Posted on

INNOVATIVE STUDY COMPLEX OF COMPLEXLY STRUCTURED HYDROCARBON RESERVOIR ROCKS, BASED ON PETROPHYSICAL AND GEOCHEMICAL PARAMETERS (on the example of the Boryslav-Pokuttia zone of the Pre-Carpathian depression)

Home > Archive > No. 1–2 (193–194) 2024 > 130–140


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 130–140

https://doi.org/10.15407/ggcm2024.193-194.130

Roman-Danyil KUCHER, Oksana SENIV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The article examines methods of studying the capacity-filtration properties of reservoir rocks of hydrocarbon deposits and transformation processes and the state of kerogen depletion within the Boryslav-Pokuttia zone of the Pre-Сarpathian depression.

The complex stressed state of rocks, which arises because of the action of geodynamic stresses, and the processes of catagenetic changes cause the development of secondary pore-crack and crack-cavernous reservoirs. Crack formation is caused by deformation and depends on the mechanical properties of rocks. The development of traps, pore-crack and crack-cavernous reservoirs is associated with rock loosening zones, which tend to tectonic disturbances and to places of intrusion of fluids from great depths into the sedimentary layer. At the same time, two multidirectional processes – thermal degradation and consolidation under the influence of pressure – cause changes that occur in the structure of kerogen during its evolution.

Based on the results of the analysis of the actual and theoretical material, the optimal methodical set of studies of the most important characteristics of the reservoirs and the processes of kerogen evolution for the considered zone is substantiated. An analysis of the geological and petrophysical characteristics of the Oligocene deposits of the Inner Zone of the Pre-Carpathian Trough was carried out and database were formed.

It has been established that pore-crack and crack reservoirs have a complex structure, and their distribution and capacity are controlled by two factors of different nature – lithological-facies and structural-deformation. It was found that thermodynamic modelling models – maximization of entropy and constants of independent chemical reactions – provide reliable results of the distribution of elements between the components of complex heterogeneous and homogeneous geochemical systems. It is shown that the chosen method of calculating the Gibbs energy of individual components of geochemical systems has sufficient accuracy for use in the above models.

Keywords

Boryslav-Pokuttia zone, complicated reservoir rocks, petrophysical and geochemical parameters

Referenses

Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498–2508. https://doi.org/10.1021/ie4033999

Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A code calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225(1). https://doi.org/10.3847/0067-0049/225/1/4

Chekalyuk, E. B. (1971). Termodinamicheskiye osnovy teorii mineralnogo proiskhozhdeniya nefti. Kiev: Naukova dumka. [in Russian]

Glushko, V. P. (1972). Termodinamicheskiye svoystva individualnykh veshchestv. Moskva: Nauka. [in Russian]

Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti. Kyiv: Naukova dumka. [in Ukrainian]

Khokha, Yu. V., Liubchak, O. V., & Yakovenko, M. B. (2019). Enerhiia Hibbsa utvorennia komponentiv pryrodnoho hazu v osadovykh tovshchakh. Heolohiia i heokhimiia horiuchykh kopalyn, 2(179), 37–46. https://doi.org/10.15407/ggcm2019.02.037 [in Ukrainian]

Koukkari, P. (2014). Introduction to constrained Gibbs energy methods in process and materials research. VTT Technical Research Centre of Finland. VTT Technology No. 160. https://publications.vtt.fi/pdf/technology/2014/T160.pdf

van Krevelen, D. W., & Chermin, H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1(2), 66–80. https://doi.org/10.1016/0009-2509(51)85002-4

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Chepil, P. M., Dryhant, D. M., Shlapinskyi, V. Ye., Koltun, Yu. V., Chepil, V. P., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kucher, R.-D. A., & Seniv, O. R. (2024). Obgruntuvannia optymalnoho metodychnoho kompleksu doslidzhen yemnisno-filtratsiinykh vlastyvostei kolektoriv ta protsesiv transformatsii kerohenu Boryslavsko-Pokutskoi zony Peredkarpatskoho prohynu. In Suchasni problemy nauk pro Zemliu: materialy XIII Vseukrainskoi konferentsii-shkoly (Kyiv, 10–12 kvitnia 2024 r.) (pp. 22–24). Kyiv. [in Ukrainian]

Kurovets, I., Hrytsyk, I., Prykhodko, O., Chepusenko, P., Kucher, Z., Mykhalchuk, S., Melnychuk, S., Lysak, Yu., & Petelko, L. (2021). Petrofizychni modeli vidkladiv menilitovoi svity olihotsenovoho flishu Karpat i Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 33–43. https://doi.org/10.15407/ggcm2021.03-04.033 [in Ukrainian]

Kurovets, I., Hrytsyk, I., Zubko, O., Prykhodko, O., & Kucher, R.-D. (2023). Aparaturno-metodychnyi kompleks doslidzhen petrofizychnykh vlastyvostei trishchynuvatykh porid-kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(191–192), 37−44. https://doi.org/10.15407/ggcm2023.191-192.037 [in Ukrainian]

Kurovets, I. M., Prytulka, H. Y., Sheremeta, O. V., Zubko, O. S., Osadchyi, V. H., Hrytsyk, I. I., Prykhodko, O. A., Kosianenko, H. P., Chepusenko, P. S., Shyra, A. I., Kucher, Z. I., & Oliinyk, K. A. (2006). Petrofizychni modeli skladnopobudovanykh kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 119–139. [in Ukrainian]

Kurovets, I., Zubko, O., Hrytsyk, I., Prykhodko, O., & Kucher, R.-D. (2023). Osoblyvosti formuvannia yemnisno-filtratsiinykh vlastyvostei porid-kolektoriv Vnutrishnoi zony Peredkarpatskoho prohynu. In Heofizyka i heodynamika: prohnozuvannia ta monitorynh heolohichnoho seredovyshcha: zbirnyk materialiv XI Mizhnarodnoi naukovoi konferentsii (Lviv, 10−12 zhovtnia 2023 r.) (pp. 109−112). Lviv. [in Ukrainian]

Pavliuk, M., Naumko, I., Lazaruk, Ya., Khokha, Yu., Krupskyi, Yu., Savchak, O., Rizun, B., Medvediev, A., Shlapinskyi, V., Kolodii, I., Liubchak, O., Yakovenko, M., Ternavskyi, M., Hryvniak, H., Triska, N., Seniv, O., & Huzarska, L. (2022). Rezerv naftohazovydobutku Zakhidnoho rehionu Ukrainy (Digital ed.). Lviv. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf [in Ukrainian]

Sanford, G., & McBride, B. J. (1994). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. NASA reference publication, 1311.

Stull, D. R., Westrum Jr., E. F., & Sinke, G. C. (1969). The Chemical Thermodynamics of Organic Compounds. NewYork: J. Wiley and Sons, Inc.

Tribus, M. (1961). Thermostatics and thermodynamics: an introduction to energy, information and states of matter, with engineering applications. Princeton: D. Van Nostrand Company Inc.