & Lagaly, G. (2006). Synthetic clay minerals and purification of natural clays. Іn F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Chapter 4, pp. 115–139). Elsevier. https://doi.org/10.1016/S1572-4352(05)01004-4

Cozzi, A., Rea, G., & Craig, J. (2012). From global geology to hydrocarbon exploration: Ediacaran–Early Cambrian petroleum plays of India, Pakistan and Oman. In G. M. Bhat, J. Craig, J. W. Thurow, B. Thusu, & A. Cozzi (Eds.). Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia. Geological Society, London, Special Publications, 366, 131–162. https://doi.org/10.1144/SP366.14

Dritc, V. A., & Kossovskaia, A. G. (1990). Glinistye mineraly: smektity, smeshanosloinye obrazovaniia. Moskva: Nauka. [in Russian]

Drits, V. A., Ivanovskaya, T. A., Sakharov, B. A., Zviagina, B. B., Gor’kova, N. V., Pokrovskaya, E. V., & Savichev, A. T. (2011). Mixed-layer corrensite–chlorites and their formation mechanism in the glauconitic sandstone-clayey rocks (Riphean, Anabar Uplift). Lithology and Mineral Resources, 46, 566–593. https://doi.org/10.1134/S0024490211060022

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

Frank-Kamenetckii, V. A. (Ed.). (1983). Rentgenografiia osnovnykh tipov porodoobrazuiushchikh mineralov (sloistye i karkasnye silikaty). Leningrad: Nedra. [in Russian]

Hazen, R. M., Sverjensky, D. A., Azzolini, D., Bish, D. L., Elmore, S. C., Hinnov, L., & Milliken, R. E. (2013). Clay mineral evolution. American Mineralogist, 98(11–12), 2007–2029. https://doi.org/10.2138/am.2013.4425

Honty, M., Uhlík, P., Šucha, V., Čaplovičova, M., Franců, J., Clauer, N., & Biroň, A. (2004). Smectite-to-illite alteration in salt-bearing bentonites (East Slovak Basin). Clays and Clay Minerals, 52(5), 533–551. https://doi.org/10.1346/CCMN.2004.0520502

Hover, V. C., Walter, L. M., Peacor, D. R., & Martini, A. M. (1999). Mg-Smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California. Clays and Clay Minerals, 47(3), 252–268. https://doi.org/10.1346/CCMN.1999.0470302

Husseini, M. I., & Husseini, S. I. (1990). Origin of the Infracambrian Salt Basins of the Middle East. Geological Society, London, Special Publications, 50, 279–292. https://doi.org/10.1144/gsl.sp.1990.050.01.14

Iaremchuk, I., Tariq, M., Hryniv, S., Vovnyuk, S., & Meng, F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan). Carbonates and Evaporites, 32, 63–74. https://doi.org/10.1007/s13146-016-0294-5

Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic Publishers.

Khan, I., Zhong, N., Luo, Q., Ai, J., Yao, L., & Luo, P. (2020). Maceral composition and origin of organic matter input in Neoproterozoic–Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus Basin, Pakistan. International Journal of Coal Geology, 217, 103319. https://doi.org/10.1016/j.coal.2019.103319

Kovalevych, V. M., Marshall, T., Peryt, T. M., Petrychenko, O. Y., & Zhukova, S. A. (2006). Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144(1–2), 39–51. https://doi.org/10.1016/j.precamres.2005.10.004

Lagaly, G., Ogawa, M., & Dékány, I. (2006). Clay mineral organic interactions. Іn F. Bergaya, B. K. G. Theng, & G. Legaly, (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Chapter 7.3, pp. 309–377). Elsevier. https://doi.org/10.1016/S1572-4352(05)01010-X

Lippmann, F., & Savaşçin, M. Y. (1969). Mineralogische Untersuchungen an Lösungsrückständen eines württembergischen Keupergipsvorkommens. Tschermaks Mineralogische und Petrographische Mitteilungen, 13, 165–190. https://doi.org/10.1007/BF01088021

Lucas, J. (1962). La transformation des mineraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem. Serv. Carte Geol. Als. et Lorraine, 23.

Mazumdar, A., & Bhattacharya, S. K. (2004). Stable isotopic study of late Neoproterozoic–early Cambrian (?) sediments from Nagaur–Ganganagar basin, western India: Possible signatures of global and regional C-isotopic events. Geochemical Journal, 38(2), 163–175. https://doi.org/10.2343/geochemj.38.163

Mazumdar, A., & Strauss, H. (2006). Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic–early Cambrian Bilara Group (Nagaur–Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle. Precambrian Research, 149(3–4), 217–230. https://doi.org/10.1016/j.precamres.2006.06.008

Meng, F., Zhang, Z., Bukowski, K., Zhuo, Q., Ahsan, N., Ur-Rehman, S., & Ni, P. (2021). A strongly positive sulphur isotopic shift in late Ediacaran-early Cambrian seawater: evidence from evaporites in the Salt Range Formation, northern Pakistan. Geological Quarterly, 65(2). http://dx.doi.org/10.7306/gq.1598

Moore, D. M., & Reynolds, R. C. (1997). X-Ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.

Pozo, M., & Calvo, J. P. (2018). An overview of authigenic magnesian clays. Minerals, 8(11), 520. https://doi.org/10.3390/min8110520

Shah, S. M. I. (1977). Stratigraphy of Pakistan. Geological Survey of Pakistan Memoir, 12.

Smith, A. G. (2012). A review of the Ediacaran to Early Cambrian (“Infra-Cambrian”) evaporites and associated sediments of the Middle East. Geological Society, London, Special Publications, 366, 229–250. https://doi.org/10.1144/SP366.12

Turner, C. E., & Fishman, N. S. (1991). Jurassic Lake T’oo’dichi: a large alkaline, saline lake, Morison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103(4), 538–558. https://doi.org/10.1130/0016-7606(1991)103<0538:JLTODA>2.3.CO;2

Uhlík, P., Honty, M., Šucha, V., Franců, J., Biroň, A., Clauer, N., Hanzelyová, Z., & Majzlan, J. (2002). Influence of salt-bearing environment to illitization. In Proceedings of the XVII Congress of Carpathian-Balkan Geological Association (Bratislava, September 1–4, 2002). Geologica Carpathica, Special issues, 53 (CD).

Warren, J. K. (2016). Evaporites: A geological compendium. Springer Cham. https://doi.org/10.1007/978-3-319-13512-0

Yaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138–146. https://doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020). Controls on associations of clay minerals in Phanerozoic evaporite formations: An overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974

Yaremchuk, Ya., & Poberezhskyi, A. (2009). Mineralnyi sklad hlyn badenskykh hipsiv Naddnisteria. Mineralohichnyi zbirnyk, 59(1), 116–127. [in Ukrainian]

Yaremchuk, Ya., Vovniuk, S., Hryniv, S., Tarik, M., Menh, F., Bilyk, L., & Kochubei, V. (2017). Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh, Pakystan. Mineralohichnyi zbirnyk, 67(2), 72–90. [in Ukrainian]