Posted on

GIBBS FREE ENERGY OF NATURAL GAS COMPONENTS FORMATION IN SEDIMENTARY STRATA

Home > Archive > No. 2 (179) 2019 > 37-46


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 37-46.

https://doi.org/10.15407/ggcm2019.02.037

Yuri KHOKHA, Oleksandr LYUBCHAK, Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The main methods of calculating the composition of geochemical systems in the thermodynamic equilibrium state were considered in the article. It was shown that the basis for such calculations was the determination of the Gibbs Free Energy of each system components at given temperatures and pressures. The methods of Gibbs Free Energy calculation at standard pressure and under conditions that are realized within the sedimentary strata were analyzed. The equations of state for natural gas individual components were selected and their Gibbs Free Energies for heat fluxes ranging from 40 to 100 mW/m2 and depths of 0–20 km were calculated. The results showed that the pressure significantly affects the value of Gibbs Free Energies formation of natural gas components within the sedimentary strata. Changes of the Gibbs Free Energies of natural gas components formation, as a function of depth, subordinated to the same laws for each compound. This regularity was better expressed in more heated areas.
It was shown that with depth increasing the Gibbs Free Energy of natural gas components formation first rapidly decreases and reaches its minimum ranging from 2 to 6 km. Moreover, as the value of the heat flux increases, the maximum value of the Gibbs Free Energy of formation of natural gas components, expressed in kilometers, decreases. With further immersion/deepening to depths greater than 6 km, the Gibbs Free Energy of the formation of natural gas components gradually increases, and in areas with greater heat flux, a sharp increase was characteristic, and with less, it was slow and weakly expressed. There is a stability area for hydrocarbon and non-hydrocarbon components of natural gas ranging from 2 to 6 km. With the increase of Carbon number in the hydrocarbon chain, the value of Gibbs Free Energy of the natural gas hydrocarbon components formation decreases, which indicates the presence of a stability zone for heavy natural gas components (it should be expected that oil also) within the depths of 2–6 km.

Keywords

Gibbs Free Energy, heat flow, natural gas, sedimentary strata.

REFERENCES

Bell I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498-2508.
https://doi.org/10.1021/ie4033999
 
Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A code for calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225 (1). doi:10.3847/0067-0049/225/1/4.
https://doi.org/10.3847/0067-0049/225/1/4
 
Buecker, D., & Wagner, W. (2006). Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. J. Phys. Chem. Ref. Data, 35 (2), 929-1019.
https://doi.org/10.1063/1.1901687
 
Chekalyuk, E. B. (1967). Neft verhney mantii Zemli [Oil of the Earth’s upper mantle]. Kiev: Naukova dumka. [in Russian]
 
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 (4), 297-356.
https://doi.org/10.1016/0031-9201(81)90046-7
 
Hasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307, 59-70.
https://doi.org/10.1016/j.epsl.2011.04.034
 
Glushko, V. P. (1979). Termodinamicheskiye svoystva individualnykh veshchestv. T. 1 (1) [Thermodynamic properties of individual substances. Vol. 1 (1)]. Moskva: Nauka. [in Russian]
 
Koukkari, P. (2014). Introduction to constrained Gibbs energy methods in process and materials research. Espoo: VTT Technical Research Centre of Finland. VTT Technology, N 160.
 
Lemmon, E. W., McLinden, & M. O., Wagner, W. (2009). Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. J. Chem. Eng. Data, 54, 3141-3180.
https://doi.org/10.1021/je900217v
 
Lemmon, E. W., & Span, R. (2006). Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data, 51, 785-850.
https://doi.org/10.1021/je050186n
 
Lyubchak, O. V. (2009). Termobarychni umovy utvorennia pryrodnogo gazu v nadrakh Zemli [Thermobaric conditions of natural gas formation in the subsoils of the Earth]. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 18-24. [in Ukrainian]
 
Sanford, G., & McBride, B. J. (1994). Computer program for Calculation of Complex Chemical Equilibrium Composition and Application. NASA Reference Publication 1311, 58.
 
