Posted on

LITHOLOGICAL-PETROPHYSICAL CHARACTERISTIC OF NEOGENE DEPOSITS OF TRANSCARPATHIAN OIL- AND GAS-BEARING AREA

Home > Archive > No. 1–2 (197–198) 2025 > 34–42


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 34–42

https://doi.org/10.15407/ggcm2025.197-198.034

Ihor KUROVETS, Ihor HRYTSYK, Zoriana KUCHER, Roman-Danyil KUCHER, Yulia LYSAK, Svitlana MELNYCHUK, Stepan MYKHALCHUK, Liudmyla PETELKO, Oleksandr PRYKHODKO, Pavlo CHEPUSENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: i.kurovets@gmail.com

Abstract

While searching and prospecting for hydrocarbon deposits, the efficiency of geological-prospecting works, exactly selection of optimal technologies of deposits discovering and their extraction, to a considerable extent depends on the availability of reliable information on probable types of reservoir rocks and their petrophysical properties. Here the results of researches of Neogene deposits of Transcarpathian deep of the Carpathian oil- and gas-bearing province were stated. Methods of researches contained an analysis of available geological-petrophysical information on lithological-petrographical, structural-textural peculiarities and petrophysical properties of deposits, laboratory investigations of core, mathematical-statistical processing of data, study of correlation ties between capacity-filtration and industrial-geophysical parameters, studies of the influence of geological factors upon the formation of different types of reservoir rocks.

In the Transcarpathian deep, industrial accumulation of gas were reveald in deposits of Badenian, Sarmatian and Pannonian and fractured ones. In the Badenian complex, gravelites, sandstones, aleurolites and at least tuffs and tuffites are reservoir rocks. Open porosity of sand resevoirs is from 8 to 22 per cent mainly, and permeability: (0.1–20.2) ∙ 10−3 μm2, open porosity of tuffaceous rocks varies from 3.7 to 24.4 per cent, and permeability from 0.1 ∙ 10−3 to 31.5 ∙ 10−3 μm2. Main role in improvement of capacity-filtration properties of reservoir rocks in undersalt thickness belongs to fracturing. In the Sarmatian deposits, sandstones and tuff rocks are reservoir rocks. Porosity of terrigenous reservoirs is from 10 to 20 per cent and permeability reaches 5 ∙ 10−3 μm2, porosity of tuffs and tuffites varies from 7.1 to 9 per cent, and permeability: (0.1–176) ∙ 10−3 μm2. Sand rocks that are characterizes by high capacity-filtration properties are known to be reservoir rocks in Pontian-Pannonian deposits. Open porosity is from 9.5 to 27 per cent, and permeability: (0.02–140) ∙ 10−3 μm2.

Thus, executed researches have indicated that in the sedimentary complex, reservoir rocks of different type from low-porous consolidated granular to composite-structured porous-fractured-cavernous were present that was caused by the influence of sedimentary, geotectonic, thermobaric, geothermical and other geological factors that rocks underwent in the course of their forming.

Keywords

Transcarpathian oil- and gas-bearing area, Neogene deposits, types of hydrocarbon reservoir rocks, lithological-petrophysical properties

Referenses

Artym, I. V., Kurovets, S. S., Zderka, T. V., Yarema, A. V., & Kurovets, I. M. (2019). Development of the rocks fracturing model on the Carpathian region example. In 18th International Conference on Geoinformatics – Theoretical and Applied Aspects. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201902064

Hafych, I. P., Liutyi, P. M., Ohar, V. V., & Sheremeta, O. V. (2000). Teoretychni ta prykladni problemy naftohazovoi heolohii: Vol. 1. Kolektory hazovykh rodovyshch Zakarpatskoho prohynu (pp. 179–183). Kyiv. [in Ukrainian]

Hafych, L. F., & Kurovets, I. M. (2002). Rezultaty petrofizychnykh doslidzhen porid-kolektoriv hazovykh rodovyshch Zakarpattia. In Nafta i haz Ukrainy – 2002: materialy VII Mizhnarodnoi konferentsii (Kyiv, 31 zhovtnia – 1 lystopada 2002 r.) (pp. 97). Kyiv. [in Ukrainian]

Hafych, L. F., & Kurovets, I. M. (2004). Neogene volcanic and volcanilastic reservoir rocks of gas fields in the Ukrainian Transcarpathian. In AAPG European Region Conference with GSA (Prague, October 10–13, 2004) (pp. 76–77). Prague.

Krupskyi, Yu. (2017). Novi uiavlennia pro heolohichnu budovu i perspektyvy naftohazonosnosti Zakhidnoho naftohazonosnoho rehionu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 76–77. [in Ukrainian]

Kurovets, I., Hrytsyk, I., Prykhodko, O., Chepusenko, P., Kucher, Z., Mykhalchuk, S., Melnychuk, S., Lysak, Yu., & Petelko, L. (2021). Petrofizychni modeli vidkladiv menilitovoi svity olihotsenovoho flishu Karpat i Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 33–43. https://doi.org/10.15407/ggcm2021.03-04.033 [in Ukrainian]

Kurovets, I., Lysak, Yu., Chepusenko, P., Mykhalchuk, S., Kucher, R.-D. (2019). Heoloho-petrofizychna kharakterystyka vidkladiv syluru Volyno-Podilskoi okrainy Skhidnoievropeiskoi platformy. Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 17–31. https://doi.org/10.15407/ggcm2019.04.017 [in Ukrainian]

Kurovets, I., Prytulka, H., Shyra, A., Shuflyak, Yu., & Peryt, T. M. (2011). Petrophysical properties of the Pre-Miocene rocks of the Outer zone of the Ukrainian Carpathian Foredeep. Annales Societatis Geologorum Poloniae, 81(3), 363–373.

Kurovets, S. S., Artym, I. V., & Kurovets, I. M. (2018). Researching the fracturing of the reservoir rocks. Journal of Hydrocarbon Power Engineering, 5(1), 1–6.

Maksymchuk, S., & Duchuk, S. (2017). Perspektyvy vidkryttia novykh skupchen vuhlevodniv v mezhakh Solotvynskoi ploshchi Zakarpatskoho prohynu (za danymy heofizychnykh i heokhimichnykh doslidzhen). Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 95–96. [in Ukrainian]

Pavliuk, M., Naumko, I., Lazaruk, Ya., Khokha, Yu., Krupskyi, Yu., Savchak, O., Rizun, B., Medvediev, A., Shlapinskyi, V., Kolodii, I., Liubchak, O., Yakovenko, M., Ternavskyi, M., Hryvniak, H., Triska, N., Seniv, O., & Huzarska, L. (2022). Rezerv naftohazovydobutku Zakhidnoho rehionu Ukrainy (Digital ed.). Lviv. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf [in Ukrainian]


Posted on

HYDROGEOLOGICAL ASPECTS OF THE GENESIS, MIGRATION AND FORMING OF HYDROCARBON FIELDS IN THE SOUTHERN PART OF THE PRE-BLACK SEA AQUIFEROUS BASIN

Home > Archive > No. 1–2 (197–198) 2025 > 26–33


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 26–33

https://doi.org/10.15407/ggcm2025.197-198.026

Ivanna KOLODIY1, Olena ANIKEYEVA2

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1ivannakolodiy@gmail.com; 2geolena@ukr.net

Abstract

The model of forming of hydrocarbon deposits in the aquatic part of the Pre-Black Sea aquiferous basin substantiates by the set of hydrogeochemical, gas-geochemical, geotemperature, and hydrodynamic data. The model is based on modern views on the geodynamic history of development and makes it possible to state that the formation of gas-vapour systems occurred in the lower reaches of the sedimentary stratum of the riftogen at high pressures and temperatures and the presence of water. The basis of gas-vapour systems was both thermocatalytic and subcrustal (mantle) gases. Active heat and mass transfer of fluids during Alpine tectonogenesis continues to this day, which is confirmed by geothermal anomalies caused by the upward discharge of groundwater, endogenous gases – methane, helium, carbon dioxide, hydrogen, etc. The probable migration paths are sublatitudinal disjunctive dislocations and decompression zones in areas where tensile forces were manifested against the background of regional compression, for example, in places where faults of different directions intersect. As a result of gas migration, especially through clayey rocks, sorption of heavy hydrocarbons occurred, which determined gas-geochemical zoning. Gas migration was realized in a free high-temperature gas-vapour phase, which filled the traps, displacing or compressing the formation water. Active heat and mass transfer affects to the hydro- and gas-hydrogeochemical zoning and the filling of existing traps with hydrocarbons.

Practical significance. Hydrogeochemical features such as water-dissolved gases and condensation water are the direct indicators of oil and gas potential. Hydrogeological model can be used to forecast deposits in other oil and gas-bearing regions (in particular, the Carpathian Foredeep).

Keywords

Pre-Black Sea aquiferous basin, Karkinit-Northern Crimean trough, hydrogeological peculiarities, water-dissolved gases, condensate waters, hydrocarbons, vertical migration

Referenses

Gozhyk, P. F. (Ed.). (2007). Oil and gas prospective objects of Ukraine. Scientific and practical bases of hydrocarbon fields prospecting in the northwestern shelf of the Black Sea. Kyiv: EKMO. [in Ukrainian]

Ivaniuta, M. M. (Ed.). (1998). Atlas of oil and gas fields of Ukraine: Vol. 6. Southern oil-and-gas-bearing region. Lviv: Tsentr Yevropy. [in English & Ukrainian]

Kolodiy, I. V. (2001). Hydrogeochemical features of the Golitsyno gas-condensate field. In Proceed. of youth sc. conf. “Earth Science – 2001” (pp. 64–65). Lviv: Ivan Franko National University of Lviv. [in Ukrainian]

Kolodiy, I. V. (2014). Expected localization of hydrocarbon deposits of the Black Sea aquiferous basin based on hydrogeochemical indications. Visnyk of V. N. Karazin Kharkiv National University, Series Geology, Geography, Ecology”, 41(1128), 32–36. [in Ukrainian].

