Posted on

CHEMICAL COMPOSITION OF THE PRECURSOR COMPOUNDS AND MECHANISMS OF HUMIC SUBSTANCES FORMATION AT THE POST-SEDIMENTATION STAGE OF THE ORGANIC COMPOUNDS EVOLUTION

Home > Archive > No. 1–2 (189–190) 2023 > 41–53


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 41–53

https://doi.org/10.15407/ggcm2023.189-190.041

Yurii KHOKHA, Myroslava YAKOVENKO, Oksana SENIV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: khoha_yury@ukr.net; myroslavakoshil@ukr.net

Abstract

The publication is a review that presents in a concise form information about the chemical composition of living matter components and the mechanisms of their transformations, the result of which is the geopolymers formation. Among geopolymers, humic substances, including humic and fulvic acids, attract our attention. The relevance of this review lies in the importance of understanding multidirectional reactions, the result of which is the secondary polymerization of organic matter chemically active components that have passed the biodegradation barrier at the stage of sedimentation and diagenetic transformations. Humic substances, in their turn, are precursors of kerogen, therefore, an understanding of reaction mechanisms and their products provides complete information about the conditions of various types of kerogen formation, which are characterized by different ability to produce oil and gas. We paid special attention to polyphenols, which have high chemical activity and the ability to react with increasing molecular weight. In addition to the traditional Maillard reaction, among the condensation mechanisms we considered oxidative crosslinking of phenols, oxidative condensation of polyunsaturated fatty acids, and esterification of fatty acids with phenols. For each mechanism, the conditions for its implementation and probable contribution to the formation of humic substances are briefly considered. Analysis of probable mechanisms of formation of humic substances showed that condensation reactions can occur under geochemical conditions of sedimentation and early diagenesis. At the same time, their speeds are low, and the precursors necessary for the reactions, formed as a result of biological degradation, are contained in very small concentrations. We conclude that kerogen contains two components – primary, which enters its structure without any significant changes, and secondary, which is the result of a series of complex multidirectional reactions.

Keywords

organic geochemistry, polycondensation, humic substances, depolymerization, kerogen evolution

Referenses

Chen, Z., Wu, J., Ma, Y., Wang, P., Gu, Z., & Yang, R. (2018). Biosynthesis, metabolic regulation and bioactivity of phenolic acids in plant food materials. Shipin Kexue/Food Science, 39(7), 321–328.

Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In B. Durand (Ed.), Kerogen, Insoluble Organic Matter from Sedimentary Rocks (pp. 13–34). Paris: Editions Technip.

Harvey, G. R., & Boran, D. A. (1985). Geochemistry of humic substances in seawater. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 233–247). New York, Chichester: Wiley & Sons.

Harvey, G. R., Boran, D. A., Chesal, L. A., & Tokar, J. M. (1983). The structure of marine fulvic and humic acids. Marine Chemistry, 12(2–3), 119–132. https://doi.org/10.1016/0304-4203(83)90075-0

Hatcher, P. G., Breger, I. A., Maciel, G. E., Szeverenyi, N. M. (1985). Geochemistry of humin. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 275–302). New York, Chichester: Wiley & Sons.

Huc, A. Y., & Durand, B. M. (1977). Occurrence and significance of humic acids in ancient sediments. Fuel, 56(1), 73–80. https://doi.org/10.1016/0016-2361(77)90046-1

Jokic, A., Wang, M. C., Liu, C., Frenkel, A. I., & Huang, P. M. (2004). Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: the role of δ-MnO2. Organic Geochemistry, 35(6), 747–762. https://doi.org/10.1016/j.orggeochem.2004.01.021

Khant, D. (1982). Geokhimiya i geologiya nefti i gaza. Moskva: Mir. [in Russian]

Kononova, M. M. (1963). Organicheskoye veshchestvo pochvy, ego priroda, svoystva i metody izucheniya. Moskva: Izdatelstvo AN SSSR. [in Russian]

Kontorovich, A. E. (2004). Ocherki teorii naftidogeneza. Novosibirsk: IGiG SO AN SSSR. [in Russian]

van Krevelen, D. W. (1961). Coal: typology, chemistry, physics, constitution. Elsevier Publishing Company.

Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and Biological Functions in Plants. International journal of molecular sciences, 19(2), 335. https://doi.org/10.3390/ijms19020335

Maillard, L.C. (1912). Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodique. Comptes rendus de l’Académie des Sciences, 154, 66–68.