Setzmann, U., & Wagner W. (1991). A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20 (6), 1061-1151.
https://doi.org/10.1063/1.555898
 
Sokolov, V. A. (1971). Geokhimiya prirodnykh gazov [The geochemistry of natural gases]. Moskva: Nedra. [in Russian]
 
Span, R., (2000). Multiparameter Equations of State – An Accurate Source of Thermodynamic Property Data. Berlin: Springer.
https://doi.org/10.1007/978-3-662-04092-8
 
Span, R., & Wagner, W. (1996). A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25, 1509-1596.
https://doi.org/10.1063/1.555991
 
Stull, D. R., Westrum Jr., E. F., & Sinke, G.C. (1969). The chemical thermodynamics of organic compounds. New York: John Wiley and Sons, Inc.
 
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin; Heildelberg; New York; Tokyo: Springer-Verlag.
https://doi.org/10.1007/978-3-642-87813-8
 
Wagner, W., & Buecker, D. (2006). A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data, 35 (1), 205-266.
https://doi.org/10.1063/1.1859286
 
Wagner, W., & Pruß, A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data, 31, 387-535.
https://doi.org/10.1063/1.1461829
Posted on

ON THE LITHOFLUID AHD THERMODYNAMIC SYSTEM IN GEOLOGY AND GEOCHEMISTRY

Home > Archive > No. 2 (179) 2019 > 28-36


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 28-36.

https://doi.org/10.15407/ggcm2019.02.028

Іhor NAUMKO

ІInstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The researcher’s approaches to the term “fluid systems” as a prototype of the fluid medium of crystallization of minerals, naturally preserved relics – inclusions of fluids reflect the features of the fluid regime of mineralogenesis of rock-ore complexes are analyzed. It is emphasized that the term “fluid” characterizes the main property of the substance of the medium of mineralogenesis, the most important substance of the Earth’s crust, its highest mobility, the maximum disorder of structure, fluidity, and covers the liquid or gas state of the lightweight components (gas, aqueous solution), as well as the melt of magmatic (silicate, salt, carbonate) substance. Under the fluid regime, the author understands the physical and chemical nature, the spatial-temporal sequence of manifestation and the variability of the parametric characteristics of the fluids, that is, the entire set of physico-chemical and geological phenomena and processes that determine the regular (discrete, periodic, evolutionary) changes in aggregate state, PT-parameters and the composition of the fluid medium of crystallization of minerals and their identified (certain, specific) parageneses. Our long-term studies show that the physico-chemical system of the fluid medium of mineral-ore-narhtidgenesis should cover lithoid (rocky), fluid (genetic) and thermodynamic (temperature, pressure, concentration) components that determine the mass, heat and the energy exchange between the fluid and of its host rock. In view of this, we define this physico-chemical system as a “lithofluid and thermodynamic system” and we believe that this definition takes into account all known phenomena of generation, migration, differentiation and accumulation of fluids, in particular hydrocarbons (hydrocarbon-containing), in the lithosphere of the Earth. An example of such a lithofluid and thermodynamic system in the Earth’s bowels – the natural high-energy physicochemical reactor is the hydrocarbon-generating and mineral-ore-forming system of the deep abiogenic high-termobaric fluid.

Keywords

inclusion in minerals, fluid systems, fluids, fluid regime, lithofluid and thermodynamic system, lithosphere of the Earth.

REFERENCES

Bagdasarova, M. V., & Sidorov, V. A. (2002). Gidrotermalnaya priroda mestorozhdeniy uglevodorodov i novyye geodinamicheskiye kriterii ikh poiskov. In Novyye idei v geologii i geokhimii nefti i gaza. K sozdaniyu obshchey teorii neftegazonosnosti nedr: materialy VI Mezhdunarodnoy konferentsii (Moskva, 28-31 maya 2002 g.) (Kn. 1.) (s. 54-57). Moskva: GEOS. [in Russian]
 
Chekalyuk, E. B. (1971). Termodinamicheskiye osnovy teorii mineralnogo proiskhozhdeniya nefti. Kiev: Naukova dumka. [in Russian]
 
