Posted on

USE OF CHEMOMETRIC METHODS AND REGRESSION MODELS IN PROCESSING NIR SPECTRA OF PEAT FOR QUANTITATIVE DETERMINATION OF ITS CHEMICAL AND TECHNOLOGICAL INDICATORS

Home > Archive > No. 3–4 (195–196) 2024 > 100–125


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 100–125

https://doi.org/10.15407/ggcm2024.195-196.100

Yurii KHOKHA1, Myroslava YAKOVENKO2

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1khoha_yury@ukr.net; 2myroslavakoshil@ukr.net

Abstract

The article discusses theoretical and practical aspects of the use of near infrared (NIR) spectroscopy combined with chemometrics for express analysis of peat. Near infrared spectroscopy provides a significant amount of information about complex organic systems, including irregular polymers such as peat. Compared to classical analytical methods, NIR spectrometry allows analysis without complex sample preparation with analysis time measured in minutes. Since the results represent the intensity of radiation reflection in the overtone range of fundamental frequencies, their processing requires the use of special mathematical and statistical methods. The use of the Chemoface software package modules (PLS method) for quantitative analysis of the technical and chemical properties of peat based on NIR spectroscopy data has demonstrated the possibility of obtaining calibration models that allow for the quick and reliable analysis of this raw material, including in field conditions. The conducted studies have shown that using a spectrometer that analyzes reflected (absorbed) radiation in the near-infrared spectrum and based on the averaged spectral characteristics of the reflected (absorbed) radiation and using chemometric software, it is possible to calculate the chemical and technological characteristics of peat. The analysis procedure consists of the following stages: selection of a sample representing the entire batch of raw materials; irradiation of the sample with radiation containing a significant proportion of energy in the near-infrared spectrum; analysis with a detector of reflected (absorbed) radiation and construction of an integral spectral characteristic of the sample; compilation of a calibration model using chemometric software; processing of the obtained spectrum using chemometric software with subsequent calculation of the qualitative and quantitative characteristics of the raw materials. The proposed method (express analysis) for rapid determination of qualitative and quantitative characteristics of fossil carbon raw materials of organic origin, namely lowland and highland peat of various degrees of decomposition, can be used to establish its compliance with current norms, standards and technical conditions for moisture content, ash (inorganic) residue content and acidity (pH).

Keywords

near-infrared reflectance (NIR) spectroscopy, peat analysis, predictive models, multivariate analysis, Partial Least Squares Regression (PLS), pre-treatments effect

Referenses

Andrés, J. M., & Bona, M. T. (2005). Analysis of coal by diffuse reflectance near-infrared spectroscopy. Analytica chimica acta, 535(1–2), 123–132. https://doi.org/10.1016/j.aca.2004.12.007

Geladi, P., MacDougall, D., & Martens, H. (1985). Linearization and scatter-correction for near-infrared reflectance spectra of meat. Applied spectroscopy, 39(3), 491–500. https://doi.org/10.1366/0003702854248656

Instytut gruntoznavstva ta ahrokhimii imeni O. N. Sokolovskoho Ukrainskoi akademii ahrarnykh nauk. (2008). Melioranty gruntu ta seredovyshcha rostu. Hotuvannia prob do khimichnoho ta fizychnoho analizu, vyznachennia vmistu sukhoi rechovyny, vmistu volohy ta laboratorno ushchilnenoi nasypnoi shchilnosti (EN 13040:1999, IDT) (DSTU EN 13040:2005). [in Ukrainian]

Instytut silskohospodarskoi mikrobiolohii ta ahropromyslovoho vyrobnytstva NAAN. (2016). Torf i produkty yoho pereroblennia dlia silskoho hospodarstva. Metody vyznachennia obminnoi y aktyvnoi kyslotnosti (DSTU 7882:2015). [in Ukrainian]

McClure, W. F. (1994). Near-infrared spectroscopy: The giant is running strong. Analytical chemistry, 66(1), 42A–53A. https://doi.org/10.1021/ac00073a730

Mostert, M. M., Ayoko, G. A., & Kokot, S. (2010). Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry, 29(5), 430–445. https://doi.org/10.1016/j.trac.2010.02.009

Nunes, C. A., Freitas, M. P., Pinheiro, A. C. M., & Bastos, S. C. (2012). Chemoface: a novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society, 23(11), 2003–2010. https://doi.org/10.1590/S0103-50532012005000073

Suprunovych, S. V., Kormosh, Zh. O., & Slyvka, N. Yu. (2022). Statystychni ta khemometrychni metody v khimii: navchalnyi posibnyk dlia studentiv vyshchykh navchalnykh zakladiv. Lutsk: VNU imeni Lesi Ukrainky. [in Ukrainian]

Tekhnichnyi komitet standartyzatsii “Gruntoznavstvo”. (2016). Yakist gruntu. Vyznachennia zolnosti torfu i torfovoho gruntu (DSTU 7942:2015). [in Ukrainian]

Yakovenko, M., & Khokha, Yu. (2024). Vykorystannia metodiv infrachervonoi spektroskopii dlia doslidzhennia torfu (rodovyshche Honchary, Lvivska oblast). Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(193–194), 113–129. https://doi.org/10.15407/ggcm2024.193-194.113 [in Ukrainian]


Posted on

INNOVATIVE STUDY COMPLEX OF COMPLEXLY STRUCTURED HYDROCARBON RESERVOIR ROCKS, BASED ON PETROPHYSICAL AND GEOCHEMICAL PARAMETERS (on the example of the Boryslav-Pokuttia zone of the Pre-Carpathian depression)

Home > Archive > No. 1–2 (193–194) 2024 > 130–140


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 130–140

https://doi.org/10.15407/ggcm2024.193-194.130

Roman-Danyil KUCHER, Oksana SENIV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The article examines methods of studying the capacity-filtration properties of reservoir rocks of hydrocarbon deposits and transformation processes and the state of kerogen depletion within the Boryslav-Pokuttia zone of the Pre-Сarpathian depression.

The complex stressed state of rocks, which arises because of the action of geodynamic stresses, and the processes of catagenetic changes cause the development of secondary pore-crack and crack-cavernous reservoirs. Crack formation is caused by deformation and depends on the mechanical properties of rocks. The development of traps, pore-crack and crack-cavernous reservoirs is associated with rock loosening zones, which tend to tectonic disturbances and to places of intrusion of fluids from great depths into the sedimentary layer. At the same time, two multidirectional processes – thermal degradation and consolidation under the influence of pressure – cause changes that occur in the structure of kerogen during its evolution.

Based on the results of the analysis of the actual and theoretical material, the optimal methodical set of studies of the most important characteristics of the reservoirs and the processes of kerogen evolution for the considered zone is substantiated. An analysis of the geological and petrophysical characteristics of the Oligocene deposits of the Inner Zone of the Pre-Carpathian Trough was carried out and database were formed.

It has been established that pore-crack and crack reservoirs have a complex structure, and their distribution and capacity are controlled by two factors of different nature – lithological-facies and structural-deformation. It was found that thermodynamic modelling models – maximization of entropy and constants of independent chemical reactions – provide reliable results of the distribution of elements between the components of complex heterogeneous and homogeneous geochemical systems. It is shown that the chosen method of calculating the Gibbs energy of individual components of geochemical systems has sufficient accuracy for use in the above models.

