Posted on

THERMODYNAMICS OF TYPE II KEROGEN TRANSFORMATION

Home > Archive > No. 3 (180) 2019 > 25-40


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 25-40.

https://doi.org/10.15407/ggcm2019.03.025

Yuri Khokha, Oleksandr Lyubchak, Myroslava Yakovenko

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The article reviews the chemical structure of type II kerogen. The changes that occur with the structure of type II kerogen as it passes through the stages of catagenesis from immature to post-mature are evaluated. Structural models of type II kerogen at different stages of catagenesis are presented: both obtained empirically after studying the structure by physical and chemical methods and the results of modelling by molecular dynamics method.

Methods of equilibrium thermodynamics are used to calculate the composition of the kerogen–gas system for crust sections in the range of 1–20 km with a heat flux of 40 to 100 mW/m2. The composition of kerogen/fluid geochemical system is calculated using the E. T. Jaynes formalism. It boils down to determining the optimal distribution of 5 elements (C, H, O, N, S) among the 44 additive constituents of the solid phase (i. e., type II kerogen) and other individual components that are included in the system (CO2, H2O, H2S, NH3, CH4, C2H6, C3H8, i-C4H10, n-C4H10, i-C5H12, neo-C5H12, n-C5H12).

Comparison with the experiments showed that the results of the calculations do not contradict the experiments, with study the structure and changes in type II kerogen with increasing degree of catagenesis. In the analysis of changes in the concentrations of water, carbon dioxide and hydrogen sulfide, it is founded that kerogen could be not only a donor of atoms for gas components, but also their acceptor in contact with a high-energy fluid stream. It is shown that the determination of sulfur-containing atomic groups of kerogen by thermodynamic modelling yields gives more reliable results than molecular dynamics methods.

Established is that the concept of “methane-graphite death”, which takes place in the state of thermodynamic equilibrium in the transformation of organic matter, is erroneous. The calculation shows that the composition of the kerogen–gas system, in addition to methane and carbon, includes solid-phase heteroatom groups, various additive components of aromatic structures and gases, both organic and inorganic. The distribution of elements between the additive components of kerogen and gases in this system controls the pressure and temperature in a complex way. The nature of changes in hydrocarbon gas concentrations in equilibrium with type II kerogen indicates the presence of an “oil window” in low-warmed zones within 2–4 km depths.

Keywords

type II kerogen, catagenesis, “oil window”, equilibrium thermodynamics, Jaynes formalism.

REFERENCES

Behar, F., & Vandenbroucke, M. (1987). Chemical modelling of kerogens. Organic Geochemistry, 11, 15-24.
https://doi.org/10.1016/0146-6380(87)90047-7
 
Behar, F., Kressmann, S., Rudkiewicz, J. L., & Vandenbroucke, M. (1992). Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry, 19 (1-3), 173-189.
https://doi.org/10.1016/0146-6380(92)90035-V
 
Behar, F., Roy, S., & Jarvie, D. (2010). Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling. Organic Geochemistry, 41, 1235-1247.
https://doi.org/10.1016/j.orggeochem.2010.08.005
 
Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53 (6), 2498-2508.
https://doi.org/10.1021/ie4033999
 
Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In B. Durand (Ed.), Kerogen, Insoluble Organic Matter from Sedimentary Rocks (pp. 13-34). Paris: Editions Technip.
 
Forsman, J. P., & Hunt, J. M. (1958). Insoluble organic matter (kerogen) in sedimentary rocks. Geochimica et Cosmochimica Acta, 15, 170-182.
https://doi.org/10.1016/0016-7037(58)90055-3
 
Helgeson, H., Richard, L., McKenzie, W., Norton, D., & Schmitt, A. (2009). A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochimica et Cosmochimica Acta, 73 (3), 594-695.
https://doi.org/10.1016/j.gca.2008.03.004
 
Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., … Behar, F. (2007). Direct Characterization of Kerogen by X-ray and SolidState 13C Nuclear Magnetic Resonance Methods. Energy Fuels, 21 (3), 1548−1561.
https://doi.org/10.1021/ef060321h
 
Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti [Thermodynamics of abyssal hydrocarbons in the forecast of oil and gas deposits]. Kyiv: Naukova dumka. [in Ukrainian]
 
Khokha, Yu., Lyubchak, O., & Yakovenko, M. (2018). Vplyv temperaturnoho rezhymu na hazoheneratsiinyi potentsial huminovykh kyslot orhanichnoi rechovyny [Effect of temperature flow on gas-generating potential of humic acids of organic matter]. Geology and Geochemistry of Combustible Minerals, 3-4 (176-177), 49-63. [in Ukrainian]
 
Khokha, Yu., Lyubchak, O., & Yakovenko, M. (2019). Enerhiia Hibbsa utvorennia komponentiv pryrodnoho hazu v osadovykh tovshchakh [Gibbs Free Energy of natural gas components formation in sedimentary strata]. Geology and Geochemistry of Combustible Minerals, 2 (179), 37-47. [in Ukrainian]
 