Kolodiy, I. V., & Medvid, H. B. (2018). Hydrogeological characteristics of the Lower Cretaceous terrigenous complex of the Karkinit-Northern Crimean Deep in the aspect of its potential for oil and gas presence. Visnyk of V. N. Karazin Kharkiv National University, Series Geology, Geography, Ecology”, 49, 59–69. https://doi.org/10.26565/2410-7360-2018-49-05 [in Ukrainian]

Kolodiy, I., & Medvid, H. (2019). Forecast estimation of oil and gas reserves of Lower Cretaceous sediments in Karkinit-Northern Crimean deep (by gas-hydrogeochemical indicators). Geology and Geochemistry of Combustible Minerals, 3(180), 90–99. https://doi.org/10.15407/ggcm2019.03.090 [in Ukrainian]

Kolodiy, V. V. (1971). On the origin of the hydrogeochemical anomalies in the October oil and Western-October gas-condensate fields. Geology and Geochemistry of Combustible Minerals, 27, 10–19. [in Russian]

Kolodiy, V. V., & Kolodiy, I. V. (2002). The model of forming gas fields of the Northern Black Sea aquiferous basin. Geology and Geochemistry of Combustible Minerals, 4, 11–20. [in Ukrainian]

Kutas, R. Y. (2010). Geothermal conditions of the Black Sea basin and its surroundings. Geophysical journal, 32(6), 135–158. https://doi.org/10.24028/gzh.0203-3100.v32i6.2010.117453 [in Russian]

Pavlyuk, M. І., Varichev, S. O., & Rizun, B. P. (2002). Oil and gas formation and geodynamic models of forming of oil and gas-bearing provinces. Geology and Geochemistry of Combustible Minerals, 1, 3–11. [in Ukrainian]

Zhabina, N., Anikeyeva, O., Kolodiy, I., & Mintuzova, L. (2015). New data on the stratigraphy of deposits and hydrogeochemical conditions of Pradnieper Area (north- western part of the Black Sea shelf). Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(70), 18–22. https://doi.org/10.17721/1728-2713.70.03 [in Ukrainian]


Posted on

HYDROGEOLOGICAL FEATURES OF OIL-BEARING PROPERTIES OF THE HVIZDETS OIL FIELD (Boryslav-Pokuttia oil and gas region)

Home > Archive > No. 1–2 (197–198) 2025 > 14–25


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 14–25

https://doi.org/10.15407/ggcm2025.197-198.014

Vasyl HARASYMCHUK¹, Halyna MEDVID¹, Olha TELEHUZ¹, Ivanna KOLODIY¹, Myroslav SPRYNSKYI²

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Nicolaus Copernicus University in Torun, Torun, Republic of Poland, e-mail: kontakt@umk.pl

Abstract

The hydrogeological characteristics of the structures of the Hvizdets oil field have been studied. Specific features of the underground waters of the field, which determine the presence of hydrocarbon accumulations, have been identified for potential application in other areas of the investigated region when searching for new deposits.

It has been found that in all aquifers of the field, the reservoir pressure exceeds the hydrostatic pressure by a magnitude of 3 to 13 MPa. The highest pressure values are recorded both within the oil- and gas-bearing contour and near the oil-water contact. It has been established that high values of the reservoir water overpressure reflect the dense hydrodynamic isolation of individual aquifers and sections of the Hvizdets oil field and directly indicate their high hydrogeological favourability for preserving deposits. The spatial distribution of hydrodynamic vectors points to potential migration paths of fluids towards both the Bilche-Volytsia zone of the Precarpathian foredeep and the Skyba zone of the Carpathians.

The macro-component composition, contents of trace elements, and the component ratios of reservoir waters of the Hvizdets oil field reflect quasi-stagnant hydrogeological conditions, favourable for preserving hydrocarbon deposits here. The presence of bicarbonate-sodium waters of the Menilite sediments with reduced total dissolved solids and increased bicarbonate ion content is considered a direct hydrogeological criterion resulting from the reduction of sulfur from sulfates when underground waters interact with hydrocarbons in the dispersion halo of the oil deposit.

The gas-hydrogeochemical features of oil presence include the increase in water gas saturation when approaching the deposit and the increase in the relative proportion of methane homologues in the composition of dissolved gases.

Keywords

hydrocarbon deposits, hydrogeological criteria of oil- and gas-bearing properties, aquifer, reservoir pressure, macro-components, micro-components

Referenses

Havrylenko, K. S., Demediuk, M. S., & Arkhildieieva, Ye. O. (1971). Porivnialna kharakterystyka khimichnoho skladu pidzemnykh vod Peredkarpatskoho i Zakarpatskoho prohyniv v aspekti otsinky naftohazonosnosti nadr. Heolohiia i heokhimiia horiuchykh kopalyn, 27, 52–60. [in Ukrainian]

Ivaniuta, M. M. (Ed.). (1998). Atlas rodovyshch nafty i hazu Ukrainy: Vol. 4. Zakhidnyi naftohazonosnyi rehion. Lviv: Tsentr Yevropy. [in Ukrainian]

Kolodii, V. V. (1985). Podzemnye kondensatcionnye i soliutcionnye vody neftianykh, gazokondensatnykh i gazovykh mestorozhdenii. Kiev: Naukova dumka. [in Russian]

Kolodii, V. V. (1998). Vilni ta vodorozchyneni hazy Karpatskoi naftohazonosnoi provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 1(102), 53–63. [in Ukrainian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. T., Bratus, M. D., Velychko, N. Z., Harasymchuk, V. Yu., Hnylko, O. M., Danysh, V. V., Dudok, I. V., Zubko, O. S., Kaliuzhnyi, V. A., Kovalyshyn, Z. I., Koltun, Yu. V., Kopach, I. P., Krupskyi, Yu. Z., Osadchyi, V. H., Kurovets, I. M., Lyzun, S. O., Naumko, I. M., . . . Shcherba, O. S. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Kolodii, V. V., Kolodii, I. V., & Maievskyi, B. Y. (2009). Naftohazova hidroheolohiia. Ivano-Frankivsk: Fakel. [in Ukrainian]

Kolodii, V. V., Sprynskyi, M. I., Pankiv, R. P., & Haievskyi, V. H. (1996). Ridkisni luzhni elementy v plastovykh vodakh Lopushnianskoho naftovoho rodovyshcha. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2, 45–53. [in Ukrainian]

Lozinskii, V. A., & Bankovskii, V. P. (1972). Gidrokhimicheskii razrez Vnutrennei zony Predkarpatskogo progiba. Geologiia nefti i gaza, 11, 27–34. [in Russian]

Lozinskii, V. A., & Romaniuk, A. F. (1969). Gidrogeologicheskie osobennosti Bitkovskogo neftegazonosnogo raiona. Geologiia nefti i gaza, 5, 18–22. [in Russian]

Novosiletskyi, R. M. (1969). Plastovi vody u nadrakh Ukrainy. Kyiv: Tekhnika. [in Ukrainian]

Orlov, A. A. (1980). Anomalno plastovye davleniia v neftegazonosnykh oblastiakh Ukrainy. Lvov: Vyshcha shkola. [in Russian]

Osadchyi, V. H., Kurovets, I. M., Hrytsyk, I. I., & Melnychuk, S. P. (2005). Termobarychni parametry produktyvnykh horyzontiv vuhlevodniv i rodovyshch Karpatskoi naftohazonosnoi provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 28–35. [in Ukrainian]

Romaniuk, A. F., & Iarosh, E. N. (1985). Malomineralizovannye vody neftianykh i gazokondensatnykh mestorozhdenii Borislavsko-Pokutskoi zony Predkarpatskogo progiba. In Malomineralizovannye vody glubokikh gorizontov neftegazonosnykh provintcii (pp. 27–32). Kiev: Naukova dumka. [in Russian]

Romaniuk, A. F., Lykhomanova, I. M., & Tesliar, I. F. (1973). Pro hidrokhimichni anomalii v paleohenovykh vidkladakh hazokondensatnykh rodovyshch Rosilna i Kosmach. Heolohiia i heokhimiia horiuchykh kopalyn, 34, 59–64. [in Ukrainian]

Shchepak, V. M. (1971). Naftohazoposhukove znachennia amoniiu v pidzemnykh vodakh Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 23, 83–91. [in Ukrainian]


Posted on

ABOUT PATENT AND INVENTIVE WORK AT THE INSTITUTE OF GEOLOGY AND GEOCHEMISTRY OF COMBUSTIBLE MINERALS OF NAS OF UKRAINE IN 2024

Home > Archive > No. 1–2 (197–198) 2025 > 111–114


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 111–114

https://doi.org/10.15407/ggcm2025.197-198.111

Oleg GVOZDEVYCH

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: senslviv@ukr.net

Abstract

The results of inventive work at the Institute of Geology and Geochemistry of Combustible Minerals of the National Academy of Sciences of Ukraine in 2024 were considered:

– the method of obtaining thermal energy from mine workings includes pumping mine water and ventilation air to the day surface, extracting low-potential thermal energy using heat pumps, and supplying heated water to consumers;

– the method of thermal coal processing includes continuous sectional loading of coal, gradual heating, regulation of the speed of section movement, temperature control of the process, and production of gas, liquid, and solid products;

– the three-section unit for heat recovery from mine workings includes supply and storage pipelines for mine water and ventilation air, appropriate heat exchangers, heat pumps, and a heated water storage tank with a discharge pipeline;

– the energy complex for the processing of carbon-containing raw materials includes a raw material gasifier that produces a mixture of combustible gases, carbon dioxide CO2 and warm water as gasification products.; The complex additionally includes a bioreactor, which, after gasification, receives carbon dioxide and a portion of the waste heat water, which intensify the growth of algae in the bioreactor for processing in a separate module into as biofuel;

– the method of underground gasification of coal for synthesis gas and methane production were implemented at temperatures from 950 to 1 150 °C and a pressure of 0.5 to 1.0 MPa. We produce methane-containing coal gas from the coalcontaining thickness above the gasification layer;

– the method of combined conversion of non-conditional coal includes the production of synthesis gas of CO + H2 at gasification of a water coal pulp in a ratio of 1:1 in a coil reactor, simultaneous pyrolysis of lump coal in the reactor, exhaust of CO, H2, CH4, CO2 with the production of resin products;

– the method of predicting enriched horizons of metal-bearing deposits includes geological and structural processing and interpretation of the study area, allocation of promising areas in the search for elements, calculation of their density, construction of maps, diagrams, schemes and determination of the structure of objects, analysis of the relief and establishment of block and ring structures, which are used to predict promising objects in terms of mineral deposits in the study area.