Keywords

Boryslav-Pokuttia zone, complicated reservoir rocks, petrophysical and geochemical parameters

Referenses

Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498–2508. https://doi.org/10.1021/ie4033999

Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A code calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225(1). https://doi.org/10.3847/0067-0049/225/1/4

Chekalyuk, E. B. (1971). Termodinamicheskiye osnovy teorii mineralnogo proiskhozhdeniya nefti. Kiev: Naukova dumka. [in Russian]

Glushko, V. P. (1972). Termodinamicheskiye svoystva individualnykh veshchestv. Moskva: Nauka. [in Russian]

Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti. Kyiv: Naukova dumka. [in Ukrainian]

Khokha, Yu. V., Liubchak, O. V., & Yakovenko, M. B. (2019). Enerhiia Hibbsa utvorennia komponentiv pryrodnoho hazu v osadovykh tovshchakh. Heolohiia i heokhimiia horiuchykh kopalyn, 2(179), 37–46. https://doi.org/10.15407/ggcm2019.02.037 [in Ukrainian]

Koukkari, P. (2014). Introduction to constrained Gibbs energy methods in process and materials research. VTT Technical Research Centre of Finland. VTT Technology No. 160. https://publications.vtt.fi/pdf/technology/2014/T160.pdf

van Krevelen, D. W., & Chermin, H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1(2), 66–80. https://doi.org/10.1016/0009-2509(51)85002-4

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Chepil, P. M., Dryhant, D. M., Shlapinskyi, V. Ye., Koltun, Yu. V., Chepil, V. P., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kucher, R.-D. A., & Seniv, O. R. (2024). Obgruntuvannia optymalnoho metodychnoho kompleksu doslidzhen yemnisno-filtratsiinykh vlastyvostei kolektoriv ta protsesiv transformatsii kerohenu Boryslavsko-Pokutskoi zony Peredkarpatskoho prohynu. In Suchasni problemy nauk pro Zemliu: materialy XIII Vseukrainskoi konferentsii-shkoly (Kyiv, 10–12 kvitnia 2024 r.) (pp. 22–24). Kyiv. [in Ukrainian]

Kurovets, I., Hrytsyk, I., Prykhodko, O., Chepusenko, P., Kucher, Z., Mykhalchuk, S., Melnychuk, S., Lysak, Yu., & Petelko, L. (2021). Petrofizychni modeli vidkladiv menilitovoi svity olihotsenovoho flishu Karpat i Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 33–43. https://doi.org/10.15407/ggcm2021.03-04.033 [in Ukrainian]

Kurovets, I., Hrytsyk, I., Zubko, O., Prykhodko, O., & Kucher, R.-D. (2023). Aparaturno-metodychnyi kompleks doslidzhen petrofizychnykh vlastyvostei trishchynuvatykh porid-kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(191–192), 37−44. https://doi.org/10.15407/ggcm2023.191-192.037 [in Ukrainian]

Kurovets, I. M., Prytulka, H. Y., Sheremeta, O. V., Zubko, O. S., Osadchyi, V. H., Hrytsyk, I. I., Prykhodko, O. A., Kosianenko, H. P., Chepusenko, P. S., Shyra, A. I., Kucher, Z. I., & Oliinyk, K. A. (2006). Petrofizychni modeli skladnopobudovanykh kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 119–139. [in Ukrainian]

Kurovets, I., Zubko, O., Hrytsyk, I., Prykhodko, O., & Kucher, R.-D. (2023). Osoblyvosti formuvannia yemnisno-filtratsiinykh vlastyvostei porid-kolektoriv Vnutrishnoi zony Peredkarpatskoho prohynu. In Heofizyka i heodynamika: prohnozuvannia ta monitorynh heolohichnoho seredovyshcha: zbirnyk materialiv XI Mizhnarodnoi naukovoi konferentsii (Lviv, 10−12 zhovtnia 2023 r.) (pp. 109−112). Lviv. [in Ukrainian]

Pavliuk, M., Naumko, I., Lazaruk, Ya., Khokha, Yu., Krupskyi, Yu., Savchak, O., Rizun, B., Medvediev, A., Shlapinskyi, V., Kolodii, I., Liubchak, O., Yakovenko, M., Ternavskyi, M., Hryvniak, H., Triska, N., Seniv, O., & Huzarska, L. (2022). Rezerv naftohazovydobutku Zakhidnoho rehionu Ukrainy (Digital ed.). Lviv. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf [in Ukrainian]

Sanford, G., & McBride, B. J. (1994). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. NASA reference publication, 1311.

Stull, D. R., Westrum Jr., E. F., & Sinke, G. C. (1969). The Chemical Thermodynamics of Organic Compounds. NewYork: J. Wiley and Sons, Inc.

Tribus, M. (1961). Thermostatics and thermodynamics: an introduction to energy, information and states of matter, with engineering applications. Princeton: D. Van Nostrand Company Inc.


Posted on

USE OF INFRARED SPECTROSCOPY METHODS FOR RESEARCH OF PEAT (Honchary deposit, Lviv Region)

Home > Archive > No. 1–2 (193–194) 2024 > 113–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 113–129

https://doi.org/10.15407/ggcm2024.193-194.113

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1 myroslavakoshil@ukr.net; 2 khoha_yury@ukr.net

Abstract

The problems of peat analysis using near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods are considered.

Infrared spectroscopic researches of selected peat samples in a vertical section (depth 0–140 cm) from the Honchary deposit of the Lviv Region were carried out using instrumental analytical methods of infrared spectroscopy (near-infrared reflectance, NIR and mid-infrared reflectance, MIR) in order to determine the characteristics of the chemical group composition, mineral and organic components of peat to assess the quality of peat and its further exploitation in various industries.

As a result, the spectra of chemical compounds were identified, among which the largest number are: hydroxyl, methylene, methyl and aromatic groups.

Direct analysis of infrared spectrogram sections of the studied peat showed significantly greater informativeness of IR spectroscopy in the mid-infrared range (400–4000 cm−1) in contrast to the mid-infrared frequency range (from 3900 to 7400 cm−1).

The possibility and effectiveness of using near- and mid-infrared spectroscopy methods to analyze the chemical composition of peat and obtain information on the structure of organic matter at the level of functional groups has been assessed.

The advantage of this method in comparison with other instrumental research methods is also its speed and expressivity – the total time required for the preparation and analysis of peat samples was less than 5 minutes compared to 10–16 hours required for determining the content of moisture, proteins, lipids and ash by reference standard methods.

Near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods can be used and effectively applied in combination with other methods as an analytical tool for peat quality monitoring, simultaneous measurement of several quality parameters and its further use in various industries and development of environmentally friendly technologies.

Keywords

peat, mineral and organic composition, infrared spectroscopy, near-infrared spectroscopy, mid-infrared spectroscopy, functional groups, peat quality

Referenses

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. (2013). Herisau: Metrohm AG.

Bellamy, L. J. (2013). The infra-red spectra of complex molecules. Springer Science & Business Media.

Burns, D. A., & Ciurczak, E. W. (Eds.). (2008). Handbook of near-infrared analysis (3rd ed.). CRC Press. https://doi.org/10.1201/9781420007374

Cross, A. D. (1960). An introduction to practical infra-red spectroscopy. Butterworths Scientific Publications.

Instytut gruntoznavstva ta ahrokhimii imeni O. N. Sokolovskoho Ukrainskoi akademii ahrarnykh nauk. (2008). Melioranty gruntu ta seredovyshcha rostu. Hotuvannia prob do khimichnoho ta fizychnoho analizu, vyznachennia vmistu sukhoi rechovyny, vmistu volohy ta laboratorno ushchilnenoi nasypnoi shchilnosti (EN 13040:1999, IDT) (DSTU EN 13040:2005). [in Ukrainian]

Mistry, B. D. (2009). A handbook of spectroscopic data – chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy). Oxford Book Company.

Myroniuk, O. V. (Сompiler). (2017). Instrumentalni metody khimichnoho analizu. Kyiv: NTUU “KPI im. I. Sikorskoho”. [in Ukrainian]

Rice, J. A., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 17(5), 635–648. https://doi.org/10.1016/0146-6380(91)90006-6

Stark, E., Luchter, K., & Margoshes, M. (1986). Near-infrared analysis (NIRA): A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, 22(4), 335–399. https://doi.org/10.1080/05704928608060440

Szymanski, H. A., & Erickson, R. E. (1970). Infrared Band Handbook: Vol. 1. 4240–999 cm−1/Vol. 2. 999–29 cm−1 [Electronic resource]. Boston, MA: Springer US: Imprint: Springer. https://doi.org/10.1007/978-1-4684-6069-8

Tekhnichnyi komitet standartyzatsii “Gruntoznavstvo”. (2016). Yakist gruntu. Vyznachennia zolnosti torfu i torfovoho gruntu (DSTU 7942:2015). [in Ukrainian]

Tsutsuki, K., & Kuwatsuka, S. (1978). Chemical studies on soil humic acids: II. Composition of oxygen-containing functional groups of humic acids. Soil Science and Plant Nutrition, 24(4), 547–560. https://doi.org/10.1080/00380768.1978.10433134

Yonebayashi, K., & Hattori, T. (1988). Chemical and biological studies on environmental humic acids: I. Composition of elemental and functional groups of humic acids. Soil Science and Plant Nutrition, 34(4), 571–584. https://doi.org/10.1080/00380768.1988.10416472