Dmitriyevskiy, A. N., Valyayev, B. M., & Smirnova, M. N. (2003). Mekhanizmy, masshtaby i tempy vospolneniya neftegazovykh zalezhey v protsesse ikh razrabotki. In Genezis nefti i gaza (s. 106-109). Moskva: GEOS. [in Russian]
 
Ermakov, N. P. (1972). Geokhimicheskiye sistemy vklyucheniy v mineralakh (vklyucheniya mineraloobrazuyushchikh sred – istochnik geneticheskoy informatsii). Moskva: Nedra. [in Russian]
 
Hryhorchuk, K. H. (2010). Osoblyvosti litofliuidodynamiky eksfiltratsiinoho katahenezu. Heolohiia i heokhimiia horiuchykh kopalyn, 1 (150), 60-68. [in Ukrainian]
 
Hryhorchuk, К., Hnidets, V., & Balandyuk, L. (2018). Litogenetic aspects of oil and systems formation in the Volyno-Podolia Sylurian deposits. Geogynamics, 2 (25), 37-48.
https://doi.org/10.23939/jgd2018.02.037
 
Kabyshev, B. P., & Kabyshev, Yu. B. (2001). Osadochno-flyuidodinamicheskaya kontseptsiya naftidogeneza. In Henezys nafty i hazu ta formuvannia yikh rodovyshch v Ukraini yak naukova osnova prohnozu ta poshukiv novykh skupchen: tezy dopovidei Mizhnarodnoi naukovo-praktychnoi konferentsii (Chernihiv, liutyi 2001 r.) (s. 12-15). Chernihiv. [in Russian]
 
Kalyuzhnyy, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. [in Russian]
 
Kudelskiy, A. V., Garetskiy, R. G., & Aysberg, R. E. (1997). Geoflyuidodinamika i neftegazoobrazovaniye. Minsk: Izdatelstvo IGN NAN Belarusi. [in Russian]
 
Kurdyukov, A. A. (1991). Flyuidy i flyuidnyye sistemy v protsessakh rudoobrazovaniya. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 120 (1), 123-128. [in Russian]
 
Lemmleyn, G. G. (1959). Klassifikatsiya zhidkikh vklyucheniy v mineralakh. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 88 (2), 137-143. [in Russian]
 
Lukin, A. E. (1999). O proiskhozhdenii nefti i gaza (geosinergeticheskaya kontseptsiya prirodnykh uglevodorodno-generiruyushchikh sistem). Geologicheskiy zhurnal, 1, 30-42. [in Russian]
 
Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv). (Extended abstract of Doctorʼs thesis). Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy, Lviv. [in Ukrainian]
 
Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi NAN Ukrainy, 8, 117-120. [in Ukrainian]
 
Naumko, І. М., Кurovets’, І. М., Zubyk, М. І., Batsevych, N. V., Sakhno, B. Е., & Chepusenko, P. S. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv Paleozoic depression. Geodynamics, 1 (22), 21-41.
 
Naumko, I. M., Pavliuk, M. I., Svoren, Y. M., & Zubyk, M. I. (2015). Metan hazovuhilnykh rodovyshch – potuzhne dodatkove dzherelo vuhlevodniv v Ukraini. Visnyk NAN Ukrainy, 6, 43-54. [in Ukrainian]
 
Naumko, I. M., & Svoren, I. M. (2003). O vazhnosti glubinnogo vysokotemperaturnogo flyuida v sozdanii usloviy dlya formirovaniya mestorozhdeniy prirodnykh uglevodorodov v zemnoy kore. In Novyye idei v naukakh o Zemle: materialy VI Mezhdunarodnoy konferentsii (Moskva, 8-12 aprelya 2003 g.) (T. 1) (s. 249). Moskva. [in Russian]
 
Naumko, I. M., & Svoren, Y. M. (2005). O litoflyuidotermodinamicheskoy sisteme v geologii i geokhimii. In Novyye idei v geologii i geokhimii nefti i gaza. Neftegazonosnyye sistemy osadochnykh basseynov: materialy VIII Mezhdunarodnoy konferentsii k 60-letiyu kafedry geologii i geokhimii goryuchikh iskopayemykh MGU (Moskva, 31 maya- 2 iyunya 2005 g.) (s. 341-343). Moskva: GEOS. [in Russian]
 