Keywords

patent for invention of Ukraine in 2024, utility model, method

Referenses

Akimov, A. A., & Hvozdevych, O. V. (2024). Enerhetychnyi kompleks pererobky vuhletsevmisnoi syrovyny (Patent na vynakhid Ukrainy (korysna model) № 155353). Biuleten, 8. https://sis.nipo.gov.ua/uk/search/detail/1785052/ [in Ukrainian]

Hvozdevych, O. V., Kulchytska-Zhyhailo, L. Z., & Buchynska, I. V. (2024). Sposib pidzemnoi hazyfikatsii vuhillia dlia otrymannia syntez-hazu ta metanu (Patent na vynakhid Ukrainy (korysna model) № 157389). Biuleten, 41. https://sis.nipo.gov.ua/uk/search/detail/1822745/ [in Ukrainian]

Hvozdevych, O. V., Podolskyi, M. R., Kulchytska-Zhyhailo, L. Z., Poberezhskyi, A. V., & Buchynska, I. V. (2024). Sposib kombinovanoi konversii nekondytsiinoho vuhillia (Patent na vynakhid Ukrainy (korysna model) № 157772). Biuleten, 47. https://sis.nipo.gov.ua/uk/search/detail/1827871/ [in Ukrainian]

Naumko, I. M., Batsevych, N. V., Fedoryshyn, Yu. I., & Hvozdevych, O. V. (2024). Sposib prohnozuvannia zbahachenykh horyzontiv metalonosnykh rodovyshch (Patent na vynakhid Ukrainy (korysna model) № 157865). Biuleten, 49. https://sis.nipo.gov.ua/uk/search/detail/1831397/ [in Ukrainian]

Podolskyi, M. R., Hvozdevych, O. V., Bryk, D. V., Poberezhskyi, A. V., & Kulchytska-Zhyhailo, L. Z. (2024). Sposib otrymannia teplovoi enerhii z shakhtnoi vyrobky (Patent na vynakhid Ukrainy (korysna model) № 155176). Biuleten, 4. https://sis.nipo.gov.ua/uk/search/detail/1781315/ [in Ukrainian]

Podolskyi, M. R., Hvozdevych, O. V., & Kulchytska-Zhyhailo, L. Z. (2024a). Sposib termichnoho pereroblennia vuhillia (Patent na vynakhid Ukrainy (korysna model) № 155394). Biuleten, 8. https://sis.nipo.gov.ua/uk/search/detail/1785062/ [in Ukrainian]

Podolskyi, M. R., Hvozdevych, O. V., & Kulchytska-Zhyhailo, L. Z. (2024b). Trysektsiina ustanovka dlia otrymannia teplovoi enerhii z shakhtnoi vyrobky (Patent na vynakhid Ukrainy (korysna model) № 156243). Biuleten, 22. https://sis.nipo.gov.ua/uk/search/detail/1801143/ [in Ukrainian]


Posted on

GENERATION POTENTIAL OF THE DEVONIAN ROCKS OF THE VOLYN-PODILLYA PLATE

Home > Archive > No. 1–2 (197–198) 2025 > 5–13


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 5–13

https://doi.org/10.15407/ggcm2025.197-198.005

Natalia RADKOVETS1, 2, Yuriy KOLTUN1, Ihor SHAYNOHA2

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: radkov_n@ukr.net
2 Ivan Franko Lviv National University, Lviv, Ukraine

Abstract

Since the 1960s, two gas fields (Lokachi and Velyki Mosty) have been discovered in the Devonian sequence of the Volyn-Podillya Plate, and numerous gas shows have been observed in the Lokachi, Olesko, Horokhiv, and Oglyadiv areas. Organic-rich rocks within the Volyn-Podillya Plate are widespread in the Lower, Middle and Upper Devonian strata. They are represented by terrigenous, clayey and carbonate layers.

The objective of this study is to investigate the generation potential of the Devonian rocks of the Volyn-Podillya Plate and the possibility of their participation in the petroleum system of the region. Geochemical studies covered the entire territory of the Volyn-Podillya Plate as well as the entire chronological interval of the Devonian strata.

Rock-Eval pyrolysis studies showed that the content of total organic carbon in the Lower Devonian organic-rich rocks ranges from 0.01 to 0.45 % (average values 0.12 %). The organic matter in these rocks contains mainly kerogen of marine origin type II, and has undergone primary and/or secondary oxidation processes.

The content of total organic carbon in Middle Devonian sediments varies: in rocks of the Eifelian Stage from 0.02 to 0.64 % (average values 0.08 %), in Givetian from 0.01 to 2.35 % (average values 0.19 %), in Frasnian from 0.04 to 1.43 % (average values 0.08 %), in Famennian from 0.07 to 0.10 % (average values 0.09 %).

The thermal maturity level of the Lower (Lochkovian Stage), Middle (Eifelian, Givetian Stages) and Upper (Frasnian, Famennian Stages) Devonian ranges from immature to overmature rocks.

The Middle and Upper Devonian rocks are dominated by type II marine kerogen, which underwent primary oxidation during sedimentation and/or secondary hydrothermal oxidation of dispersed organic matter during dolomitization. The pyrolysis temperature Tmax varies from 422 to 527 °C, demonstrating that the degree of thermal transformation of kerogen ranges from immature to overmature, with a significant part of the sediments being within the zones of generation of liquid and gaseous hydrocarbons, which indicates the significant role of Devonian sediments in the formation of the petroleum system of the region.

Geochemical studies of the generation properties of the Middle and Upper Devonian sediments within the Volyn-Podillya Plate showed that they can be considered as oil and gas source rocks in the Upper Paleozoic sequence.

Keywords

organic carbon, Rock-Eval pyrolysis, kerogen type, thermal maturity, hydrocarbon potential

Referenses

Espitalie, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications. Deuxieme partie. Revue de l’Institut Francais du Petrole, 40(6), 755–784. https://doi.org/10.2516/ogst:1985045

Helcel-Weil, M., & Dzięgielowski, J. (2003). Lublin Basin – petroleum prospecting results and their importance for future exploration. Przegląd Geologiczny, 51, 764–770.

Kotarba, M. J., Więcław, D., Kosakowski, P., Wróbel, M., Buła, Z., Matyszkiewicz, J., Krajewski, M., Kowalski, A., & Koltun, Y. V. (2011). Petroleum systems and prospectives of hydrocarbon exploration in the Palaeozoic-Mesozoic basement (SE Poland and western Ukraine). Annales Societatis Geologorum Poloniae, 81, 487–522. https://www.researchgate.net/publication/260564752

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In L. B. Magoon & W. G. Dow, (Eds.), The petroleum system – from source to trap (pp. 93–120). AAPG Memoir, 60. https://doi.org/10.1306/M60585C5

Radkovets, N. (2016). Lower Devonian lithofacies and palaeoenvironments in the southwestern margin of the East European Platform (Ukraine, Moldova and Romania). Estonian Journal of Earth Sciences, 65(4), 200–213. https://doi.org/10.3176/earth.2016.18

Radkovets, N., & Koltun, Y. (2022). Dynamics of sedimentation within the southwestern slope of the East European Platform in the Silurian-Early Devonian. Geodynamics, 32(1), 36–48. https://doi.org/10.23939/jgd2022.02.036

Radkovets, N., & Koltun, Y. (2023). Lithology, facies and dynamics of formation of the Albian-Cenomanian reservoir rocks of the Pokuttya-Bukovyna part of the Carpathian autochthon. Geodynamics, 34(1), 37–46. https://doi.org/10.23939/jgd2023.01.037

Radkovets, N., Koltun, Yu., & Loktiev, A. (2024). Poshyrennia ta rechovynnyi sklad porid, zbahachenykh rozsiianoiu orhanichnoiu rechovynoiu, u rozrizi devonu Volyno-Podilskoi plyty. Heolohiia i heokhimiia horiuchykh kopalyn, 193–194(1‒2), 22–31. https://doi.org/10.15407/ggcm2024.193-194.022 [in Ukrainian]

Radkovets, N., Kotarba, M., & Wójcik, K. (2017). Source rock geochemistry, petrography of reservoir horizons and origin of natural gas in the Devonian of the Lublin and Lviv basins (SE Poland and western Ukraine). Geological Quarterly, 61(3), 569–589. https://doi.org/10.7306/gq.1361


Posted on

CLAY MINERALS ASSOCIATIONS OF THE UPPER NEOPROTEROZOIC-LOWER CAMBRIAN MARLS OF THE SALT RANGE FORMATION, PAKISTAN

Home > Archive > No. 1–2 (197–198) 2025 > 91–110


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 91–110

https://doi.org/10.15407/ggcm2025.197-198.091

Yaroslava YAREMCHUK1, Fanwei MENG2, Sophiya HRYNIV1, Serhiy VOVNIUK1, Nadiya HORODECHNA1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: slava.yaremchuk@gmail.com
2 China University of Mining and Technology (CUMT), Xuzhou, Jiangsu Province, China, e-mail: fwmeng@isl.ac.cn

Abstract

The peculiarities of the mineral composition of the pelitic fraction of marls of the Upper Neoproterozoic- Lower Cambrian Salt Range Formation are considered as a reflection of the influence of regional and global factors on the formation of clay minerals.

