Posted on

OBSERVANCE OF THE PRINCIPLE OF ENVIRONMENTAL CONVERSION IN THE EXTRACTION OF HYDROCARBON RAW MATERIAL ON THE EXAMPLE OF THE DOBRIVLIANY GAS CONDENSATE FIELD (Precarpathian oil-and-gas-bearing region)

Home > Archive > No. 3–4 (195–196) 2024 > 87–99


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 87–99

https://doi.org/10.15407/ggcm2024.195-196.087

Vasyl HARASYMCHUK1, Halyna MEDVID1, Oleh CHEBAN2, Olha TELEHUZ1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Ltd “NGSN”, Kyiv, Ukraine, e-mail: ovcheb2015@gmail.com

Abstract

The implementation of the principle of ecological conversion during the extraction of hydrocarbons at the Dobrivliany gas condensate field consists in the return of highly mineralized and enriched with microcomponents and organic matter produced waters to depleted horizons.

From 2022 the volumes of produced water reach 275 m3/year. From the beginning of the development of the field to the end of 2023, 572.37 m3 of produced water were from the beginning of the development of the deposit to the end of 2023, 250 m were accumulated and utilized.

It has been established that the chemical parameters of produced waters are identical to those of the aquifers of the field. They have a calcium-sodium chloride, magnesium-sodium composition, with increased mineralization values. Total dissolved solids of waters, depending on the aquifer from which they came, is 28.5–100.3 g/dm3. Its lower values are characteristic of the Badenian-Sarmatian aquifer complex, while higher values are characteristic of the Mesozoic-Carpathian complex. The values of total dissolved solids of these waters almost do not change during 2017–2023.

Total dissolved solids of waste water mixtures in collection tanks (settling tanks) during the period of analytical research was 31.72–77.66 g/dm3. The waters were characterized by a slightly acidic reaction (pH 6.07–6.80). The content of total Ferrum does not exceed 16.8 mg/dm3, ammonium – 105.1 mg/dm3, Bromine – 193 mg/dm3, Iodine – 42.3 mg/dm3, petroleum products – no more than 7.3 mg/dm3, methanol – < 0.1 mg/dm3.

Injection of produced waters is carried out through well No. 4. The reservoir-collector ND-12a in this well is characterized by favourable conditions: average porosity – 19.5 %, permeability – 0.1–0.8 mD, thickness – up to 86 m. It is well isolated by waterproof rocks that provide hydrodynamic closure of the system. The acceptability of well No. 4 is 15 m3/h (360 m3/day). The geochemical compatibility of produced waters with waters of the horizon ND-12a was evaluated, which does not involve precipitation of salts and clogging of the pore space. The results of monitoring studies of the chemical composition of the waters of the Quaternary aquifer of the field site and nearby settlements indicate the absence of the impact of the utilization of produced waters.

Keywords

ecological conversion, gas-condensate field, produced waters, utilization, monitoring

Referenses

Al-Hubail, J., & El-Dash, K. (2006). Managing Disposal of Water Produced with Petroleum in Kuwait. Journal of Environmental Management, 79, 43–50. https://doi.org/10.1016/j.jenvman.2005.05.012

Clark, C. E., & Veil, J. A. (2009). Produced water volumes and management practices in the United States [Technical Report]. https://doi.org/10.2172/1007397

DK “Ukrtranshaz”. (2004). Pidzemni skhovyshcha hazu. Rehlament povernennia suputno-plastovykh vod u nadra (SOU 60.3-30019801-009-2004). Kyiv. [in Ukrainian]

Haneef, T., Mustafa, M. R. U., Farhan Yasin, H. M., Farooq, S., & Hasnain Isa, M. (2020). Study of Ferrate(VI) oxidation for COD removal from wastewater. IOP Conference Series: Earth and Environmental Science, 442, 012007. https://doi.org/10.1088/1755-1315/442/1/012007

Hanson, B. R., & Davies, S. H. (1994). Review of potential technologies for the removal of dissolved components from produced water. Chemical Engineering Research and Design, 72, 176–188.