Yurchenko, O. M., Kormosh, Zh. O., Savchuk, T. I., & Korolchuk, S. I. (2021). Metodychni rekomendatsii do vyvchennia temy “Infrachervona spektroskopiia” z dystsypliny “Fizychni metody doslidzhennia rechovyny”. Lutsk. [in Ukrainian]


Posted on

ON THE SIGNIFICANCE OF NATURAL CARBONATES IN THE PROCESSES OF SYNTHESIS AND GENESIS OF HYDROCARBONS IN THE EARTH’S LITHOSPHERE

Home > Archive > No. 3–4 (191–192) 2023 > 135–142


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 135–142

https://doi.org/10.15407/ggcm2023.191-192.135

Josyp SVOREN’

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The fundamental importance of studies of the processes of synthesis and genesis of hydrocarbons in the Earth’s lithosphere has been confirmed and the prospects of the chosen direction for advanced research have been demonstrated, as well as for the thorough development of genetic principles of physical and chemical conditions of the formation of hydrocarbons deposits in various geological minds, focusing on the role of natural carbonate formation in this process. It is shown in this connection that one of the most striking natural phenomena of the Earth’s lithosphere is the obvious manifestations of veinlet-impregnated carbonate mineralization. This has been discussed in detail in the case of some areas of the Ukrainian Carpathians and Pre-Сarpathians, where the original carbonate veinlets of hydrothermal origin with traces of hydrocarbons migration are often happened, but industrial research works is rarely carried out because of their low (as expected) prospects for gas and oil deposits. We pay attention to the areas of development of the calcite veinlets with rare, perfectly faceted crystals of quartz – “Marmarosh diamonds” among the Cretaceous and Paleogene deposits of the South-Western slope of the Carpathians.

As a result, supporting materials on the importance of natural carbonates in the processes of synthesis and genesis of hydrocarbons in the Earth’s lithosphere are given. It consists in the revealed previously unknown property of natural carbonates, mainly calcium carbonate, under the action of abiogenic high-thermobaric deep fluid to decompose and be an additional source of carbon with different isotopic compositions in the processes of synthesis and genesis of hydrocarbons: gas, oil, bitumen as well as a carrier of these compounds in time of their migration and conservation in new creations in the deposits of oil and gas-bearing areas and metallogenic provinces: deposits-fields, veins, fluid inclusions, veinlet-impregnated mineralization.

Keywords

fluid inclusions, carbonates, veins, hydrocarbons, deposits, gas and oil, mass spectrometric studies, supposed scientific discovery

Referenses

Biletskyi, V. C. (Red.). (2004). Mala hirnycha entsyklopediia: Vol. 1. A–K. Donetsk: Donbas. [in Ukrainian]

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren, Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Lazarenko, Ye. K., & Vynar, O. M. (1975). Mineralohichnyi slovnyk. Kyiv: Naukova dumka. [in Ukrainian]

Matkovskyi, O. I. (Hol. red.). (2003). Mineraly Ukrainskykh Karpat. Boraty, arsenaty, fosfaty, molibdaty, sulfaty, karbonaty, orhanichni mineraly i mineraloidy. Lviv: Vydavnychyi tsentr LNU im. Ivana Franka. [in Ukrainian]

Matkovskyi, O., Naumko, I., Pav lun, M., & Slyvko, Ye. (2021). Termobaroheokhimiia v Ukraini. Lviv: Prostir-M. [in Ukrainian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis, Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine]. Lviv. [in Ukrainian]

Naumko I., Bratus M., Dudok I., Kaliuzhnyi V., Kovalyshyn Z., Sakhno B., Svoren Y., & Telepko L. (2004). Fliuidnyi rezhym katahenno-hidrotermalnoho protsesu periodu formuvannia zhylnoi, prozhylkovoi i prozhylkovo-vkraplenoi mineralizatsii v osadovykh tovshchakh. In V. V. Kolodii (Ed.), Karpatska naftohazonosna provintsiia (pp. 308–345). Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Naumko, I. M., & Svoren, Y. M. (2008). Pro shliakhy vtilennia hlybynnoho vysokotemperaturnoho fliuidu v zemnu koru. Dopovidi NAN Ukrainy, 9, 112–114. [in Ukrainian]

Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyaniye na svoystva veshchestv [Extended abstract of Candidateʼs thesis. Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine]. Lvov. [in Russian]

Svoren, I. M. (1988). Formy nakhozhdeniya vodoroda v nekotorykh tverdykh materialakh razlichnogo proiskhozhdeniya soglasno fiziko-khimicheskoy modeli navodorozhivaniya tverdykh tel. In Geokhimiya i termobarometriya endogennykh flyuidov (pp. 95–103). Kiev: Naukova dumka. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy (pp. 143–145). Lviv. [in Ukrainian]

Svoren, Y. (2020a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda vody naftovykh i hazovykh rodovyshch. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 8–9 hrudnia 2020 r.) (pp. 158–160). Ivano-Frankivsk: IFNTUNH. [in Ukrainian]

Svoren, J. M. (2020b). Various Chemical Properties of Carbon Isotopes in Natural Synthesis of Different Compounds. Journal of Geological Resource and Engineering, 8, 20–23. https://doi.org/10.17265/2328-2193/2020.01.002

Svoren, Y. M., & Davydenko, M. M. (1995). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Dopovidi NAN Ukrainy, 9, 72–73. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2003). Nova teoriia syntezu i henezysu vuhlevodniv u litosferi Zemli: abiohenno-biohennyi dualizm. In Mezhdunarodnaya konferentsiya “Krym–2003” (pp. 75–77). Simferopol. [in Ukrainian]

Svoren, Y., & Naumko, I. (2004). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: henezys i syntez prozhylkovykh karbonatnykh porid. In Mineralohiia: istoriia, teoriia i praktyka: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 140-richchiu kafedry mineralohii Lvivskoho natsionalnoho universytetu imeni Ivana Franka (Lviv–Shatsk, 3–6 veresnia 2004 r.) (pp. 63–65). Lviv: Vydavnychyi tsentr LNU imeni Ivana Franka. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2005). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii – pryrodnyi fenomen litosfery Zemli. Dopovidi NAN Ukrainy, 2, 109–113. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111–116. [in Ukrainian]


Posted on

THE INFLUENCE OF MARINE AND CONTINENTAL WATERS ON THE CLAY MINERALS TRANSFORMATION PROCESSES OF EVAPORITE DEPOSITS (on the example of the Kalush-Holin’ deposit, Carpathian Foredeep)

Home > Archive > No. 3–4 (191–192) 2023 > 122–134


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 122–134

https://doi.org/10.15407/ggcm2023.191-192.122

Sofiya HRYNIV, Yaroslava YAREMCHUK, Natalia RADKOVETS

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: sophia_hryniv@ukr.net

Abstract

The influence of the chemical composition of marine and continental waters on the formation and transformation of clay minerals is considered on the example of evaporites of the Kalush-Holin’ potash deposit of the Carpathian Foredeep. Clay minerals under variable physical and chemical conditions become unstable and transformed, adapting to new conditions. The main factor that causes changes in their composition and structure is the concentration of brines.

The increased concentration of brines at the stage of deposition of potassium salts contributed to the aggradational transformation of clay minerals, the transformation of labile minerals into illite and chlorite that are stable in the hipersaline environment. These two minerals – illite and chlorite are characteristic of the Kalush-Holin’ potash deposit. Further arrangement of the structure leads to the transformation of part of the illite into mica. On the clay fraction diffractograms of some potash rocks, the basal reflex 001 is wide and bifurcated at the top on a line with interplanar distances of 0.99 and 1.0 nm, this indicates the presence of structurally similar minerals – mica and illite.

Under conditions of hypergenesis, when evaporite deposits are washed away by fresh surface waters, a reverse process (degradational transformation) takes place, which occurs in the leaching of potassium from the interlayer space of a part of illite and the formation of labile clay structures. The clay mineral association of the gypsum-clay caprock of evaporite deposits, in addition to illite and chlorite, also contains mixed-layer illite-smectite and kaolinite – the appearance of these clay minerals in hypergenic deposits is the result of degradational transformation (illite-smectite) and formation de novo (kaolinite) under conditions of decreased saline brine concentration.