The pelitic fraction of 53 marl samples of Salt Range Formation taken in the Salt Range in the Khewra Gorge was studied: from the Sahwal Marl Member (48 samples), the Bhandar Kas Gypsum Member (2 samples), and the upper part of the Billianwala Salt Member (3 samples).

According to a set of analyzes (X-ray diffraction (XRD), scanning electron microscopy (SEM) with energydispersive X-ray microanalysis (EDX)), the determined association of clay minerals is represented by illite, chlorite, corrensite, chlorite-corrensite, chlorite-smectite, smectite, illite-smectite and in some samples also defective chlorite and defective corrensite occurs. Smectite, chlorite, and mixed-layer chlorite-smectite are magnesian trioctahedral minerals, illite is ferruginous dioctahedral, indicating their authigenic origin. A significant amount of labile minerals and phases in the associations is caused by a combination of the effects of contemporary volcanism, low brine concentration of the evaporite basin, and the presence of organic matter, mainly bitumen. Volcanic activity together with low brine concentration contributed to the formation of labile clay minerals and mixed-layer phases, and their interaction with organic compounds slowed down the processes of aggradation transformation.

The increased magnesium content and the presence of magnesian clay minerals in the pelitic fraction of the studied deposits are characteristic of evaporite deposits formed from SO4-rich seawater type, which is consistent with the sulfate seawater type in the Neoproterozoic.

Keywords

Neoproterozoic, clay minerals, X-ray diffraction, marls, Salt Range Formation, Pakistan

Referenses

Ahmad, W., & Alam, S. (2007). Organic geochemistry and source rock characteristics of Salt Range Formation, Potwar Basin, Pakistan. Pakistan Journal of Hydrocarbon Research, 17, 37–59.

Allen, P. A. (2007). The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciations. Earth-Science Reviews, 84(3–4), 139–185. https://doi.org/10.1016/j.earscirev.2007.06.005

Baker, D. M., Lillie, R. J., Yeats, R. S., Johnson, G. D., Yousuf, M., & Zamin, A. S. H. (1988). Development of the Himalayan frontal thrust zone: Salt Range, Pakistan. Geology, 16(1), 3–7. https://doi.org/10.1130/0091-7613(1988)016%3C0003:DOTHFT%3E2.3.CO;2

Bilonizhka, P., Iaremchuk, Ia., Hryniv, S., & Vovnyuk, S. (2012). Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine. Biuletyn Państwowego Instytutu Geologicznego, 449, 137–146.

Bodine, M. W., Jr. (1983). Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks. In Sixth International Symposium on Salt (Vol. 1, pp. 267–284). Alexandria: Salt Institute.

Brigatti, M. F., Galan, E., & Theng, B. K. G (2006). Structures and mineralogy of clay minerals. Іn F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Chapter 2, pp. 19–86). Elsevier. https://doi.org/10.1016/S1572-4352(05)01002-0

Brindley, G. W. (1961). Chlorite minerals. In G. Brown (Ed.), The X-ray identification and crystal structures of clay minerals (pp. 242–296). The Mineralogical Society, London.

Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification. In G. W. Brindley & G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-Ray Identification (pp. 305–360). https://doi.org/10.1180/mono-5.5

Calvo, J. P., Blanc-Valleron, M. M., Rodriguez Arandia, J. P., Rouchy, J. M., & Sanz, M. E. (1999). Authigenic clay minerals in continental evaporitic environments. In M. Thiry & R. Simon-Coinçon (Eds.), Palaeoweathering, Palaeosurfaces and Related Continental Deposits (pp. 129–151). International Association of Sedimentologists, Special Publication, 27. https://doi.org/10.1002/9781444304190.ch5

Carrado, K. A., Decarreau, A., Petit, S., Bergaya, F., & Lagaly, G. (2006). Synthetic clay minerals and purification of natural clays. Іn F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Chapter 4, pp. 115–139). Elsevier. https://doi.org/10.1016/S1572-4352(05)01004-4

Cozzi, A., Rea, G., & Craig, J. (2012). From global geology to hydrocarbon exploration: Ediacaran–Early Cambrian petroleum plays of India, Pakistan and Oman. In G. M. Bhat, J. Craig, J. W. Thurow, B. Thusu, & A. Cozzi (Eds.). Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia. Geological Society, London, Special Publications, 366, 131–162. https://doi.org/10.1144/SP366.14

Dritc, V. A., & Kossovskaia, A. G. (1990). Glinistye mineraly: smektity, smeshanosloinye obrazovaniia. Moskva: Nauka. [in Russian]

Drits, V. A., Ivanovskaya, T. A., Sakharov, B. A., Zviagina, B. B., Gor’kova, N. V., Pokrovskaya, E. V., & Savichev, A. T. (2011). Mixed-layer corrensite–chlorites and their formation mechanism in the glauconitic sandstone-clayey rocks (Riphean, Anabar Uplift). Lithology and Mineral Resources, 46, 566–593. https://doi.org/10.1134/S0024490211060022

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

Frank-Kamenetckii, V. A. (Ed.). (1983). Rentgenografiia osnovnykh tipov porodoobrazuiushchikh mineralov (sloistye i karkasnye silikaty). Leningrad: Nedra. [in Russian]

Hazen, R. M., Sverjensky, D. A., Azzolini, D., Bish, D. L., Elmore, S. C., Hinnov, L., & Milliken, R. E. (2013). Clay mineral evolution. American Mineralogist, 98(11–12), 2007–2029. https://doi.org/10.2138/am.2013.4425

Honty, M., Uhlík, P., Šucha, V., Čaplovičova, M., Franců, J., Clauer, N., & Biroň, A. (2004). Smectite-to-illite alteration in salt-bearing bentonites (East Slovak Basin). Clays and Clay Minerals, 52(5), 533–551. https://doi.org/10.1346/CCMN.2004.0520502

Hover, V. C., Walter, L. M., Peacor, D. R., & Martini, A. M. (1999). Mg-Smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California. Clays and Clay Minerals, 47(3), 252–268. https://doi.org/10.1346/CCMN.1999.0470302

Husseini, M. I., & Husseini, S. I. (1990). Origin of the Infracambrian Salt Basins of the Middle East. Geological Society, London, Special Publications, 50, 279–292. https://doi.org/10.1144/gsl.sp.1990.050.01.14

Iaremchuk, I., Tariq, M., Hryniv, S., Vovnyuk, S., & Meng, F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan). Carbonates and Evaporites, 32, 63–74. https://doi.org/10.1007/s13146-016-0294-5

Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic Publishers.

Khan, I., Zhong, N., Luo, Q., Ai, J., Yao, L., & Luo, P. (2020). Maceral composition and origin of organic matter input in Neoproterozoic–Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus Basin, Pakistan. International Journal of Coal Geology, 217, 103319. https://doi.org/10.1016/j.coal.2019.103319

Kovalevych, V. M., Marshall, T., Peryt, T. M., Petrychenko, O. Y., & Zhukova, S. A. (2006). Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144(1–2), 39–51. https://doi.org/10.1016/j.precamres.2005.10.004

Lagaly, G., Ogawa, M., & Dékány, I. (2006). Clay mineral organic interactions. Іn F. Bergaya, B. K. G. Theng, & G. Legaly, (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Chapter 7.3, pp. 309–377). Elsevier. https://doi.org/10.1016/S1572-4352(05)01010-X

Lippmann, F., & Savaşçin, M. Y. (1969). Mineralogische Untersuchungen an Lösungsrückständen eines württembergischen Keupergipsvorkommens. Tschermaks Mineralogische und Petrographische Mitteilungen, 13, 165–190. https://doi.org/10.1007/BF01088021

Lucas, J. (1962). La transformation des mineraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem. Serv. Carte Geol. Als. et Lorraine, 23.

Mazumdar, A., & Bhattacharya, S. K. (2004). Stable isotopic study of late Neoproterozoic–early Cambrian (?) sediments from Nagaur–Ganganagar basin, western India: Possible signatures of global and regional C-isotopic events. Geochemical Journal, 38(2), 163–175. https://doi.org/10.2343/geochemj.38.163

Mazumdar, A., & Strauss, H. (2006). Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic–early Cambrian Bilara Group (Nagaur–Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle. Precambrian Research, 149(3–4), 217–230. https://doi.org/10.1016/j.precamres.2006.06.008

Meng, F., Zhang, Z., Bukowski, K., Zhuo, Q., Ahsan, N., Ur-Rehman, S., & Ni, P. (2021). A strongly positive sulphur isotopic shift in late Ediacaran-early Cambrian seawater: evidence from evaporites in the Salt Range Formation, northern Pakistan. Geological Quarterly, 65(2). http://dx.doi.org/10.7306/gq.1598

Moore, D. M., & Reynolds, R. C. (1997). X-Ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.

Pozo, M., & Calvo, J. P. (2018). An overview of authigenic magnesian clays. Minerals, 8(11), 520. https://doi.org/10.3390/min8110520

Shah, S. M. I. (1977). Stratigraphy of Pakistan. Geological Survey of Pakistan Memoir, 12.

Smith, A. G. (2012). A review of the Ediacaran to Early Cambrian (“Infra-Cambrian”) evaporites and associated sediments of the Middle East. Geological Society, London, Special Publications, 366, 229–250. https://doi.org/10.1144/SP366.12

Turner, C. E., & Fishman, N. S. (1991). Jurassic Lake T’oo’dichi: a large alkaline, saline lake, Morison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103(4), 538–558. https://doi.org/10.1130/0016-7606(1991)103<0538:JLTODA>2.3.CO;2

Uhlík, P., Honty, M., Šucha, V., Franců, J., Biroň, A., Clauer, N., Hanzelyová, Z., & Majzlan, J. (2002). Influence of salt-bearing environment to illitization. In Proceedings of the XVII Congress of Carpathian-Balkan Geological Association (Bratislava, September 1–4, 2002). Geologica Carpathica, Special issues, 53 (CD).