Popivniak, I. V. (2002). Fizyko-khimichne modeliuvannia fliuidodynamichnykh rudoheneruiuchykh paleosystem ta prohnozuvannia poviazanoho z nymy zrudeninnia (na prykladi rodovyshch zolota). (Extended abstract of Doctorʼs thesis). Lvivskyi natsionalnyi universytet imeni Ivana Franka, Lviv. [in Ukrainian]
 
Roedder, E. (1984). Fluid inclusions. In Reviews in Mineralogy (Vol. 12). Virginia: Mine-ralogical Society of America. (perevod rus.: Redder, E. (1987). Flyuidnyye vklyucheniya v mineralakh (T. 1-2). Moskva: Nedra.). [in Russian]
 
Smit, F. G. (1968). Fizicheskaya geokhimiya. Moskva: Nedra. [in Russian]
 
Sokolov, B. A. (2002). K sozdaniyu obshchey teorii neftegazonosnosti nedr. In Novyye idei v geologii i geokhimii nefti i gaza. K sozdaniyu obshchey teorii neftegazonosnosti nedr: materialy VI Mezhdunarodnoy konferentsii (Moskva, 28-31 maya 2002 g.) (Kn. 1) (s. 6-8). Moskva: GEOS. [in Russian]
 
Sokolov, V. A., & Guseva, A. N. (1993). O vozmozhnoy bystroy sovremennoy generatsii nefti i gaza. Vestnik MGU. Seriya 4. Geologiya, 3, 39-46. [in Russian]
 
Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh (ikh sposoby izvlecheniya, sostav, formy nakhozhdeniya i vliyaniye na svoystva veshchestv). (Avtoreferat dissertatsii … kandidata tekhnicheskikh nauk). Institut geologii i geokhimii goryuchikh iskopayemykh NAN Ukrainy. Lvov. [in Russian]
 
Svoren, Y. M. (2017). Yavyshche utvorennia pryrodnykh vuhlemetaniv pid diieiu abiohennoho vysokotermobarnoho hlybynnoho fliuidu. In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy II Mizhnarodnoi naukovoi konferentsii (Kyiv, 6-8 veresnia 2017 r.) (s. 225-229). Kyiv: IHN NAN Ukrainy. [in Ukrainian]
 
Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111-116. [in Ukrainian]
 
Svoren, Y. M., & Naumko, I. M. (2009). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor. Dopovidi NAN Ukrainy, 9, 138-143. [in Ukrainian]
 
Teplov, V. P., & Leiie, Yu. A. (1974). Pro prostorovyi i henetychnyi zviazok endohennykh rudnykh i naftohazovykh proiaviv Zakarpattia. Dopovidi AN URSR. Seriia B, 5, 433-436. [in Ukrainian]
Posted on

PROSPECTS OF THE POTENTIAL FOR OIL AND GAS PRESENCE IN THE NORTH-WESTERN PART OF INNER FLYSH COVERS OF THE UKRAINIAN CARPATHIANS

Home > Archive > No. 2 (179) 2019 > 5-27


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 5-27.

https://doi.org/10.15407/ggcm2019.02.005

Myroslav PAVLYUK, Volodymyr SHLAPINSKY, Olesya SAVCHAK, Myroslav TERNAVSKY

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Here the Cretaceous and Paleogene flysh of the Duklya-Chornohora, Burkut, Magura, Marmarosh and Pieniny covers was studied that in the north-western sector of the Ukrainian Carpathians near the border of Poland and Slovakia (Lemkivsky segment) distinguish themselves by very inclined thrusts. Spatially the given tectonic units are within the limits of so called hydrothermal field unfavourable as a whole, as to the presence of hydrocarbons on a large scale here. But there were distinguished small plots with prevalence of hydrocarbons in the gas composition. Prospects of the potential for gas presence in the region should be connected with the areas that spatially gravitate towards Transcarpathian deep. Studied area consists of several tectonic units of the first order. These are covers located farther south-west of Krosno cover: Duklya-Chornohora, Burkut (Porkulets), Magura, Marmarosh and Pieniny covers, in the south-west the studied terrane is limited by the Transcarpathian deep, and farther west – by the state border of Ukraine and Slovakia, in the south-east – by the Rika Rriver, in the north-east – by the zone of joining of Duklya-Chornohora and Krosno covers. Prospects of the potential for oil end gas presence in the given area, as in the Folded Carpathians on the whole, should be determined by the complex of all accompanying parameters: structural, collecting and covering, hadrochemical and geochemical. For the given area of the Carpathians the geochemical factor is the most important.