Lindsey, A. S., & Jeskey, H. (1957). The Kolbe-Schmitt Reaction. Chemical Reviews, 57 (4), 583-620.
https://doi.org/10.1021/cr50016a001
 
Lyubchak, O. V., Khokha, Yu. V., & Yakovenko, M. B. (2018). Spivvidnoshennia strukturnykh elementiv vuhlevodnevoi skladovoi arhilitiv skhidnykh karpat za formalizmom Dzheinsa [Correlation of the hydrocarbon components structural elements of the Eastern Carpathians argillites by the Jaynes’ formalism]. Visnyk of Karazin Kharkiv National University, series “Geology. Geography. Ecology”, 49, 83-94. [in Ukrainian]
 
Nikonov, V. N. (1961). Tyazhelyye uglevodorody i ikh sootnosheniye v gazakh neftyanykh i gazovykh zalezhey. Geologiya nefti i gaza, 8, 15-21. [in Russian]
 
Planche, H. (1996). Finite time thermodynamics and the quasi-stability of closed-systems of natural hydrocarbon mixtures. Geochimica et Cosmochimica Acta, 22 (60), 4447-4465.
https://doi.org/10.1016/S0016-7037(96)00271-2
 
Stuermer, D. H., Peters, K. E., & Kaplan, I. R. (1978). Source indicators of humic substances and proto-kerogen. Stable isotope ratios, elemental compositions and electron spin resonance spectra. Geochimica et Cosmochimica Acta, 42 (7), 989-997.
https://doi.org/10.1016/0016-7037(78)90288-0
 
Tisso, B., & Velte, D. (1981). Obrazovaniye i rasprostraneniye nefti. Moskva: Mir. [in Russian]
 
Tomic, J., Behar, F., Vandenbroucke, M., & Tang, Y. (1995). Artificial maturation of Monterey kerogen (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur. Organic Geochemistry, 23 (7), 647-660.
https://doi.org/10.1016/0146-6380(95)00043-E
 
Ungerer, P., Collell, J., & Yiannourakou, M. (2015). Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity. Energy Fuels, 29 (1), 91-105.
https://doi.org/10.1021/ef502154k
 
Van Krevelen, D. W., & Chermin, H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1 (2), 66-80.
https://doi.org/10.1016/0009-2509(51)85002-4
 
Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719-833
https://doi.org/10.1016/j.orggeochem.2007.01.001
 
Zhao, T., Li, X., Zhao, H., Li, M. (2017). Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content. Fuel, 190 (15), 198-207.
https://doi.org/10.1016/j.fuel.2016.11.027
Posted on

EFFECT OF TEMPERATURE FLOW ON GAS-GENERATING POTENTIAL OF HUMIC ACIDS OF ORGANIC MATTER

Home > Archive > No. 3-4 (176-177) 2018 > 49-62


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 49-62.

Yuri KHOKHA, Oleksandr LYUBCHAK, Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Experiments on artificial “maturation” of humic acids, kerogen, model compounds of organic compounds and individual hydrocarbons up to 4000 hours carried out in a wide range of pressures and temperatures were considered. An analysis of trends in the change in the composition of gases over time, which was formed during experiments, was carried out. It is concluded that in the considered experiments the state of thermodynamic equilibrium is not achieved; they only show tendencies in the changes of the solid, liquid and gas phase. A method for simulating artificial maturation of organic compounds in the process of catagenesis, based on the Jaynes formalism, was developed. An equilibrium concentration of gases in contact with a humic substance depending on temperature is calculated. The results of the calculation are in good correspondence with the trends shown by experimental studies.

Keywords

gas-generation, humic acids, catagenesis, Jaynes formalism, equilibrium thermodynamics.

Referenses

Behar, F., Roy, S., & Jarvie, D. (2010). Artificial maturation of a Type I kerogen in closed system: Mass balance and modeling. Organic Geochemistry, 41, 1235-1247.
https://doi.org/10.1016/j.orggeochem.2010.08.005
 
Behar, F., Vandenbroucke, M., & Teermann, S. C. et al. (1995). Experimental simulation of gas generation from coals and a marine kerogen. Chemical Geology, 126, 247-260.
https://doi.org/10.1016/0009-2541(95)00121-2
 
Carrl, A. D., Snape, C. E., & Meredith, W. et al. (2009). The effect of water pressure on hydrocarbon generation reactions: some inferences from laboratory experiments.Petroleum Geoscience, 15, 17-26.
https://doi.org/10.1144/1354-079309-797
 
Domini, F. (1991). High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and l-phenyl-butane. Is pressure an important geochemical parameter? Organic Geochemistry, 5 (17), 619-634.
https://doi.org/10.1016/0146-6380(91)90005-5
 
Hasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307, 59-70.
https://doi.org/10.1016/j.epsl.2011.04.034
 
Helgeson, H., Richard, L., & McKenzie, W. et al. (2009). A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochimica et Cosmochimica Acta, 73 (3), 594-695.
https://doi.org/10.1016/j.gca.2008.03.004
 