Warren, J. K. (2016). Evaporites: A geological compendium. Springer Cham. https://doi.org/10.1007/978-3-319-13512-0

Yaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138–146. https://doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020). Controls on associations of clay minerals in Phanerozoic evaporite formations: An overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974

Yaremchuk, Ya., & Poberezhskyi, A. (2009). Mineralnyi sklad hlyn badenskykh hipsiv Naddnisteria. Mineralohichnyi zbirnyk, 59(1), 116–127. [in Ukrainian]

Yaremchuk, Ya., Vovniuk, S., Hryniv, S., Tarik, M., Menh, F., Bilyk, L., & Kochubei, V. (2017). Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh, Pakystan. Mineralohichnyi zbirnyk, 67(2), 72–90. [in Ukrainian]


Posted on

DETERMINATION AND DISTRIBUTION of Na, K, Li, Ca, and Ba MOBILE FORMS IN PEAT OF THE LVIV REGION BY FLAME SPECTROPHOTOMETRY

Home > Archive > No. 1–2 (197–198) 2025 > 75–90


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 75–90

https://doi.org/10.15407/ggcm2025.197-198.075

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1myroslavakoshil@ukr.net; 2khoha_yury@ukr.net

Abstract

The article presents the results of determining the quantitative content and geochemical features of the distribution (including depth distribution), accumulation, migration, and origin of Na, K, Li, Ca, and Ba mobile forms in peat from selected representative deposits and areas of the Lviv Region (Bilogorshcha, Honchary, Hamaliivka, Artyshchiv, Polonychna, Sknylivok), and identifying the main factors affecting the unevenness of their concentration. The analyses were performed using the flame spectrophotometry method with two low-temperature flame spectrophotometers: FP910 (PG Instruments) and FF-200 (Cole-Parmer, Jenway). This method is distinguished by its simplicity, speed, expressivity, high sensitivity, reliability, and relatively low equipment cost.

Mathematical and statistical processing of the quantitative characteristics of the distribution of Ca, Ba, Na, K, and Li mobile forms content in the studied peatlands of the Lviv Region was carried out using MS Excel 2019 and Statistica 12 software packages. Employing correlation (calculation and construction of correlation matrices and profiles), cluster, and factor (principal component method) analyses, the degree of dependence between variables and typomorphic geochemical associations of mobile forms of chemical elements in the researched environment were established. The values of the limits of local background fluctuations and the level of element content deviations were determined; the values of the concentration coefficients relative to the background (median) content were calculated.

The vertical distribution of Ca, Ba, Na, K, and Li mobile forms along the peat deposit profiles showed that the content of K and Na decreases with depth for all researched deposits, as well as Ca, Ba, and Li (except Honchary deposit). It was established that the vertical distribution of the studied elementsʼ mobile forms in peat deposits is characterized by maxima in the upper peat horizon and contact layers with mineral soil (0–40 cm), which is mainly due to biological accumulation and aeolian input. An exception is the uneven distribution of Ca, Ba, and Li in the Honchary peat deposit, where a significant enrichment with freshwater mollusk shells is observed, particularly at a depth of 80–120 cm.

Keywords

peat, mobile forms, elemental analysis, flame spectrophotometry

Referenses

Alekseenko, V. A. (1990). Geokhimiia landshafta i okruzhaiushchei sredy. Moskva: Nedra. [in Russian]

Alekseenko, V. A. (2000). Ekologicheskaia geokhimiia. Moskva: Logos. [in Russian]

Andrejko, M. J., Fiene, F., & Cohen, A. D. (1983). Comparison of ashing techniques for determination of the inorganic content of peats. In P. M. Jarrett (Ed.), Testing of Peats and Organic Soils (pp. 5–20). Philadelphia: ASTM International. https://doi.org/10.1520/STP37331S

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San Francisco: Academic Press.

Instytut gruntoznavstva ta ahrokhimii imeni O. N. Sokolovskoho Ukrainskoi akademii ahrarnykh nauk. (2006). Yakist gruntu. Vyznachennia rukhomykh spoluk fosforu i kaliiu za metodom Kirsanova v modyfikatsii NNTs IHA (DSTU 4405:2005). Kyiv: Derzhspozhyvstandart Ukrainy. [in Ukrainian]

Klos, V. R., Birke, M., Zhovynskyi, E. Ya., Akinfiiev, H. O., Amashukeli, Yu. A., & Klamens, R. (2012). Rehionalni heokhimichni doslidzhennia gruntiv Ukrainy v ramkakh mizhnarodnoho proektu z heokhimichnoho kartuvannia silskohospodarskykh ta pasovyshchnykh zemel Yevropy (GEMAS). Poshukova ta ekolohichna heokhimiia, 1(12), 51–66. [in Ukrainian]

Lishtvan, I. I., Bazin, E. T., Gamaiunov, N. I., & Terentev, A. A. (1989). Fizika i khimiia torfa. Moskva: Nedra. [in Russian]

Lucas, R. E. (1982). Organic soils (Histosols) formation, distribution, physical and chemical properties and management for crop production (No 435, pp. 3–77) [Research Report]. Michigan State University.

Malyshev, V., Hab, A., Shakhnin, D. (2018). Analitychna khimiia ta instrumentalni metody analizu. Universytet “Ukraina”. [in Ukrainian]

Rydelek, P. (2013). Origin and composition of mineral constituents of fen peats from Eastern Poland. Journal of Plant Nutrition, 36(6), 911–928. https://doi.org/10.1080/01904167.2013.770525

Siddique, M. A. B., Alam, M. K., Islam, S., Diganta, M. T. M., Akbor, M. A., Bithi, U. H., Chowdhury, A. I., & Ullah, A. A. (2020). Apportionment of some chemical elements in soils around the coal mining area in northern Bangladesh and associated health risk assessment. Environmental Nanotechnology, Monitoring & Management, 14, Article 100366. https://doi.org/10.1016/j.enmm.2020.100366

Spaska, O. A., Bilokopytov, Yu. V., & Yatchyshyn, Y. Y. (2024). Analitychna khimiia ta instrumentalni metody khimichnoho analizu. Kyiv: Vydavnytstvo Natsionalnoho aviatsiinoho universytetu “NAU-druk”. [in Ukrainian]

Qin, S., Zhao, C., Li, Y., & Zhang, Y. (2015). Review of coal as a promising source of lithium. International Journal of Oil, Gas and Coal Technology, 9(2), 215–229. https://doi.org/10.1504/IJOGCT.2015.067490

Voitkevich, G. V., Miroshnikov, A. E., Povarennykh, A. S., Prokhorov, V. G. (1970). Kratkii spravochnik po geokhimii. Moskva: Nedra. [in Russian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, ceriia “Heolohiia. Heohrafiia. Ekolohiia”, 56, 105–121. https://doi.org/10.26565/2410-7360-2022-56-07 [in Ukrainian]


Posted on

THE CHEMICAL COMPOSITION OF FLUID INCLUSIONS BRINE IN HALITE OF EVAPORITE DEPOSITS IN WENKOU DEPRESSION (PRC) IN THE CONTEXT OF SALT MINERALOGENESIS

Home > Archive > No. 1–2 (197–198) 2025 > 57–74


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 57–74

https://doi.org/10.15407/ggcm2025.197-198.057

Anatoliy GALAMAY1, Fanwei MENG2, Daria SYDOR1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: galamaytolik@ukr.net
2 China University of Mining and Technology (CUMT), Xuzhou, Jiangsu Province, China, e-mail: fwmeng@isl.ac.cn

Abstract

The chemical composition of brines of fluid inclusions of different genesis has established the peculiarities of mineralogenesis of the Wenkou Depression of the Dawenkou Basin. The content of K+, Mg2+ and SO42− in sedimentary brines ranged from 27.6 to 32.9, 41.5 to 32.7, and 66.6 to 33.3 g/l, respectively. The obtained data on the chemical composition of sedimentary brines and the values of δ34S (+10.9…+35.7 ‰) and δ18O (+14.7…+19.4 ‰) of anhydrite do not exclude the influence of marine transgressions on the continental halogenation of the Dawenkou Basin. The main source of sulfate in the Basin was ancient evaporites in the Yi-Meng Mountains of Shandong Province, which were eroded by surface waters. At the post-sedimentation stage, the salt strata were heated to temperatures of about 45 and 63 ℃. Halite recrystallization occurred at elevated pressure, which was tens of times higher than normal atmospheric pressure.

Weakly mineralized waters enriched in Ca(HCO3)2, which entered the basin, led to the precipitation of gypsum or glauberite. Taking into account the high potassium content in the brines, which is close to the beginning of sylvite deposition, one can expect polyhalite (due to newly formed gypsum) mineralization to be found in the sediments.

The chemical composition of post-sedimentation brines is characterized by a wide fluctuation in the content of the main ions. In the salt-bearing stratum, brines of various compositions circulated: a) with a sharply increased (relative to the sedimentary) content of potassium, magnesium and sulfate; b) with an increased content of potassium, magnesium and a reduced content of sulfate; c) with a reduced content of potassium and an increased content of magnesium and sulfate; d) with a significantly reduced concentration of all ions.

In the XZK-101 well under investigation, no other salt minerals were found except halite, mirabilite, and glauberite. However, according to the data from the study of the chemical composition of brine inclusions in halite, in the immediate vicinity of its location in the Wenkou Depression, one should expect the detection of kieserite, langbeinite, and other salt minerals in salt deposits. The formation of langbeinite was facilitated by elevated temperatures and pressure. The brines found with an abnormally high magnesium content are apparently residual brines (reaction products) during the formation of langbeinite due to unstable sedimentary hexahydrite and sylvite.