Keywords

inner flysh covers, hydrothermal fluid, composition of free gases, oil and gas presence, perspective areas, Transcarpathian deep.

REFERENCES

Baranov, I. G. (1954). Geologicheskoye stroyeniye severo-zapadnoy chasti Vostochnykh flishevykh Karpat i perspektivy neftegazonosnosti. Lvov: VNIGRI, Zap. Ukr. eksped. [in Russian]

Deneha, B. I., Vyshniakov, I. B., Hodyna, Yu. M. et al. (1993). Rozrobyty novi ta vidkorektuvaty tradytsiini napriamky poshukiv vuhlevodniv na sumizhnykh terytoriiakh Ukrainy, Polshchi ta Slovachchyny na osnovi dosvidu storin, analizu naftohazonosnosti ta rozrobky modeli budovy pidnasuvu Karpat (Kn. 1–2). Lviv: UkrDHRI, Fondy DP  “Zakhidukrheolohiia”. [in Ukrainian]

Filimonchuk, S. R., & Frolov, M. V. (1962). Mineralnyye i termalnyye vody Zakarpatia: otchet Zakarpatskoy geologicheskoy ekspeditsii za 1959–1962 gg. o rezultatakh poiskovykh rabot na mineralnyye i termalnyye vody. Beregovo: Zakarpatskaya GRE, Fondy GP “Zapukrgeologiya”. [in Russian]

Gabinet, M. P., Kulchitskiy, Ya. O., Matkovskiy, O. I., Yasinskaya, A. A. (1977). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat (Ch. 2). Lvov: Vyshcha shkola. [in Russian]

Hlushko, V. V., Kuzovenko, V. V., & Shlapinskyi, V. Ye. (1998). Novi pohliady na heolohichnu budovu pivnichno-zakhidnoi chastyny Duklianskoho pokrovu Ukrainskykh Karpat. Visnyk Lviviskoho universytetu. Seriia heolohichna, 13, 94–101. [in Ukrainian]

Hlushko, V. V., Kuzovenko, V. V., & Shlapinskyi, V. Ye. (2007). Heolohichna karta Ukrainskykh Karpat, Zakarpatska, Ivano-Frankivska, Lvivska, Chernivetska oblasti Ukrainy (masshtab 1 : 100 000, Yu. Z. Krupskyi (Red.)). Kyiv: Fond ZAT “Kontsern Nadra”. [in Ukrainian]

Kantolinskiy, S. I., & Ponomareva, S. V. (1962). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Polyana, Zakarpatskoy oblasti v 1961 g. Lvov. [in Russian]

Kantolinskiy, S. I., Koval, Zh. S., & Alekseyev, V. L. (1963). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Bereznik, Zakarpatskoy oblasti v 1962 g. (T. 1–2). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Kantolinskiy, S. I., Koval, Zh. S., & Alekseyev, V. L. (1964). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Kushnitsa, Zakarpatskoy oblasti v 1963 g. Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. E. et al. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Kolodii, V. V. (2010). Hidroheolohiia. Lviv: Vydavnychyi tsentr LNU im. I. Franka. [in Ukrainian]

Kuzovenko, V. V., Shlapinskyi, V. Ye., & Machalskyi, D. V. (2001). Detalizatsiia heolohichnoi budovy pivnichno-zakhidnoi chastyny Vnutrishnikh flishovykh pokroviv Ukrainskykh Karpat z metoiu vyiavlennia obiektiv, perspektyvnykh na naftu i haz (1998–2001 rr.). Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]