Harasymchuk, V. Yu., & Kolodii, V. V. (2002). Pokhodzhennia i umovyny formuvannia pidzemnykh vod Lopushnianskoho naftovoho rodovyshcha u pivdenno-skhidnii chastyni Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3, 21–36. [in Ukrainian]

Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu (DSanPiN 2.2.4-171-10). (2010). Kyiv. [in Ukrainian]

Ivaniuta, M. M. (Ed.). (1998). Atlas rodovyshch nafty i hazu Ukrainy: Vol. 4. Zakhidnyi naftohazonosnyi rehion. Lviv: Tsentr Yevropy. [in Ukrainian]

Kolodii, V. V. (2010). Hidroheolohiia. Pidruchnyk. Lviv: Vydavnychyi tsentr LNU imeni Ivana Franka. [in Ukrainian]

Medvid, H., Cheban, O., Kost, M., Telehuz, O., Harasymchuk, V., Sakhniuk, I., Maikut, O., & Kalmuk, S. (2022). Ekoloho-heokhimichna kharakterystyka pryrodnykh vod v mezhakh vplyvu Dobrivlianskoho hazokondensatnoho rodovyshcha. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(187–188), 115–126. https://doi.org/10.15407/ggcm2022.01-02.115 [in Ukrainian]

Nimets, N. N., Brusentseva, T. V., & Nimets, O. D. (2019). Pidvyshchennia ekolohichnoi bezpeky vydobuvannia vuhlevodniv shliakhom vyvchennia sumisnosti suputno-plastovykh vod pry povernenni v nadra. Visnyk Natsionalnoho tekhnichnoho universytetu “KhPI”. Seriia: Innovatsiini doslidzhennia u naukovykh robotakh studentiv, 15, 42–50. https://doi.org/10.20998/2220-4784.2019.15.08 [in Ukrainian]

TOV “Burproekt”. (2018). Utochnenyi proekt doslidno-promyslovoi rozrobky Dobrivlianskoho rodovyshcha. Lviv. [in Ukrainian]

TOV “Stryinaftohaz”. (2020). Tekhnolohichnyi proekt povernennia suputno-plastovykh vod (SPV) u nadra Dobrivlianskoho rodovyshcha. Lviv. [in Ukrainian]

UkrNDIhaz. (2013). Metodyka vyznachennia pryvnesenykh komponentiv ta vymohy do yikh vmistu pry povernenni suputno-plastovykh vod u nadra (SOU 09.1-30019775-004:2013). Kyiv. [in Ukrainian]


Posted on

EVOLUTION OF ECOLOGICAL CONVERSION METHODS OF UNCONVENTIONAL COMBUSTIBLE MINERALS AT THE WESTERN REGION OF UKRAINE

Home > Archive > No. 3–4 (195–196) 2024 > 73–86


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 73–86

https://doi.org/10.15407/ggcm2024.195-196.073

Myroslav PODOLSKY, Oleg GVOZDEVICH, Lesya KULCHYTSKA-ZHYGAYLO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: cencon@ukr.net

Abstract

All types of combustible minerals are located on the territory of Ukraine – oil, natural gas, gas condensate, coal, peat, oil shale, but the amounts of their extraction and methods of use in total do not ensure the necessary level of energy state security. The additional difficulties in the energy sector were created by long-term hostilities in the east and south parts of the country. The unavailability of most extraction capacities of primary energy resources and the loss of a significant part of electricity generation negatively affected the possibilities of socio-economic development. Against this background, increasing the efficiency of the use of unconventional fuels and energy resources, in particular in the western region, taking into consideration the global trend of renewed interest in the ecological use of fossil fuels, waste and biomass, is relevant and timely.

In the general case, unconventional combustible minerals can be included on-balance and off-balance reserves of primary types of energy materials and amounts of technogenic wastes from coal mining, coal beneficiation, oil refining etc., which by its energy or geological-spatial conditions, currently not meet the economic criteria for extraction and use by traditional methods.

The article provides a comparative overview of known methods of conversion (processing) of unconventional fuel, in particular pyrolysis, hydrogenation and gasification. It is shown that according to the types of processed raw materials, indicators of technological processes and characteristics of the obtained products, gasification methods are the most suitable for ecological conversion of unconventional fuels and wastes. The developed direct and combined methods of ecological conversion of unconventional solid combustible fossils and carbon-containing wastes to obtain gaseous, liquid and solid fuels are presented, as well as the prospects of their implementation in the western region of Ukraine are considered.