According to the obtained data on the chemical composition of brines of inclusions in halite, the boundaries of both the halite and potassic facies on the existing facies maps of the basin are subject to revision.

Keywords

fluid inclusions, halite, brines, homogenization temperature, salt strata

Referenses

Acros, D., & Ayora, C. (1997). The use of fluіd іnclusіons іn halіte as envіronmental thermometer: an experіmental study. In M. C. Boiron & J. Pironon (Eds.), XIV ECROFІ: proceedings of the XIVth European Current Research on Fluid Inclusions, Nancy, France, July 1–4, 1997 (pp. 10–11). CNRS-CREGU.

Ayora, C., Garcia-Veigas, J., & Pueyo, J. J. (1994). The chemical and hydrological evolution of an ancient potash-forming evaporite basin as constrained by mineral sequence, fluid inclusion composition, and numerical simulation. Geochimica et Cosmochimica Acta, 58(16), 3379–3394. https://doi.org/10.1016/0016-7037(94)90093-0

Benison, K. C. (2019). How to search for life in Martian chemical sediments and their fluid and solid inclusions using petrographic and spectroscopic methods. Frontiers in Environmental Science, 7, 108. https://doi.org/10.3389/fenvs.2019.00108

Claypool, G. E., Holser, W. T., Kaplan, І. R., Sakaі, H., & Zak, І. (1980). The age curves of sulfur and oxygen іsotopes іn marіne sulfate and theіr mutual іnterpretatіon. Chemical Geology, 28, 199–260. https://doi.org/10.1016/0009-2541(80)90047-9

Doebelin, N., & Kleeberg, R. (2015). Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 48, 1573–1580. https://doi.org/10.1107/S1600576715014685

Eugster, H. P., Harvіe, C. E., & Weare, J. H. (1980). Mіneral equіlіbrіa іn a sіx-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25 °C. Geochimica et Cosmochimica Acta, 44(9), 1335–1347. https://doi.org/10.1016/0016-7037(80)90093-9

Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823. https://doi.org/10.3390/min10090823

Galamay, A. R., Karakaya, M. Ç., Bukowski, K., Karakaya, N., & Yaremchuk, Y. (2023). Geochemistry of brine and paleoclimate reconstruction during sedimentation of Messinian salt in the Tuz Gölü Basin (Türkiye): Insights from the study of fluid inclusions. Minerals, 13(2), 171. https://doi.org/10.3390/min13020171

Galamay, A. R., Meng, F., Bukowski, K., Ni, P., Shanina, S. N., & Ignatovich, O. O. (2016). The sulphur and oxygen isotopic composition of anhydrite from the Upper Pechora Basin (Russia): new data in the context of the evolution of the sulphur isotopic record of Permian evaporites. Geological Quarterly, 60(4), 990–999. https://doi.org/10.7306/gq.1309

Gibson, M. E., & Benison, K. C. (2023). It’s a trap!: Modern and ancient halite as Lagerstätten. Journal of Sedimentary Research, 93(9), 642–655. https://doi.org/10.2110/jsr.2022.110

Halamai, A. R., Maksymuk, S. V., & Sydor, D. V. (2021). Heokhimichni osoblyvosti vplyvu naftohazovykh pokladiv na pokryvaiuchi soli Karpatskoi naftohazonosnoi provintsii. In Nadrokorystuvannia v Ukraini. Perspektyvy investuvannia: Mizhnarodna naukovo-praktychna konferentsiia (1–5 lystopada 2021 r.) (pp. 100–105). Lviv. [in Ukrainian]

Halamai, A. R., Sadovyi, Yu. V., Meng, F., & Sydor, D. (2024). Fizyko-khimichni umovy formuvannia polihalitu pivnichno-zakhidnoi chastyny baseinu Kaidam, KNR. Mineralohichnyi zbirnyk, 74, 94–108. https://doi.org/10.30970/min.74.08 [in Ukrainian]

Halas, S., & Szaran, J. (1999). Low-temperature thermal decomposition of sulfates to SO2 for on-line 34S/32S analysis. Analytical Chemistry, 71(15), 3254–3257. https://doi.org/10.1021/ac9900174

Khodkova, S. V. (1968). Langbeinit Peredkarpatia i ego paragenezisy. Litologiia i poleznye iskopaemye, 6, 73–85. [in Russian]

Kovalevich, V. M. (1973). Fiziko-khimicheskie usloviia formirovaniia solei Stebnikskogo kaliinogo mestorozhdeniia. Kiev: Naukova dumka. [in Russian]

Li, M. H. (1986). Paleoecological analysis of the early Tertiary oil-bearing sedimentary formation in the Dongpu depression, North China Diwa Region. Geotectonica Metallogenia, 10, 159–168. [in Chinese with English abstract]

Liu, M. W., Song, W. Q., Xu, J. Q., Zhang, Y. J., & Xu, L. J. (2003). Geological characteristics of Cambrian gypsum deposit in Longquan of Yiyuan County. Geology of Shandong, 19(1), 39–42. [in Chinese with English abstract]

Lowenstein, T. K., Li, J. & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245. https://doi.org/10.1016/S0009-2541(98)00061-8

Meng, F., Galamay, A. R., Ni, P., Ahsan, N., & Rehman, S. U. (2020). Composition of middle-late Eocene salt lakes in the Jintan Basin of eastern China: Evidence of marine transgressions. Marine and Petroleum Geology, 122, Article 104644. https://doi.org/10.1016/j.marpetgeo.2020.104644

Meng, F., Galamay, A. R., Ni, P., Yang, C.-H., Li, Y. P., & Zhuo, Q. G. (2014). The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. Journal of Asian Earth Sciences, 85, 97–105. https://doi.org/10.1016/j.jseaes.2014.01.024

Paytan, A., Kastner, M., Campbell, D., & Thiemens, M. H. (1998). Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282(5393), 1459–1462. https://doi.org/10.1126/science.282.5393.1459

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Ren, L. Y., Lin, G. F., Zhao, Z. Q., & Wang, X. W. (2000). Early Tertiary marine transgression in Dongpu depression. Acta Palaeontologica Sin., 39, 553–557. [in Chinese with English abstract]

Song, S. W. (2010). Rock salt mining and securite study of Tai’an Dawenkou Basin. Geology of Chemical Minierals, 32(3), 177–185. [in Chinese with English abstract]

Stankevich, E. F., Batalin, Iu. V., & Chaikin, V. G. (1991). Ob otlichiiakh morskikh i kontinentalnykh galogennykh otlozhenii. In Problemy morskogo i kontinentalnogo galogeneza (pp. 23–30). Novosibirsk: Nauka. [in Russian]

Valiashko, M. G. (1962). Zakonomernosti formirovaniia mestorozhdenii solei. Moskva: MGU. [in Russian]

Wang, Z. J., Li, Q., & Li, Z. C. (2003). Potentiality evaluation of gypsum resource in Dawenkou Basin in Tai’an City and suggestion on ore need predication and exploration. Land and Resources in Shangdong Province, 19(5), 23–25. [in Chinese with English abstract]

Wu, T., & Ren, L. Y. (2004). The tertiary seaway and new reservoir probe in Dongpu depression as well as its surrounded basins. Acta Palaeontologica Sin., 43, 147–154. [in Chinese with English abstract]

Xiao, B. J., Liu, A. T., Zhang, Y. Y., & Dong, W. H. (2010). Geological characteristics of Xiaotun Gypsum deposits in Zhangfanxiang of Zaozhuang City in Shandong Province. Land and Resources in Shangdong Province, 26(5), 12–15. [in Chinese with English abstract]

Xu, Y., Cao, Y., Liu, C., Zhang, H., & Nie, X. (2020). The history of transgressions during the Late Paleocene-Early Eocene in the Kuqa Depression, Tarim Basin: Constraints from C-O-S-Sr isotopic geochemistry. Minerals, 10(9), 834. https://doi.org/10.3390/min10090834

Yao, W., Wortmann, U. G., & Paytan, A. (2019). Sulfur isotopes – Use for stratigraphy during times of rapid perturbations. In M. Montenari (Ed.), Stratigraphy & Timescales: Vol. 4. Case Studies in Isotope Stratigraphy (Ch. 1, pp. 1–33). https://doi.org/10.1016/bs.sats.2019.08.004

Zhang, D., Huang, X. Y., & Li, C. J. (2013). Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes. Advances In Water Science, 24(3), 418–426. [in Chinese with English abstract]

Zhu, M. (2015). Study on the origin of salt deposit in Dawenkou Basin in Shandong Province. Land and Resources in Shangdong Province, 31(1), 27–30. [in Chinese with English abstract]


Posted on

EXTRACTION AND INNOVATIVE USE OF METHANE FROM COAL DEPOSIT OF THE LVIV-VOLYN COAL BASIN

Home > Archive > No. 1–2 (197–198) 2025 > 43–56


Geology & Geochemistry of Combustible Minerals No. 1–2 (197–198) 2025, 43–56

https://doi.org/10.15407/ggcm2025.197-198.043

Iryna BUCHYNSKA, Oleg GVOZDEVYCH, Myroslav PODOLSKY, Lesya KULCHYTSKA-ZHYHAYLO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: ibuchynska@ukr.net

Abstract

The European course towards decarbonization of the economy and energy systems is directly related to the reduction of the volume of extraction and use of fossil fuels. For Ukraine, large-scale restructuring of the coal industry, modernization of mining regions and thermal power are priority tasks. On the one hand, it is necessary to radically reduce the negative impact of extraction and use of fossil fuels on the environment, and on the other hand, we must ensure the effective involvement of the potential of mining systems in the sustainable development of territories, in particular by introducing modern innovative methods of using existing geological objects and mineral resources.