Capture of potassium by the structure of the mixed-layer illite-smectite and its transition into illite (aggradational transformation) occurs more easily than the reverse process – potassium leaching and transformation of illite into a mixed-layer illite-smectite (degradational transformation).

Keywords

clay minerals, aggradational and degradational transformation, evaporite deposits, hypergenesis zone, gypsum-clay caprock

Referenses

Andreyeva-Grigorovich, A., Oszczypko, N., Savitskaya, N., Ślączka, A., & Trofimovicz, N. (2003). Correlation of the Badenian Salts of the Wieliczka, Bochnia and Kalush Areas (Polish and Ukrainian Carpathian Foredeep). Annales Societatis Geologorum Poloniae, 73, 67–89.

Bąbel, M. & Schreiber, B. C. (2014). Geochemistry of Evaporites and Evolution of Seawater. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (2nd ed.) (Vol. 9, pp. 483–560). Elsevier. http://doi.org/10.1016/B978-0-08-095975-7.00718-X

Bilonizhka, P. M. (1992). Transformatsiini peretvorennia teryhennykh hlynystykh mineraliv pid chas halohenezu. Mineralohichnyi zbirnyk, 45(2), 51–56. [in Ukrainian]

Bilonizhka, P. M. (2001). Pryroda mizhsharovoi vody v hidrosliudakh. Mineralohichnyi zbirnyk, 51(1), 142–148. [in Ukrainian]

Bilonizhka, P., Iaremchuk, Ia., Hryniv, S., & Vovnyuk, S. (2012). Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine. Biuletyn Państwowego Instytutu Geologicznego, 449, 137–146.

Bodine, M. W., Jr. (1985). Trioctahedral Clay Mineral Assemblages in Paleozoic Marine Evaporite Rocks. In Sixth International Symposium on Salt (Vol. 1, pp. 267–284).

Calvo, J. P., Blanc-Valleron, M. M., Rodriguez Arandia, J. P., Rouchy, J. M., & Sanz, M. E. (1999). Authigenic clay minerals in continental evaporitic environments. International Association Sedimentologists Special Publication, 27, 129–151.

Drits, V. A., & Kossovskaya, A. G. (1990). Glinistyye mineraly: smektity, smeshanosloynyye obrazovaniya. Moskva: Nauka. [in Russian]

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

Dzhinoridze, N. M., Rogova, M. S., & Telegin, V. P. (1974). Vulkanogennyye porody Kalush-Golynskogo mestorozhdeniya kaliynykh soley. Trudy VNIIGalurgii, 71, 36–56. [in Russian]

Frank-Kamenetskiy, V. A., Kotov, N. V., & Goylo, E. L. (1983). Transformatsionnyye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]

Galán, E. (2006). Genesis of Clay Minerals. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Ch. 14, pp. 1129–1162). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01042-1

Honty, M., Uhlík, P., Šucha, V., Čaplovičova, M, Franců, J., Clauer, N., & Biroň, A. (2004). Smectite-to-illite alteration in salt-bearing bentonites (East Slovak Basin). Clay and Clay Minerals, 52, 533–551. https://doi.org/10.1346/CCMN.2004.0520502

Korenevskiy, S. M. (1954). Miotsenovyye vulkanicheskiye tufy Predkarpatia. Trudy VNIIGalurgii, 29, 176–196. [in Russian]

Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskiye problemy (pp. 60–69). Moskva: Nauka. [in Russian]

Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A., & Meunier A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37(1), 1–22. https://doi.org/10.1180/0009855023710014

Lipnitskiy, V. K. (1971). Litologicheskiye osobennosti i solevoy kompleks chetvertichnykh otlozheniy i porod gipsovo-glinistoy shlyapy Stebnikskogo mestorozhdeniya kaliynykh soley. In Materialy po gidrogeologii i geologicheskoy roli podzemnykh vod (pp. 98–108). Leningrad: Izdatelstvo Leningradskogo universiteta. [in Russian]

Lobanova, V. V. (1956). Voprosy petrografii kaliynykh zalezhey Vostochnogo Predkarpatia. Trudy VNIIGalurgii, 32, 164–214. [in Russian]

McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Research, 57(5), 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D

Meunier, A. (2005). Clays. Berlin: Springer.

Millot, G. (1970). Geology of Clays: Weathering, Sedimentology, Geochemistry (R. W. Farrand & H. Paquet, Trans.). New York; Berlin: Springer.

Millot, G., Lucas, J., & Paquet, H. (1966). Evolution géochimique par dégradation et agradation des minéraux argileux dans l’hydrosphère. Geologische Rundschau, 55, 1–20. https://doi.org/10.1007/BF01982951

Nikolishin, V. P. (1969). Gipso-glinistaya shlyapa Dombrovskogo mestorozhdeniya kaliynykh soley. Trudy VNIIGalurgii, 54, 308–312. [in Russian]

Oliiovych, O., Yaremchuk, Ya., & Hryniv, S. (2004). Hlyny halohennykh vidkladiv i kory zvitriuvannia Kalush-Holynskoho rodovyshcha kaliinykh solei (miotsen, Peredkarpattia). Mineralohichnyi zbirnyk, 54(2), 214–223. [in Ukrainian]

Petrichenko, O. Y. (1988). Fiziko-khimicheskiye usloviya osadkoobrazovaniya v drevnikh solerodnykh basseynakh. Kiev: Naukova dumka. [in Russian]

Rosenberg, P. E. (2002). The nature, formation, and stability of end-member illite: a hypothesis. American Mineralogist, 87, 103–107. https://doi.org/10.2138/am-2002-0111

Rudko, H. I., & Petryshyn, V. Yu. (2017). Soliani resursy Peredkarpattia ta perspektyvy yikh vykorystannia. Kyiv; Chernivtsi: Bukrek. [in Ukrainian]

Semchuk, Ya. M. (1995). Naukovi ta metodychni osnovy okhorony heolohichnoho seredovyshcha v raionakh rozrobky kaliinykh rodovyshch (na prykladi Peredkarpattia) [Extended abstract of Doctorʼs thesis, Vasyl Stefanyk Precarpathian National University]. Ivano-Frankivsk. [in Ukrainian]

Shestopalov, M., Liutyi, H., & Sanina, I. (2019). Suchasni pidkhody do hidroheolohichnoho raionuvannia Ukrainy. Mineralni resursy Ukrainy, 2, 3–12. https://doi. org/10.31996/mru.2019.2.3-12 [in Ukrainian]

Sokolova, T. N. (1982). Autigennoye silikatnoye mineraloobrazovaniye raznykh stadiy osoloneniya. Moskva: Nauka. [in Russian]

Środoń, J. (1978). Illite group clay minerals. In G. V. Middleton, M. J. Church, M. Coniglio, L. A. Hardie & F. J. Longstaffe (Eds.), Encyclopedia of Sediments and Sedimentary Rocks (p. 115). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-3609-5

Turner, C. E., & Fishman, N. S. (1991). Jurassic Lake T’oo’dichi: a large alkaline, saline lake, Morison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103(4), 538–558. https://doi.org/10.1007/3-540-32344-9

Weaver, C. E. (1989). Developments in Sedimentology: Vol. 44. Clays, muds, and shales. Amsterdam: Elsevier.

Wójtowicz, A., Hryniv, S. P., Peryt, T. M., Bubniak, A., Bubniak, I., & Bilonizhka, P. M. (2003). K-Ar dating of the Miocene potash salts of the Carpathian Foredeep (West Ukraine): application to dating of tectonic events. Geologica Carpatica, 54(4), 243–249.