Keywords

unconventional combustible minerals, carbon-containing wastes, ecological conversion, western region of Ukraine

Referenses

Bryk, D., Hvozdevych, O., Kulchytska-Zhyhailo, L., & Podolskyi, M. (2019). Tekhnohenni vuhlevmisni obiekty Chervonohradskoho hirnychopromyslovoho raionu ta deiaki tekhnichni rishennia yikhnoho vykorystannia. Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 45–65. https://doi.org/10.15407/ggcm2019.04.045 [in Ukrainian]

Bryk, D. V., Podolskyi, M. R., & Hvozdevych, O. V. (2014). Fizyko-tekhnichne obgruntuvannia vyrobnytstva syntetychnoho palyva z vuhillia (na prykladi Lvivsko-Volynskoho baseinu). Uglekhimicheskii zhurnal, 3–4, 69–74. http://nbuv.gov.ua/UJRN/ukhj_2014_3-4_14 [in Ukrainian]

Bryk, D., Podolskyi, M., Khokha, Yu., Liubchak, O., Kulchytska-Zhyhailo, L., & Hvozdevych, O. (2021). Nekondytsiini vuhletsevmisni horiuchi kopalyny ta sposoby yikhnoho termokhimichnoho pereroblennia. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(183–184), 89–109. https://doi.org/10.15407/ggcm2021.01-02.089 [in Ukrainian]

Falbe, Iu. M. (1980). Khimicheskie veshchestva iz uglia. Moskva: Khimiia. [in Russian]

Hvozdevych, O. V., Podolskyi, M. R., Kulchytska-Zhyhailo, L. Z., Poberezhskyi, A. V., & Buchynska, I. V. (2024). Sposib kombinovanoi konversii nekondytsiinoho vuhillia (Zaiavka na vydachu patentu Ukrainy na vynakhid (korysna model) vid 30.04.2024). Rishennia pro derzhavnu reiestratsiiu korysnoi modeli, “Ukrainskyi natsionalnyi ofis intelektualnoi vlasnosti ta innovatsii” (UKRNOIVI) vid 10.10.2024 r. [in Ukrainian]

Kotliarov, Ye. I., Shulha, I. V., Kyzym, M. O., & Khaustova, V. Ye. (2024). Tekhniko-ekonomichna otsinka riznykh sposobiv hazyfikatsii buroho vuhillia dlia vyrobnytstva syntetychnoho motornoho palyva. Biznes Inform, 2, 128–138. https://doi.org/10.32983/2222-4459-2024-2-128-138 [in Ukrainian]

Podolskyi, M., Bryk, D., Kulchytska-Zhyhailo, L., & Hvozdevych, O. (2021). Vykorystannia horiuchykh kopalyn v konteksti tsilei staloho rozvytku Ukrainy ta hlobalnykh zmin navkolyshnoho seredovyshcha. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 109–125. https://doi.org/10.15407/ggcm2021.03-04.109 [in Ukrainian]

Podolskyi, M. R., Hvozdevych, O. V., Bryk, D. V., & Khokha, Yu. V. (2020a). Reaktor dlia termichnoho pereroblennia vuhletsevmisnoi syrovyny (Patent na korysnu model Ukrainy № 144101). Biuleten, 17. https://sis.nipo.gov.ua/uk/search/detail/1451514/ [in Ukrainian]

Podolskyi, M. R., Hvozdevych, O. V., Bryk, D. V., & Khokha, Yu. V. (2020b). Sposib termichnoho pereroblennia vuhletsevmisnoi syrovyny (Patent na korysnu model Ukrainy № 141323). Biuleten, 7. https://sis.nipo.gov.ua/uk/search/detail/1423059/ [in Ukrainian]

Shilling, G., Bonn, B., & Kraus, U. (1986). Gazifikatciia uglia: gornoe delo – syre – energiia. Moskva: Nedra. [in Russian]

Wang, T., & Stiegel, G. J. (2016). Integrated Gasification Combined Cycle (IGCC) Technologies. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100167-7.00001-9