In the article, using the example of coal massif of the Lviv-Volyn Coal Basin, a geological analysis of the formation of methane-containing coal gas traps is carried out and the dependence of the volume of coal gas release on the methane content of coal deposits is shown; for the extraction of a methane-gas mixture from a coal massif, a technological scheme is proposed, which is characterized by the fact that it step by step selects an underground block, to which gas production wells are drilled from the surface and coal gas is extracted, in the next step an adjacent underground block is selected, additional gas production wells are drilled and coal gas is extracted from the adjacent block, by repeating the blocks selection and gas extraction methane-gas mixture from all coal massif is removed; the scheme of an innovative complex has been developed that uses a methane-gas mixture of coal massifs to simultaneously produce of hydrogen, ammonia, and methanol, such complexes can be recommended for the sustainable development of mining enterprise territories.

Keywords

coal bed methane, coal massif, Lviv-Volyn Basin, gas extraction, production of hydrogen, ammonia, methanol

Referenses

Buchynska, I., & Matrofailo, M. (2024). Hazovuhilni rodovyshcha Lvivsko-Volynskoho kamianovuhilnoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(195–196), 62–72. https://doi.org/10.15407/ggcm2024.195-196.062 [in Ukrainian]

Buchynska, I., Matrofailo, M., & Poberezhskyi, A. (2023). Kompleksne osvoiennia suputnikh korysnykh kopalyn i komponentiv vuhillia Liubelskoho rodovyshcha Lvivsko-Volynskoho baseinu. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiia, 2(101), 62–67. https://doi.org/10.17721/1728-2713.101.09 [in Ukrainian]

Buchynska, I., & Yavnyi, P. (2012). Metanonosnist vuhlenosnoi tovshchi Lvivsko-Volynskoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 17–28. [in Ukrainian]

DENSO doslidzhuie tekhnolohiiu tverdooksydnykh elektrolizeriv dlia vyrobnytstva «zelenoho» vodniu. (2023). DENSO AM. Retrieved 25.02.2025 from https://www.denso-am.eu/ua/news/denso-explores-solid-oxide-electrolysis-cell-technology-to-produce-green-hydrogen [in Ukrainian]

European Association for Coal and Lignite. (2024). Market Report 2024 no. 1. Взято 26.02.2025 з https://public.euracoal.eu/download/Public-Archive/Library/Market-Reports/EURACOAL-Market-Report-2024-1_v03-rko.pdf

Haber, F., & Le Rossignol, R. (1916). Production of ammonia (Patent US № 1202995). https://patents.google.com/patent/US1202995A/en

Hvozdevych, O. V., Buchynska, I. V., Kulchytska-Zhyhailo, L. Z., Podolskyi, M. R., & Poberezhskyi, A. V. (2025). Sposib rozrobky vuhleporodnoho masyvu dlia vydobutku metanohazovoi sumishi (Zaiavka na vynakhid (korysnu model) № u202500303). Lyst UKRNOIVI 1703/ZU/25. Retrieved 20.02.2025 from https://sis.nipo.gov.ua/uk/search/detail/1838125/ [in Ukrainian]

Hvozdevych, O., Kulchytska-Zhyhailo, L., & Podolskyi, M. (2023). Dehazatsiia metanovmisnykh vuhilnykh plastiv z vykorystanniam sverdlovynnoho hidromonitoru. Hraal nauky, 34, 137–143. https://doi.org/10.36074/grail-of-science.08.12.2023.29 [in Ukrainian]

Hvozdevych, O. V., Kulchytska-Zhyhailo, L. Z., Podolskyi, M. R., Rodin, M. L., & Kharytonov, V. S. (2025). Enerhetychnyi kompleks dlia odnochasnoho otrymannia vodniu, amiaku ta metanolu z vykorystanniam heolohichnykh obiektiv (Zaiavka na vynakhid (korysnu model) № u202500607). Lyst UKRNOIVI 2674/ZU/25. Retrieved 20.02.2025 from https://sis.nipo.gov.ua/uk/search/detail/1841854/ [in Ukrainian]

Ivanov, Ye. A., & Kovalchuk, I. P. (2024). Nakopychennia hirnychopromyslovykh vidkhodiv u Lvivsko-Volynskomu kamianovuhilnomu baseini: suchasnyi stan, problemy i perspektyvy povodzhennia. Ukrainskyi zhurnal pryrodnychykh nauk, 7, 75–84. https://doi.org/10.32782/naturaljournal.7.2024.8 [in Ukrainian]

Kamyshan, V. V. (2005). Sposib dehazatsii vuhilnykh rodovyshch (Patent na korysnu model № 11285, Ukraina, MPK E21F7/00). Biuleten, 12. Retrieved 20.02.2025 from https://sis.nipo.gov.ua/uk/search/detail/294011/ [in Ukrainian]

Kontsevoi, A. L., & Kontsevoi, S. A. (2021). Tekhnolohiia zviazanoho azotu: kurs lektsii (Digital ed.). Kyiv: KPI im. Ihoria Sikorskoho. https://ela.kpi.ua/server/api/core/bitstreams/0df6ed70-cf17-4420-b8fd-36308e9d1b6c/content [in Ukrainian]

Matrofailo, M., Buchynska, I., & Poberezhskyi, A. (2017). Rozpodil i pokhodzhennia vuhlevodnevykh haziv u vuhlenosnykh vidkladakh Lvivsko-Volynskoho kamianovuhilnoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(172–173), 87–105. [in Ukrainian]

Matrofailo, M. M., Buchynska, I. V., & Poberezhskyi, A. V. (2024). Osnovni heolohichni chynnyky hazonosnosti i vydobuvnyi potentsial perspektyvnykh dilianok hazovuhilnykh rodovyshch Lvivsko-Volynskoho kamianovuhilnoho baseinu. In Naukovi aspekty zberezhennia ta vidnovlennia pryrodnykh resursiv v umovakh suchasnoho rozvytku suspilstva (pp. 534–559). Ryha: Baltija Publishing. https://doi.org/10.30525/978-9934-26-511-2-21 [in Ukrainian]

Naumko, I. M., Pavliuk, M. I., Svoren, Y. M., & Zubyk, M. I. (2015). Metan hazovuhilnykh rodovyshch – potuzhne dodatkove dzherelo vuhlevodniv v Ukraini. Visnyk NAN Ukrainy, 6, 43–54. Retrieved 14.02.2025 from https://visnyk-nanu.org.ua/ojs/index.php/v/article/view/1591 [in Ukrainian]

Pro haz (metan) vuhilnykh rodovyshch (Zakon Ukrainy № 1392-VI). (2009). Vidomosti Verkhovnoi Rady Ukrainy, 40, 578. Retrieved 26.02.2025 from https://zakon.rada.gov.ua/laws/show/1392-17#Text [in Ukrainian]

Pro vykonannia naukovo-tekhnichnoho proektu «Vyluchennia metanu zakrytykh shakht: hirnycho-heolohichne i tekhnolohichne obgruntuvannia na 2011–2015 rr.» (Rozporiadzhennia Prezydii NAN Ukrainy № 98 vid 17.02.2012). (2012). Retrieved 21.02.2025 from https://www.old.nas.gov.ua/legaltexts/DocPublic/R-120217-98-0.pdf [in Ukrainian]

Radzivill, A. Ia. (Ed.). (2007). Korreliatciia karbonovykh uglenosnykh formatcii Lvovsko-Volynskogo i Liublinskogo basseinov. Kiev: Varta. [in Russian]

Rudko, H. I., Ivanov, Ye. A., & Kovalchuk, I. P. (2019). Hirnychopromyslovi heosystemy Zakhidnoho rehionu Ukrainy (Vol. 2). Kyiv; Chernivtsi: Bukrek. [in Ukrainian]

Rudko, H. I., & Yakovliev, Ye. O. (2020). Postmaininh hirnychodobuvnykh raioniv Ukrainy yak novyi napriam ekolohichno bezpechnoho vykorystannia mineralno-syrovynnykh resursiv. Mineralni resursy Ukrainy, 3, 37–44. https://doi.org/10.31996/mru.2020.3.37-44 [in Ukrainian]

Shashenko, O. M., & Cherednyk, V. A. (2019). Suchasni uiavlennia shchodo vynyknennia hazovykh pokladiv u pidroblenykh vuhleporodnykh masyvakh. Hirnychyi visnyk, 106, 3–8. https://doi.org/10.31721/2306-5435-2019-1-106-3-9 [in Ukrainian]

Sofiiskii, K. K., Silin, D. P., & Agaev, R. A. (2013). Kompleksnoe osvoenie gazougolnogo mestorozhdeniia s primeneniem metoda gidrodinamicheskogo vozdeistviia. Ugol Ukrainy, 2, 48–51. [in Russian]

Verhelska, N., Skopychenko, I., & Kroshko, Yu. (2022). Heoloho-strukturni modeli formuvannia ta akumuliatsii hazu u tekhnohennykh kolektorakh vuhleporodnykh masyviv. Hirnycha heolohiia ta heoekolohiia, 2(5), 5–18. https://doi.org/10.59911/mgg.2786-7994.2022.2(5).276072 [in Ukrainian]

Verhelska, N. V., Verhelska, V. V., & Skopychenko, I. M. (2024). Osoblyvosti vykorystannia tekhnohennykh kolektoriv vuhleporodnykh masyviv Donetskoho baseinu. Mineralni resursy Ukrainy, 3, 54–60. https://doi.org/10.31996/mru.2024.3.54-60 [in Ukrainian]

Yermakov, V. M., Klymenko, O. O., & Horobei, M. S. (2020). Tekhnohenne zabrudnennia litosfery vnaslidok funktsionuvannia i zakryttia vuhilnykh shakht. Ekolohichni nauky, 7(34), 12–15. https://doi.org/10.32846/2306-9716/2021.eco.7-34.2 [in Ukrainian]

Yevdoshchuk, M. I. (1997). Resursne zabezpechennia vydobutku vuhlevodniv Ukrainy za rakhunok malorozmirnykh rodovyshch. Kyiv: Naukova dumka. [in Ukrainian]

Yevdoshchuk, M. I., & Liventseva, H. A. (2016). Heolohichni kryterii prohnozuvannia hazonosnocti lokalnykh tekhnohennykh obiektiv Lvivsko-Volynskoho baseinu. Tektonika i stratyhrafiia, 43, 31–37. https://doi.org/10.30836/igs.0375-7773.2016.108283 [in Ukrainian]

Zabigailo, V. E., Vasiuchkov, Iu. F., & Repka, V. V. (1989). Fiziko-khimicheskie metody upravleniia sostoianiem ugolno-porodnogo massiva. Kiev: Naukova dumka. [in Russian]


Posted on

RESEARCH ON THE HISTORY OF STUDYING ALLUVIAL TITANIUM DEPOSITS (using the example of the Volyn titanium-bearing region, the slope of the Ukrainian shield)

Home > Archive > No. 3–4 (195–196) 2024 > 126–134


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 126–134

https://doi.org/10.15407/ggcm2024.195-196.126

Mariia MEREZHKO

Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: geoinsgeo@gmail.com

Abstract

This article explores the historical progression of research into titanium-bearing alluvial deposits, focusing on the Volyn titanium-bearing region in Ukraine. The study highlights three primary stages of exploration: the early period, the Soviet era, and the contemporary period following Ukraine’s independence, each representing a unique phase in the understanding and utilization of titanium mineral resources.