Yaremchuk, Ya. V. (2012). Zalezhnist asotsiatsii hlynystykh mineraliv neohenovykh evaporytiv Karpatskoho rehionu vid kontsentratsii rozsoliv solerodnykh baseiniv. Heolohiia i heokhimiia horiuchykh kopalyn, 160–161(3–4), 119–130. [in Ukrainian]

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974


Posted on

ON THE REGULARITY OF NATURAL PROCESSES OF SYNTHESIS AND GENESIS HYDROCARBONS AND WATER OF OIL AND GAS FIELDS: ABIOGENIC-BIOGENIC DUALISM

Home > Archive > No. 1–2 (189–190) 2023 > 81–91


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 81–91

https://doi.org/10.15407/ggcm2023.189-190.081

Yosyp SVOREN’

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

It is shown that the problem of the nature of water in oil and gas fields must be solved in an inextricable connection with the genesis and synthesis of natural hydrocarbons in the Earth’s bowels. The work offers an original solution, based on a new theory of the synthesis and genesis of hydrocarbons (oil, gas, etc.): abiogenic-biogenic dualism, which asserts that giant and supergiant oil and gas fields were formed from inorganic and organic original hydrocarbon-containing substances under the influence of abiogenic high-thermobaric deep fluid in harsh physical, physicochemical and geological conditions of the earth’s crust. Since the abiogenic high-thermobaric deep fluid contains hydrogen H+ and OH-containing anions, the described mechanism for the interaction of positively charged ions: C+, H+, CnHm+-radicals with the formation-synthesis of a complex hydrocarbon mixture such as gas, oil, bitumen, etc. must be logically supplemented by a reaction: Н2О → Н+ + ОН. As a result of this complex physical and chemical process, the maximum concentration of (OH) anions accumulated in the oxidation zone, which after the disappearance of the electric field become neutral and interact with each other according to the scheme: ОН + ОН = Н2О2 – hydrogen peroxide, which is an unstable compound, which decomposes into Н2О + О. Oxygen atoms became the starting substances for the formation of macro- and microcracks in these cavities under harsh conditions of rocks of the carbonate or quartz-carbonate type, etc., much less often – perfect mineral crystals, which with their defects in the process of growth (synthesis) captivate and preserve substances in the system (proper hydrocarbons and water). Тherefore, it was established for the first time that the natural water of oil and gas fields has a dual lithospheric-asthenospheric nature, while the lithospheric part is dominant, the isotopic composition is a mixture of these waters, and the deuterium isotope is more chemically active in complex physical and chemical processes, which run through the bowels of the planet. The obtained original data will contribute to the solution of Ukraine’s serious problem with energy carriers: natural gas, oil, coal and drinking water.

Keywords

fluid inclusions, hydrocarbons, drinking water, energy carriers, oil and gas industry, fundamental science, scientific discoveries

Referenses

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren, Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Dolenko, G. N. (1975). Sovremennoye sostoyaniye problemy proiskhozhdeniya nefti i gaza i formirovaniya ikh promyshlennykh zalezhey. In Zakonomernosti obrazovaniya i razmeshcheniya promyshlennykh mestorozhdeniy nefti i gaza (pp. 3–17). Kiev: Naukova dumka. [in Russian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Naumko, I., & Svoren, Y. (2021). Innovatsiini tekhnolohii poshukiv korysnykh kopalyn, osnovani na doslidzhenniakh fliuidnykh vkliuchen u mineralakh. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 92–108. https://doi.org/10.15407/ggcm2021.03-04.092 [in Ukrainian]

Pavliuk, I., Naumko, I., & Stefanyk, Yu. (2007, December 13). Heolohy-naukovtsi proty metanu-vbyvtsi. U Lvovi na Naukovii taky ye nauka. Ukraina i Chas, 50(286), 7.

Svoren, Y. M. (1975). Istochniki uglerodsoderzhashchikh gazov vklyucheniy. In Uglerod i ego soyedineniya v endogennykh protsessakh mineraloobrazovaniya (po dannym izucheniya flyuidnykh vklyucheniy v mineralakh): tezisy Respublikanskogo soveshchaniya (Lvov, sentyabr 1975 g.) (pp. 104–106). Lvov. [in Russian]

Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyaniye na svoystva veshchestv [Extended abstract of Candidateʼs thesis]. Institut geologii i geokhimii goryuchikh iskopayemykh AN USSR. Lvov. [in Russian]

Svoren. I. M. (1988). Formy nakhozhdeniya vodoroda v nekotorykh tverdykh materialakh razlichnogo proiskhozhdeniya soglasno fiziko-khimicheskoy modeli navodorozhivaniya tverdykh tel. In Geokhimiya i termobarometriya endogennykh flyuidov (pp. 95–103). Kiev: Naukova dumka. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy (pp. 143–145). Lviv. [in Ukrainian]

Svoren, Y. (2011). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: izotopy vuhletsiu pro pokhodzhennia planety Zemlia. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 158–159. [in Ukrainian]

Svoren, Y. (2018). Vlastyvist hlybynnoho abiohennoho metanovmisnoho vysokotermobarnoho fliuidu utvoriuvaty vuhillia. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(176–177), 105–109. [in Ukrainian]

Svoren, Y. (2019). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: rizna khimichna vlastyvist izotopiv vuhletsiu u pryrodnykh protsesakh syntezu riznykh spoluk. In Problemy heolohii fanerozoiu Ukrainy: materialy X Vseukrainskoi naukovoi konferentsii (do 95-richchia kafedry istorychnoi heolohii ta paleontolohii i 120-richchia vid narodzhennia Severyna Ivanovycha Pasternaka (Lviv, 9–11 zhovtnia 2019 r.) (pp. 64–67). Lviv: LNU imeni Ivana Franka. [in Ukrainian]

Svoren, Y. (2020a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda vody naftovykh i hazovykh rodovyshch. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 8–9 hrudnia 2020 r.) (pp. 158–160). Ivano-Frankivsk: IFNTUNH. [in Ukrainian]

Svoren, J. M. (2020b). Subsoil Natural Physico-Chemical Reactor: Regularity of Natural Processes of Synthesis of Perfect Diamond Crystals. Journal of Geological Resource and Engineering, 8(4), 133–136. https://doi.org/10.17265/2328-2193/2020.04.005

Svoren, J. M. (2021). Subsoil Natural Physico-chemical Reactor: The Property of Deep Abiogenic Methane-Containing High-Thermobaric Fluid to Form Coal Seams. Journal of Geological Resource and Engineering, 9(1), 25–28. https://doi.org/10.17265/2328-2193/2021.01.003

Svoren, Y. M., & Davydenko, M. M. (1995). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Dopovidi NAN Ukrainy, 9, 72–73. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2003). Nova teoriia syntezu i henezysu vuhlevodniv u litosferi Zemli: abiohenno-biohennyi dualizm. In Mezhdunarodnaya konferentsiya “Krym–2003” (pp. 75–77). Simferopol. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111–116. [in Ukrainian]


Posted on

FUNDAMENTAL PROBLEMS AND ACHIEVEMENTS OF MINERAL FLUIDOLOGY IN THE WORKS OF PROFESSOR VOLODYMYR ANTONOVYCH KALYUZHNYI (based on the materials of the Memorial Academy on the occasion of the 100th anniversary of the birth)

Home > Archive > No. 1–2 (189–190) 2023 > 66–80


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 66–80

https://doi.org/10.15407/ggcm2023.189-190.066

Ihor NAUMKO1, Myroslav PAVLYUK1, Oleh ZYNYUK2, Anatoliy GALAMAY1, Myroslavа YAKOVENKO1, Zoryana MATVIISHYN1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Western Scientific Center of the National Academy of Sciences of Ukraine and the Ministry of Education and Science of Ukraine, Lviv, Ukraine, е-mail: zynyuk@ukr.net