Khokha, Yu., Liubchak, O., & Khramov, V. (2013). Termodynamichna model budovy orhanichnoi rechovyny vuhillia za yoho elementnym skladom. Heolohiia i heokhimiia horiuchykh kopalyn, 1-2 (162-163), 71-78. [in Ukrainian]
 
Landais, P., Michels, R., & Elie, M. (1994). Are time and temperature the only constraints to the simulation of organic matter maturation? Organic Geochemistry, 22, 617-630.
https://doi.org/10.1016/0146-6380(94)90128-7
 
Lazarov, L., & Angelova, G. (1990). Struktura i reaktsii uglei. Sofiya: Izdatel’stvo Bolgarskoi akademii nauk. [in Russian]
 
Li, W., Tang, Y., Zhao, Q., & Wei, Q. (2015). Sulfur and nitrogen in the high-sulfur coals of the Late Paleozoic from China. Fuel, 155, 115-121.
https://doi.org/10.1016/j.fuel.2015.04.002
 
Lin, X., Wang, C., & Ideta, K. et al. (2014). Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments. Fuel, 118, 257-264.
https://doi.org/10.1016/j.fuel.2013.10.081
 
Liubchak, O. V., Khokha, Yu. V., & Yakovenko, M. B. (2018). Spivvidnoshennia strukturnykh elementiv vuhlevodnevoi skladovoi arhilitiv skhidnykh Karpat za formalizmom Dzheinsa. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriia. Heolohiia. Heohrafiia. Ekolohiia, 49, 15-23. [in Ukrainian]
 
Michels, R., Landais, P., Philp, R. P., & Torkelson, B. E. (1995). Influence of Pressure and the Presence of Water on the Evolution of the Residual Kerogen during Confined, Hydrous, and High-pressure Hydrous Pyrolysis of Woodford Shale.Energy & Fuels, 9, 204-215.
https://doi.org/10.1021/ef00050a002
 
Monthioux, M., Landais, P., & Monin J.-C. (1985). Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Organic Geochemistry, 4 (8), 275-292.
https://doi.org/10.1016/0146-6380(85)90006-3
 
Pearson, D. B., III. (1981). Experimental simulation of thermal maturation in sedimentary organic matter (Vol. 1 and 2). (Diss., Rice University). Houston. https://scholarship.rice.edu/handle/1911/15638
 
Planche, H. (1996). Finite time thermodynamics and the quasi-stability of closed-systems of natural hydrocarbon mixtures. Geochimica et Cosmochimica Acta, 22 (60), 4447-4465.
 
Price, L. C., & Wenger, L. M. (1992). The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Organic Geochemistry, 19, 141-159.
https://doi.org/10.1016/0146-6380(92)90033-T
 
Qin, Z., Zhang, H., & Dai, D. et al. (2014). Study on occurrence of sulfur in different group components of Xinyu clean coking coal. Journal of Fuel Chemistry and Technology, 42 (11), 1286-1294.
https://doi.org/10.1016/S1872-5813(14)60050-5
 
Rice, J., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 5 (17), 635-648.
https://doi.org/10.1016/0146-6380(91)90006-6
 
Stalker, L., Farrimond, P., & Larter, S. (1994). Water as an oxygen source for the production of oxygenated compounds (including CO2 precursors) during kerogen maturation. Organic Geochemistry, 3-5 (22), 477-486.
https://doi.org/10.1016/0146-6380(94)90120-1
 
Stall, D., Vestram, E., & Zinke, G. (1971). Khimicheskaya termodinamika organicheskikh soedinenii. Moskva: Mir. [in Russian]
 
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Springer-Verlag.
https://doi.org/10.1007/978-3-642-87813-8
 
Traibus, M. (1970). Termostatika i termodinamika. Moskva: Energiya. [in Russian]
 
Tsutsuki, K., & Kuwatsuka, S. (1978). Chemical studies on soil humic acids. Soil Science and Plant Nutrition, 24 (4), 547-560.
https://doi.org/10.1080/00380768.1978.10433134
 
Van Krevelen, D., Chermin, H. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1 (2), 66-80.
https://doi.org/10.1016/0009-2509(51)85002-4
 
Wuu-Liang, H. (1996). Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. Organic Geochemistry, 2 (24), 233-241.
https://doi.org/10.1016/0146-6380(96)00032-0
 
Xin H., Wang D., & Qi X. et al. (2014). Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Processing Technology, 118, 287-295.
https://doi.org/10.1016/j.fuproc.2013.09.011
 
Yonebayashi, K., & Hattori, T. (1988). Chemical and biological studies on environmental humic acids. Soil Science and Plant Nutrition, 34 (4), 571-584.
https://doi.org/10.1080/00380768.1988.10416472
 
Zixiang, W., Yongli, W., & Baoxiang, W. et al. (2017). Hydrocarbon gas generation from pyrolysis of extracts and residues of low maturity solid bitumens from the Sichuan Basin, China. Organic Geochemistry, 103, 51-62.
https://doi.org/10.1016/j.orggeochem.2016.10.011