Martin, J. P., & Haider, K. (1971). Microbial activity in relation to soil humus formation. Soil Science, 111(1), 54–63. https://doi.org/10.1097/00010694-197101000-00007

Romankevich, E. A. (1977). Geokhimiya organicheskogo veshchestva v okeane. Moskva: Nauka. [in Russian]

Schnitzer, M. (1978). Humic substances: chemistry and reactions. In M. Schnitzer & S. U. Khan (Eds.), Developments in Soil Science: Vol. 8. Soil Organic Matter (pp. 1–64). Amsterdam: Elsevier. https://doi.org/10.1016/S0166-2481(08)70016-3

Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

Tisso, B., & Velte, D. (1981). Obrazovaniye i rasprostraneniye nefti. Moskva: Mir. [in Russian]

Vandenbroucke, M. (2003). Kerogen: from types to models of chemical structure. Oil & gas science and technology, 58(2), 243–269. https://doi.org/10.2516/ogst:2003016

Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833. https://doi.org/10.1016/j.orggeochem.2007.01.001

Vandenbroucke, M., Pelet, R., & Debyser, Y. (1985). Geochemistry of humic substances in marine sediments. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 249–273). New York, Chichester: Wiley & Sons.

Vassoyevich, N. B. (1986). Izbrannyye trudy: Geokhimiya organicheskogo veshchestva i proiskhozhdeniye nefti. Moskva: Nauka. [in Russian]

Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Foodchemistry, 128(3), 573–584. https://doi.org/10.1016/j.foodchem.2011.03.075


Posted on

PROSPECTS OF USING PEATS IN THE LVIV REGION FOR HUMATES EXTRACTION

Home > Archive > No. 1–2 (183–184) 2021 > 76–88


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 76–88.

https://doi.org/10.15407/ggcm2021.01-02.076

Myroslava YAKOVENKO1, Yury KHOKHA2, Oleksandr LYUBCHAK3

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: 1myroslavakoshil@ukr.net, 2khoha_yury@ukr.net, 3lubchak1973@ukr.net

Abstract

The paper briefly considers the problems of the Ukraine’s peat industry and identifies the reasons for its decline, including the low quality of peat as an energy source. We assume that the use of peat for briquetting will be stopped in the near future due to economic and political factors. On the other hand, peat can be a source of chemicals and their mixtures that have found application in agriculture and industry. It is known that the addition of sodium humates to the drilling mud improves its rheological properties and makes them environmentally safe, especially when passing through aquifers. We set a goal to determine the geological, technological and geochemical characteristics of peat in the Lviv Region, to establish its suitability for the humic acids extraction and to identify promising deposits for future processing. The study of the peats microelement composition of the Radekhiv district (Lviv Region) showed that the studied peats are not contaminated with heavy metals, as evidenced by the values of pollution indices. It is shown that the content of chemical elements in peats of Lviv Region is less than clarke in the lithosphere, soils and terrestrial plants. There is a tendency to scatter chalcophilic and most siderophilic elements, to a lesser extent lithophilic. Determining the yield of total and free humic acids testified to the possibility of using peat in the Lviv Region to extract humates. The studied samples were characterized by a high content of humic acids in terms of dry weight. Preliminary assessment of deposits suitability for peat extraction was performed according to the following parameters: field reserves, degree of decomposition, humus content and ash content. After constructing maps of these geochemical characteristic’s distribution, we have identified several of the most promising deposits in the Lviv Region: in the Kamyanka-Buzka district – Didylivske and Yarychivske deposits; in the Mykolayiv district – Verbizke, Saikivske, Demnyanske and Trostyanetske.

Keywords

peat, humic substances, microelements, geochemical analysis, ash content, degree of decomposition.

Referenses

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San Francisco: Academic Press.

Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavlenie geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (L’vovskaya oblast’) (Vol. 1). [Research paper]. L’vov: L’vovskaya geologicheskaya ekspeditsiya. [in Russian]

Khokha, Yu. V., Yakovenko, M. B., & Lukianchuk, D. V. (2013). Heoloho-heokhimichni ta heotekhnolohichni osoblyvosti torfianykh rodovyshch Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(164–165), 56–61. [in Ukrainian]

Klos, V. R., Birke, M., Zhovynskyi, E. Ya., Akinfiiev, H. O., Amaiyukeli, Yu. A., & Klamens, R. (2012). Rehionalni heokhimichni doslidzhennia gruntiv Ukrainy v ramkakh mizhnarodnoho proektu z heokhimichnoho kartuvannia silskohospodarskykh ta pasovyshchnykh zemel Yevropy (GEMAS). Poshukova ta ekolohichna heokhimiia, 1, 51–66. [in Ukrainian]

Lishtvan, I. I., Bazin, E. T., Gamayunov, N. I., & Terent’ev, A. A. (1989). Fizika i khimiya torfa. Moskva: Nedra. [in Russian]

Voitkevich, G. V., Miroshnikov, A. E., Povarennykh, A. S., & Prokhorov, V. G. (1970). Kratkii spravochnik po geokhimii. Moskva: Nedra. [in Russian]

Yakovenko, M. B., Khokha, Yu. V., & Liubchak, O. V. (2020). Rozpodil molibdenu v nyzynnykh torfakh Lvivskoi oblasti. In Resursy pryrodnykh vod Karpatskoho rehionu. Problemy okhorony ta ratsionalnoho vykorystannia: materialy XIX Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 8–9 zhovtnia 2020 r.) (pp. 210–214). Lviv: Natsionalnyi universytet “Lvivska politekhnika”. [in Ukrainian]