Abstract

The fundamental problems and achievements of mineralofluidology in the works of the outstanding Ukrainian scientist-geologist, mineralogist-geochemist, laureate of the State Prize of Ukraine in the field of science and technology, laureate of the International Gold Medal named after the outstanding English researcher of fluid inclusions H. C. Sorby (the H. C. Sorby medal), recipient of the State Scholarship for Outstanding Scientists of Ukraine, Doctor of Sciences (Geology, Mineralogy), Professor Volodymyr Antonovych Kalyuzhnyі – one of the founders of the fundamental science on fluid inclusions, the creator of the world-famous scientific school of geochemistry and thermobarometry of mineral-forming fluids are discussed. The Memorial Academy on the occasion of celebrating a significant date – the 100th anniversary of the birth of Volodymyr Kalyuzhnyі was held on October 25, 2022, at the Institute of Geology and Geochemistry of Combustible Minerals (IGGCM) of the NAS of Ukraine within the framework of the Department of Earth Sciences of the NAS of Ukraine at the visiting meeting of the Earth Sciences Section of the Western Science Center (WSC) of the NAS of Ukraine and the Ministry of Education and Science of Ukraine. Members of the Council and Executive Committee of the WSC, employees of the Institute and neighboring scientific institutions took part in its work. Head of the Institute, Аcademician of the NAS of Ukraine Myroslav Pavlyuk opened the Memorial Academy with an opening speech, greetings from the WSC of the NAS of Ukraine and the Ministry of Education and Science of Ukraine were delivered by the deputy head of the WSC, director of the WSC, PhD (Тechnic), Аssociate Рrofessor Oleh Zynyuk. Scientific reports were given by: Head of the Department of Geochemistry of Deep Fluids of the Institute, Corresponding Member of the NAS of Ukraine Ihor Naumko and Head of the Department of Geochemistry of Sedimentary Strata of Oil and Gas-bearing provinces, PhD (Geology), Senior Research Fellow Anatoliy Galamay. Scientific Secretary of the Institute, PhD (Geology), Senior Researcher Myroslava Yakovenko read the greetings that were sent or personally delivered to Members of the Organizing Committee and participants of the Memorial Academy. Warm memories of Volodymyr Kalyuzhny were shared by his son Yuriy, Myroslav Bratus, and Myroslav Pavlyuk. The apotheosis of a worthy commemoration and celebration of a significant date – the 100th anniversary of the birth of an outstanding Scientist, Teacher, Patriot, Citizen, and Man being were the prophetic words: “We remember, they will remember us too! Ukraine is and will be!”

Keywords

Volodymyr Antonovych Kalyuzhnyі, outstanding scientist, thermobarogeochemistry, mineralofluidology, fluid inclusions research

Referenses

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Ermakov, N. P., & Dolgov, Yu. A. (1979). Termobarogeokhimiya. Moskva: Nedra. [in Russian]

Kaliuzhnyi, V. A. (1960). Metody vyvchennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Kaliuzhnyi, V. A. (Ed.). (1971). Mineraloutvoriuiuchi fliuidy ta parahenezysy mineraliv pehmatytiv zanoryshevoho typu Ukrainy (ridki vkliuchennia, termobarometriia, heokhimiia). Kyiv: Naukova dumka. [in Ukrainian]

Kalyuzhnyy, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. (English translation: Kalyuzhnyi, V. A. (1985). Principles of knowledge about mineral forming fluids. In Fluid Inclusions Research: Proceedings of COFFI (Vol. 15, pp. 289–333; Vol. 16, pp. 306–320). [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. T., Bratus, M. D., Velychko, N. Z., Harasymchuk, V. Yu., Hnylko, O. M., Danysh, V. V., Dudok, I. V., Zubko, O. S., Kaliuzhnyi, V. A., Kovalyshyn, Z. I., Koltun, Yu. V., Kopach, I. P., Krupskyi, Yu. Z., Osadchyi, V. H., Kurovets, I. M., Lyzun, S. O., Naumko, I. M., . . . Shcherba, O. S. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Matkovskyi, O., Naumko, I., Pavlun, M., & Slyvko, Ye. (2021). Termobaroheokhimiia v Ukraini. Lviv: Prostir-M. [in Ukrainian]

Naumko, I. M. (2002). Korotkyi narys naukovoi, naukovo-orhanizatsiinoi, pedahohichnoi ta hromadskoi diialnosti V. A. Kaliuzhnoho. In Volodymyr Antonovych Kaliuzhnyi. Do 80-richchia vid dnia narodzhennia (M. I. Pavliuk, Ed.; I. M. Naumko, L. F. Telepko, Compilers) (pp. 3–8). Lviv: IHHHK NAN Ukrainy ta NAK “Naftohaz Ukrainy”. [in Ukrainian]

Roedder, E. (1984). Fluid inclusions [Monograph]. Reviews in Mineralogy, 12, 1–644. https://doi.org/10.1515/9781501508271

Sorby, H. C. (1858). On the Microscopic, Structure of Crystals, Indicating the Origin of Minerals and Rocks. The Quarterly Journal of the Geological Society of London, 14(1), 453–500. https://doi.org/10.1144/GSL.JGS.1858.014.01-02.44

Vynar, O. M., Kaliuzhnyi, V. A., Naumko, I. M., & Matviienko, O. D. (1987). Mineraloutvoriuiuchi fliuidy postmahmatychnykh utvoren hranitoidiv Ukrainskoho shchyta. Kyiv: Naukova dumka. [in Ukrainian]

Zinchuk, I. N., Kalyuzhnyy, V. A., & Shchiritsa, A. S. (1984). Flyuidnyy rezhim mineraloobrazovaniya Tsentralnogo Donbassa. Kiev: Naukova dumka. [in Russian]


Posted on

THERMOMETRICAL STUDIES OF FLUID INCLUSIONS IN THE BADENIAN HALITE OF THE CARPATHIAN REGION IN THE CONTEXT OF DETERMINING THE DEPTH OF THE SALT BASIN

Home > Archive > No. 1–2 (189–190) 2023 > 54–65


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 54–65

https://doi.org/10.15407/ggcm2023.189-190.054

Anatoliy GALAMAY, Ihor ZINCHUK, Daria SYDOR

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: galamaytolik@ukr.net

Abstract

It was established that in order to avoid errors in the interpretation of paleotectonic conditions of salt formation based on fluid inclusions in halite, the primary stage of the research should be the genetic identification of the sedimentation textures of halite and fluid inclusions in this mineral. For the thermometric study of inclusions and to determine the depth of the sedimentation basin based on the obtained data, only thermal test chambers are suitable which provide the possibility of observing groups of inclusions in different zones of sedimentary halite, as, for example, in the micro thermal test chamber designed by Prof. V. A. Kalyuzhny.

In the course of the research, the equipment of the thermometric method, which is based on the use of a microthermal test chamber designed by V. A. Kalyuzhny, was modernized. In particular, the material of the thermal chamber (stainless steel) was replaced with copper, which made it possible to avoid excessive thermal gradients into chamber and to increase the permissible heating rate by 20 times due to the higher thermal conductivity of copper. For the same purpose, the glass optical windows of the camera were replaced with leukosapphire windows, which have a much higher thermal conductivity. The measuring system of the installation is made on a miniature platinum resistance thermometer with an electronic measuring unit. These improvements made it possible to achieve high system stability and good reproducibility of measurement results.

Using the thermometric method, it was established that the temperature of sedimentation at the bottom of the Badenian salt basin of the Carpathian region was 19.5–20.5; 20.0–22.0; 24.0–26.0 °C, and on the surface of the brine was 34.0–36.0 °C. On this basis, a model of the basin with a pronounced thermocline and a total thickness of the water column of up to 30 meters was built, which is the most likely to establish the features of sedimentation. Crystallization of halite at different depths in basins with a thermocline can explain the presence of so-called “low-temperature” (24.0–25.0 °C) and “high-temperature” (37.8–42.6 °C) bottom halite in a number of ancient salt-bearing basins.

Keywords

halite, fluid inclusions, thermometric method, thermal chamber, homogenization temperature

Referenses

Acros, D., & Ayora, C. (1997). The use of fluid inclusions in halite as environmental thermometer: an experimental study. In XIV ECROFI: proceedings of the XIVth European Current Research on Fluid Inclusions (Nancy, France, July 1–4, 1997) (pp. 10–11). CNRS-CREGU.