During the early period, titanium minerals were occasionally mentioned in studies, mostly as incidental observations of titanium-bearing crystalline rocks, with limited systematic interest in their exploration. However, the Soviet era marked a transformative phase in the study of these resources. As demand for rare elements surged, comprehensive geological exploration efforts intensified. Geological expeditions and research groups were established, laying the groundwork for a more structured approach to titanium resource exploration. This era also saw the formation of the “Ukrainian Titanium School”, which brought together researchers and production teams for collaborative study and development of titanium deposits.

The contemporary period, beginning in 1991, is characterized by advancements in methodologies and technologies. Research on titan-zirconium placers in the Volyn region has continued, now emphasizing the role of modern techniques, including Geographic Information Systems. The ongoing collaboration between research institutions and production enterprises, exemplified by the Ukrainian Titanium School, has driven significant progress in the field, facilitating a foundation for further industry development.

Despite the considerable advancements in understanding titanium deposits, challenges persist, underscoring the need for continuous research and the integration of innovative methods. The article concludes by emphasizing the importance of the rational utilization of titanium resources in driving Ukraine’s economic growth, creating new employment opportunities, and attracting investments in titanium extraction and processing.

Keywords

titanium deposit, historical exploration, Volyn region, Ukraine, mineral resource

Referenses

Barbót de Marni, N. P., & Karpinsky, A. P. (1973). Geological research in the Volhynian province. In Collection of the Mining Institute (pp. 247–248). SPB. [in Russian]

Bazaliiska, L. M. (2016). Report on geological exploration of the Poromyvsky placer ilmenite deposit. DNVP “Geoinform Ukraine”. Dnipro. [in Russian]

Bazaliiska, L. M., & Vadymov, N. T. (1954). Geological description of titanium deposits and ore manifestations on the territory of the USSR (pp. 87–112). Kyiv: Ukr. Geol. upr. [in Russian]

Fersman, A. E. (1939). The Search for Mineral Deposits on the Basis of Geochemistry and Mineralogy. Geological and Mineralogical Studies, 4(1), 187–194. [in Russian]

Galetsky, L. S. (2009). Status and prospects of titanium production in Ukraine [Report]. Institute of Geological Sciences of NAS of Ukraine. Kyiv. [in Ukrainian]

Galetsky, L., Khrushchov, D., Remezova, O., Kirpach, Y., Svyvalneva, T., & Stepanyuk, O. (2010). International conference “Titanium ore base in the CIS–2009”. Geologist of Ukraine, 1–2, 3–10. [in Russian]

Galetsky, L. S., & Remezova, E. A. (2011a). The Role of Ukraine’s Titanium Mineral Resource Base in the World. In Proceedings of the International Conference “Ti2011 in the CIS” (Lviv, April 25–28, 2011) (pp. 22–28). Kyiv. [in Russian]

Galetsky, L. S., & Remezova, O. O. (2011b). The strategy of titanium mineral-raw material base of the Ukraine. Geological Journal, 3, 66–72. https://doi.org/10.30836/igs.1025-6814.2011.3.139209 [in Ukrainian]

Ganzha, O., Kuzmanenko, H., Okholina, T., & Remezova, O. (2022). Current state of mineral base of titanium deposits of Ukraine. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(99), 60–66. https://doi.org/10.17721/1728-2713.99.08 [in Ukrainian]

Ivantyshyn, M. M. (1955). Changes in the composition of accessory ilmenite and titanomagnetite in rocks of the Korosten intrusive complex. Geological Journal, 15(3). [in Russian]

Khrushchov, D. P., Kovalchuk, M. S., Remezova, E. A., Lalomov, A. V., Tsymbal, S. N., Bosevskaya, L. P., Lobasov, A. P., Ganja, E. A., Dudchenko, Y. V., & Kroshko, Y. V. (2017). Structural-Lithological Modelling of Sedimentary Formations. Kyiv: Interservice. [in Ukrainian]

Khrushchov, D. P., Lobasov, A. P., Remezova, E. A., Vasylenko, S. P., Svivalnieva, T. V., & Kravchenko, E. A. (2013). Digital structural-lithological models for Zlobychy and Motrona-Annyvske placer titanium-zirconium deposits. Geological Journal, 2, 26–36. https://doi.org/10.30836/igs.1025-6814.2013.2.139337 [in Russian]

Luchytskyi, V. I., Semenenko, M. P., Tkachuk, L. H., & Usenko, I. S. (1947). Ukrainian crystalline massif (geological-petrographic description with a map). [in Russian]

Mazko, M. I. (1959). Results of geological prospecting works performed by the Zhytomyr expedition in the Irsha River basin and the upper reaches of the Uzh River in Zhytomyr region, USSR, in 1953–1958 [Research report] (pp. 87–112). [in Russian]

Miklukho-Maklay, M. N. (1890). Geological research of Novohrad-Volynskyi and Zhytomyr counties, Volyn province. In Proceedings of the Mining Society (p. 79). SPB. [in Russian]

Nestrenko, T. P. (2019). Reevaluation of the Geological and Economic Assessment of Reserves of the Mezhyrichne Titanium Ore Deposit (Sections Serednya, Emilivska, Yurska, Osynova, and Bukynska). Kryvyi Rih. [in Ukrainian]

Ossovsky, G. O. (1868). Geological-geographical study of Volhynian province. In Proceedings of the 1st Congress of Russian Naturalists (p. 112). SPB. [in Russian]

Remezova, O. O. (2005a). Problems of studying layered intrusive bodies of the Ukrainian Shield. Geological and Mineralogical Bulletin, 1(13), 61–67. [in Russian]

Remezova, O. O. (2005b). Problems of studying the ilmenite deposits in the northwestern part of the Ukrainian Shield. Collection of scientific works of the National Mining University, 23, 22–27. [in Russian]

Remezova, O. O., & Vasilenko, S. P. (2019). Significant contribution of the Department of Geology of Minerals of the Institute of Geological Sciences of NAS of Ukraine into the development of national geology during the Ukrainian independent. Geological Journal, 1(366), 45–58. https://doi.org/10.30836/igs.1025-6814.2019.1.159240 [in Ukrainian]

Shvaiberov, S. K. (1991a). Report of the Zhytomyr GRE on the results of prospecting and evaluation works conducted in 1987–1991 in Zhytomyr region, USSR (pp. 69–78). [in Russian]

Shvaiberov, S. K. (1991b). Exploration and Evaluation Works on Stavyshchanska, Trostyanitska, and Ocheretyanska Placer Deposits of Ilmenite [Research report]. Zhytomyr State Geological Exploration Expedition. [in Russian]

Shvaiberov, S. K. (1994). Detailed Exploration of the Zlobychske Placer Deposit of Ilmenite in Zhytomyr Region, Ukraine (pp. 244–265). [in Russian]

Svyvalneva, T. V. (2011). Geological-structural conditions for the formation of the Zlobychskoye placer ilmenite deposit. Scientific principles of the geological-economic assessment of the mineral resource base of Ukraine, 48, 212–214. [in Russian]

Svyvalneva, T. V. (2013). Rating approach to the geological-economic assessment of titanium deposits with the construction of a model of one of the promising objects of the Volyn titanium-bearing region. In Proceedings of the International Conference “Ti2013 in the CIS” (pp. 106–110). Donetsk. [in Russian]

Tarasenko, V. E. (1895). On the Mountain Rocks of the Gabbro Family in Radomyshl and Zhytomyr Counties of Kyiv and Volyn Provinces. Proceedings of the Kyiv Society of Naturalists, 15(1), 89–91. [in Russian]

Theofilaktov, K. M. (1851). On the crystalline rocks of the provinces of Kyiv, Volyn, and Podillya. In Transactions of the Committee of Higher Educational Institutions at St. Vladimir University (pp. 132–133). [in Russian]

Theofilaktov, K. M. (1868). On the Results of Geological Research in Kyiv Province. In Proceedings of the First Congress of Russian Naturalists in St. Petersburg, 1868 (p. 231). St. Petersburg. [in Russian]

Vadymov, N. T. (1954). Geological description of titanium deposits and ore manifestations on the territory of the USSR. Kyiv. [in Russian]

Vasylenko, A. P., & Trokhymenko, V. M. (2014). First results of monitoring and scientific support for the development of placer titanium deposits in the western part of the Ukrainian Shield. Collection of scientific works UkrDGI, 1, 33–39. [in Ukrainian]

Zamoysky, P. K. (1939). Geology and Quaternary deposits of the Irsha River interfluve – Upper and Lower Irshytsia and Trostyanitsa. Funds of IGN NAS of Ukraine. [in Ukrainian]