Benison, K. C., & Goldstein, R. H. (1999). Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1–4), 113–132. https://doi.org/10.1016/S0009-2541(98)00127-2

Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823. https://doi.org/10.3390/min10090823

Galamay, A. R., Meng, F., Bukowski, K., Lyubchak, A., Zhang, Y., & Ni, P. (2019). Calculation of salt basin depth using fluid inclusions in halite from the Ordovician Ordos Basin in China. Geological Quarterly, 63(3), 619–628. https://doi.org/10.7306/gq.1490

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A., Sydor, D., & Liubchak, O. (2014). Osoblyvosti poiavy hazovoi fazy v odnofazovykh ridkykh vkliuchenniakh u haliti (dlia vyznachennia temperatury yoho krystalizatsii). In Mineralohiia: sohodennia i maibuttia: materialy VIII naukovykh chytan imeni akademika Yevhena Lazarenka (prysviacheno 150-richchiu zasnuvannia kafedry mineralohii u Lvivskomu universyteti) (pp. 34–36). Lviv; Chynadiieve. [in Ukrainian]

Kaliuzhnyi, V. A. (1960). Metody vyvchennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Khrushchov, D. P. (1980). Litologiya i geokhimiya galogennykh formatsiy Predkarpatskogo progiba. Kiev: Naukova dumka. [in Russian]

Korenevskiy, S. M., Zakharova, V. M., & Shamakhov, V. A. (1977). Miotsenovyye galogennyye formatsii predgoriy Karpat. Leningrad: Nedra. [in Russian]

Kovalevich, V. M. (1978). Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya. Kiev: Naukova dumka. [in Russian]

Kovalevych, V., Paul, J., & Peryt, T. M. (2009). Fluid inclusions in the halite from the Röt (Lower Triassic) salt deposit in Central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporates, 24(1), 45–57. https://doi.org/10.1007/BF03228056

Lowenstein, T. K., Li, J., & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245. https://doi.org/10.1016/S0009-2541(98)00061-8

Meng, F., Ni, P., Schiffbauer, J. D., Yuan, X., Zhou, C., Wang, Y., & Xia, M. (2011). Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research, 184(1–4), 63–69. https://doi.org/10.1016/j.precamres.2010.10.004

Meng, F., Zhang, Y., Galamay, A. R., Bukowski, K., Ni, P., Xing, E., & Ji, L. (2018). Ordovician seawater composition: evidence from fluid inclusions in halite. Geological Quarterly, 62(2), 344–352. https://doi.org/10.7306/gq.1409

Petrichenko, O. Y. (1988). Fiziko-khimicheskiye usloviya osadkoobrazovaniya v drevnikh solerodnykh basseynakh. Kiev: Naukova dumka. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Roberts, S. M., & Spencer, R. J. (1995). Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19), 3929–3942. https://doi.org/10.1016/0016-7037(95)00253-V

Shanina, S. N., Sokerina, N. V., Galamay, A. R., Ledentsov, V. N., & Onosov, D. V. (2014). Opredeleniye temperatur gomogenizatsii vklyucheniy v galite Yakshinskogo mestorozhdeniya. Vestnik Instituta geologii Komi NTs UrO RAN, 8, 3–6. [in Russian]

Sirota, I., Enzel, Y., & Lensky, N. G. (2017). Temperature seasonality control on modern halite layers in the Dead Sea: In situ observations. GSA Bulletin, 129(9–10), 1181–1194. https://doi.org/10.1130/B31661.1

Sydor, D. V., Halamai, A. R., & Meng, F. (2018). Pirotynova mineralizatsiia u halohennykh vidkladakh Verkhnokamskoho rodovyshcha kaliino-mahniievykh solei (termobaroheokhimichni doslidzhennia). Mineralohichnyi zbirnyk, 68(2), 52–61. [in Ukrainian]

Valyashko, M. G. (1952). Galit, osnovnyye ego raznosti, vstrechayemyye v solyanykh ozerakh, i ikh struktura. Trudy VNIIGalurgii, 23, 25–32. [in Russian]

Vorobyev, Yu. K. (1988). K probleme termometrii po pervichnym vklyucheniyam v mineralakh. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 117(1), 125–132. [in Russian]

Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-32344-9

Xu, Y., Liu, C., Cao, Y., & Zhang, H. (2018). Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm. International Journal of Earth Sciences, 108, 173–182. https://doi.org/10.1007/s00531-018-1648-0

Zambito, J. J., & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590. https://doi.org/10.1130/G34078.1

Zhang, H., Lü, F., Mischke, S., Fan, M., Zhang, F., & Liu, C. (2017). Halite fluid inclusions and the late Aptian sea surface temperatures of the Congo Basin, northern South Atlantic Ocean. Cretaceous Research, 71, 85–95. https://doi.org/10.1016/j.cretres.2016.11.008

Zhao, X., Zhao, Y., Wang, M., Hu, Y., Liu, C., & Zhang, H. (2022). Estimation of the ambient temperatures during the crystallization of halite in the Oligocene salt deposit in the Shulu Sag, Bohaiwan Basin, China. Minerals, 12(4), 410. https://doi.org/10.3390/min12040410

Zinchuk, I. M. (2003). Heokhimiia mineraloutvoriuiuchykh rozchyniv zoloto-polimetalevykh rudoproiaviv Tsentralnoho Donbasu (za vkliuchenniamy u mineralakh) [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]


Posted on

CHEMICAL COMPOSITION OF THE PRECURSOR COMPOUNDS AND MECHANISMS OF HUMIC SUBSTANCES FORMATION AT THE POST-SEDIMENTATION STAGE OF THE ORGANIC COMPOUNDS EVOLUTION

Home > Archive > No. 1–2 (189–190) 2023 > 41–53


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 41–53

https://doi.org/10.15407/ggcm2023.189-190.041

Yurii KHOKHA, Myroslava YAKOVENKO, Oksana SENIV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: khoha_yury@ukr.net; myroslavakoshil@ukr.net

Abstract

The publication is a review that presents in a concise form information about the chemical composition of living matter components and the mechanisms of their transformations, the result of which is the geopolymers formation. Among geopolymers, humic substances, including humic and fulvic acids, attract our attention. The relevance of this review lies in the importance of understanding multidirectional reactions, the result of which is the secondary polymerization of organic matter chemically active components that have passed the biodegradation barrier at the stage of sedimentation and diagenetic transformations. Humic substances, in their turn, are precursors of kerogen, therefore, an understanding of reaction mechanisms and their products provides complete information about the conditions of various types of kerogen formation, which are characterized by different ability to produce oil and gas. We paid special attention to polyphenols, which have high chemical activity and the ability to react with increasing molecular weight. In addition to the traditional Maillard reaction, among the condensation mechanisms we considered oxidative crosslinking of phenols, oxidative condensation of polyunsaturated fatty acids, and esterification of fatty acids with phenols. For each mechanism, the conditions for its implementation and probable contribution to the formation of humic substances are briefly considered. Analysis of probable mechanisms of formation of humic substances showed that condensation reactions can occur under geochemical conditions of sedimentation and early diagenesis. At the same time, their speeds are low, and the precursors necessary for the reactions, formed as a result of biological degradation, are contained in very small concentrations. We conclude that kerogen contains two components – primary, which enters its structure without any significant changes, and secondary, which is the result of a series of complex multidirectional reactions.

Keywords

organic geochemistry, polycondensation, humic substances, depolymerization, kerogen evolution

Referenses

Chen, Z., Wu, J., Ma, Y., Wang, P., Gu, Z., & Yang, R. (2018). Biosynthesis, metabolic regulation and bioactivity of phenolic acids in plant food materials. Shipin Kexue/Food Science, 39(7), 321–328.

Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In B. Durand (Ed.), Kerogen, Insoluble Organic Matter from Sedimentary Rocks (pp. 13–34). Paris: Editions Technip.

Harvey, G. R., & Boran, D. A. (1985). Geochemistry of humic substances in seawater. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 233–247). New York, Chichester: Wiley & Sons.

Harvey, G. R., Boran, D. A., Chesal, L. A., & Tokar, J. M. (1983). The structure of marine fulvic and humic acids. Marine Chemistry, 12(2–3), 119–132. https://doi.org/10.1016/0304-4203(83)90075-0

Hatcher, P. G., Breger, I. A., Maciel, G. E., Szeverenyi, N. M. (1985). Geochemistry of humin. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 275–302). New York, Chichester: Wiley & Sons.

Huc, A. Y., & Durand, B. M. (1977). Occurrence and significance of humic acids in ancient sediments. Fuel, 56(1), 73–80. https://doi.org/10.1016/0016-2361(77)90046-1

Jokic, A., Wang, M. C., Liu, C., Frenkel, A. I., & Huang, P. M. (2004). Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: the role of δ-MnO2. Organic Geochemistry, 35(6), 747–762. https://doi.org/10.1016/j.orggeochem.2004.01.021

Khant, D. (1982). Geokhimiya i geologiya nefti i gaza. Moskva: Mir. [in Russian]

Kononova, M. M. (1963). Organicheskoye veshchestvo pochvy, ego priroda, svoystva i metody izucheniya. Moskva: Izdatelstvo AN SSSR. [in Russian]

Kontorovich, A. E. (2004). Ocherki teorii naftidogeneza. Novosibirsk: IGiG SO AN SSSR. [in Russian]

van Krevelen, D. W. (1961). Coal: typology, chemistry, physics, constitution. Elsevier Publishing Company.

Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and Biological Functions in Plants. International journal of molecular sciences, 19(2), 335. https://doi.org/10.3390/ijms19020335

Maillard, L.C. (1912). Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodique. Comptes rendus de l’Académie des Sciences, 154, 66–68.

Martin, J. P., & Haider, K. (1971). Microbial activity in relation to soil humus formation. Soil Science, 111(1), 54–63. https://doi.org/10.1097/00010694-197101000-00007

Romankevich, E. A. (1977). Geokhimiya organicheskogo veshchestva v okeane. Moskva: Nauka. [in Russian]

Schnitzer, M. (1978). Humic substances: chemistry and reactions. In M. Schnitzer & S. U. Khan (Eds.), Developments in Soil Science: Vol. 8. Soil Organic Matter (pp. 1–64). Amsterdam: Elsevier. https://doi.org/10.1016/S0166-2481(08)70016-3

Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

Tisso, B., & Velte, D. (1981). Obrazovaniye i rasprostraneniye nefti. Moskva: Mir. [in Russian]

Vandenbroucke, M. (2003). Kerogen: from types to models of chemical structure. Oil & gas science and technology, 58(2), 243–269. https://doi.org/10.2516/ogst:2003016

Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833. https://doi.org/10.1016/j.orggeochem.2007.01.001

Vandenbroucke, M., Pelet, R., & Debyser, Y. (1985). Geochemistry of humic substances in marine sediments. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 249–273). New York, Chichester: Wiley & Sons.

Vassoyevich, N. B. (1986). Izbrannyye trudy: Geokhimiya organicheskogo veshchestva i proiskhozhdeniye nefti. Moskva: Nauka. [in Russian]

Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Foodchemistry, 128(3), 573–584. https://doi.org/10.1016/j.foodchem.2011.03.075


Posted on

NON-ORE MINERALS OF VEINLET-IMPREGNATED MINERALIZATION IN THE DEPOSITS OF THE KROSNO ZONE OF THE UKRAINIAN CARPATHIANS (district of the new Beskydy railway tunnel)

Home > Archive > No. 1–2 (187–188) 2022 > 103–114


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 103–114.

https://doi.org/10.15407/ggcm2022.01-02.103

Ihor NAUMKO1, Halyna ZANKOVYCH1, Oksana KOКHAN1, Olexandеr VOVK2, Yaroslav KUZEMKO1, Bohdan SAКHNO1, Roman SERKIZ3

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Lesya Ukrainka Volyn National University, Lutsk, Ukraine, е-mail: geologygeochemistry@gmail.com
3 Ivan Franko National University of Lviv, Lviv, Ukraine, е-mail: rserkiz@gmail.com

Abstract

The construction of the new Beskydy railway tunnel, which revealed the indigenous deposits of the Krosno formation of the Ukrainian Carpathians, provided an opportunity to obtain new results from the study of another prospective oil and gas-bearing areas of the flysch formation within the Krosno structural-facies unit. There is a second tunnel in length in Ukraine and passes under the Verkhovyna watershed ridge of the Ukrainian Carpathians. Its section is represented by the rocks of the Krosno formation, namely the stratification of sandstones, argillites and silt stones. There are two fracture zones have been indentified here, in which developed veinle-impregnated mineralization of ore (sulfides) and non-ore (calcite and quartz type of the “Marmarosh diamonds”) minerals. Calcite and quartz formas monominerals veins and in paragenesis calcite-quartz type of the “Marmarosh diamonds” ‒ sulfides. Quartz occurs in the form of splice sand well-faceted crystals, transparent, in yellow, brown, black, green colour. Calcite of a milky, translucent colour in the form of veins, veinlets, impregnation, powder on quartz, druz. Contains significant impurities of magnesium, manganese and iron which means the presence of a rhodochrosite-magnesite-siderite component. Hydrocarbon fluids are present in all calcite and quartz crystals of the “Marmarosh diamonds” type. By chemical composition, it is methane with impurities of higher hydrocarbons (up to hexane). Sometimes the manifestations of the outflow of a black substance with the smell of oil from the cracks in the veinlet-impregnated mineralization are recorded studied rock complexes of the flysch formation of the Krosno zone of the Ukrainian Carpathians (construction area of the new branch of the Beskydy railway tunnel), which acquires an important genetic significance.

Keywords

veinlet-impregnated mineralization, calcite, “Marmarosh diamonds”, new Beskydy railway tunnel, Krosno zone, Ukrainian Carpathians

Referenses

Beskydskyi tunel. (2021, 9 hrudnia). In Vikipediia. https://uk.wikipedia.org/wiki/Beskydskyi_tunel [in Ukrainian]

Hnylko, O. (2010). Pro pivnichno-skhidnu hranytsiu Krosnenskoi tektonichnoi zony v Ukrainskykh Karpatakh. Heolohiia i heokhimiia horiuchykh kopalyn, 2(151), 44–57. [in Ukrainian]

Hulii, V., Kuzemko, Ya., Stepanov, V., Petruniak, H., Menshov, O., & Ohorilko, R. (2015). Heoloho-strukturni osoblyvosti ta rechovynnyi sklad porid Krosnenskoi zony v raioni novoho Beskydskoho tuneliu. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu imeni Ivana Franka (Lviv, 7–9 zhovtnia 2015 r.) (pp. 69–71). Lviv: Vydavnychyi tsentr LNU imeni Ivana Franka. [in Ukrainian]

Naumko, I. M., Zankovych, H. O., Kuzemko, Ya. D., Diakiv, V. O., Sakhno, B. E. (2017). Vuhlevodnevi hazy fliuidnykh vkliuchen u “marmaroskykh diamantakh” z zhyl u vidkladakh flishovoi formatsii raionu novoho Beskydskoho tuneliu (Krosnenska zona Ukrainskykh Karpat). Dopovidi NAN Ukrainy, 10, 70–77. https://doi.org/10.15407/dopovidi2017.10.070 [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2005). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii – pryrodnyi fenomen litosfery Zemli. Dopovidi NAN Ukrainy, 2, 109–113. [in Ukrainian]

Vovk, O., Zankovych, H., & Naumko I. (2018). Osoblyvosti krystalomorfolohii marmaroskykh «diamantiv» iz zhyl u flishovykh vidkladakh Krosnenskoi strukturno-fatsialnoi odynytsi Ukrainskykh Karpat (raion novoho Beskydskoho tuneliu). Mineralohichnyi zbirnyk, 68(1), 72–75. [in Ukrainian]

Vovk, O. P., Zankovych, H. O., & Naumko, I. M. (2019). Materialy do porivnialnoi kharakterystyky krystalomorfolohii “marmaroskykh diamantiv” Ukrainskykh i Slovatskykh Karpat. In Zdobutky i perspektyvy rozvytku heolohichnoi nauky v Ukraini: zbirnyk tez naukovoi konferentsii, prysviachenoi 50-richchiu Instytutu heokhimii, mineralohii ta rudoutvorennia imeni M. P. Semenenka NAN Ukrainy (Kyiv, 14–16 travnia 2019 r.) (Vol. 1, pp. 130–131). Kyiv. [in Ukrainian]

Zankovych, H. O. (2016). Heokhimiia fliuidiv prozhylkovo-vkraplenoi mineralizatsii perspektyvno naftohazonosnykh kompleksiv pivnichno-zakhidnoi chastyny Krosnenskoi zony Ukrainskykh Karpat [Extended abstract of Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Zankovych, H. O., & Cheremisska, O. M. (2021). Typy vtorynnoi mineralizatsii v kreidovo-paleohen-neohenovykh vidkladakh Krosnenskoi zony Ukrainskykh Karpat. In Scientific Trends and Trends in the Context of Clobalization: III International Scientific and Practical Conference (Umea, Kingdom of Sweden, December 21–22, 2021) (pp.  74–379). Umea. [in Ukrainian]

Zankovych, H. O., & Kokhan, O. M. (2021). Nerudni mineraly prozhylkovo-vkraplenoi mineralizatsii Beskydskoho tuneliu Krosnenskoi zony Ukrainskykh Karpat. In Heolohichna nauka v nezalezhnii Ukraini: zbirnyk tez naukovoi konferentsii (Kyiv, 8–9 veresnia 2021 r.) (pp. 282–284). Kyiv. [in Ukrainian]