Kulchitskiy, Ya. O., Lozynyak, P. Yu., & Markhel, M. D. (1966). Tektonika i perspektivy neftegazonosnosti yuzhnogo sklona Ukrainskikh Karpat (T. 1. Tema 804). Lvov: UkrNIGRI, Fondy GP “Zapukrgeologiya”. [in Ukrainian]

Lazarenko, E. A., Gnilko, M. I., & Zaytseva, V. N. (1968). Metallogeniya Zakarpatia. Lvov. [in Russian]

Leye, Yu. A., Naumenko, V. V., Teplov, V. P., & Rogachenko, V. V. (1976). Regmaticheskiye razlomy, morfostruktury i mineralogeniya Ukrainskikh Karpat i Zakarpatia. Kiev. (Preprint AN USSR. Institut geokhimii i fiziki mineralov). [in Russian]

Matskiv, B. V., Kovalov, Yu. V., Pukach, B. D., & Vorobkanych, V. M. (2003). Derzhavna heolohichna karta Ukrainy (masshtab 1 : 200 000. Karpatska seriia. X (Snina), M-34-XXXV (Uzhhorod), L-34-V (Satu Mare), V. V. Kuzovenko (Red.), H. D. Dosyn (ekspert NRR), Lvivske viddilennia UkrDHRI. Kyiv. [in Ukrainian]

Molchanov, V. I. (1981). Generatsiya vodoroda v litogeneze. Novosibirsk: Nauka. [in Russian]

Muravinskiy, E. S., Kuzovenko, V. V., Spas, E. G. et al. (1964). Raschleneniye razrezov ploshchadey glubokogo bureniya, razburennykh v 1963 godu, obrabotka i obobshcheniye materialov po profilnomu bureniyu v Karpatskom regione (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Muravinskiy, E. S., Kuzovenko, V. V., Spas, E. G. et al. (1965). Raschleneniye razrezov ploshchadey glubokogo bureniya i izucheniye glubinnogo stroyeniya Karpatskoy neftegazonosnoy oblasti po rezultatam obrabotki materialov parametricheskogo bureniya (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Nekrasova, L. P., Danysh, V. V., & Baranovskiy, V. I. (1966). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Velikiy Bereznyy Zakarpatskoy oblasti USSR v 1964–1965 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Ozerova, N. A. (1980). O degazatsii rtuti iz glubin Zemli. In Geokhimiya protsessov migratsii rudnykh elementov (s. 43–53). Moskva: Nauka. [in Russian]

Ozerova, N. A., & Pikovskiy, Yu. I. (1982). Rtut v uglevodorodnykh gazakh. In Geokhimiya protsessov rudoobrazovaniya (s. 102–136). Moskva: Nauka. [in Russian]

Petrik, V. P. (1974). Otchet o rezultatakh poiskovykh rabot na mineralnyye vody, vypolnennykh na uchastkakh Velikiy Bereznyy i Simerki v 1973–1974 gg. Kiev: Zakarpatskaya GRE, Fondy GP “Zapukrgeologiya”. [in Russian]

Shcherba, V. M. (1965). Geologicheskiye rezultaty glubokogo razvedochnogo bureniya za 1964 god na ploshchadyakh Khodnovichi, Sadkovichi, Nizhankovichi, Volya-Blazhevskaya, Lomna, Svalyava, Tereblya. Sambor: Fondy GP “Zapukrgeologiya”. [in Russian]

Shlapinskiy, V. E. (1989). Geokhimicheskiye anomalii Skladchatykh Karpat i ikh svyaz s neftegazonosnostyu. In Problemy geologii i geokhimii goryuchikh iskopayemykh zapada Ukrainskoy SSR: tezisy dokladov respublikanskoy konferentsii (Lvov, 2–6 oktyabrya 1989 g.) (T. 3, s. 77–78). Lvov. [in Russian]

Shlapinskyi, V. Ye., Hlushko, V. V., & Kuzovenko, V. V. (1994). Vyvchennia heolohichnoi budovy i perspektyv naftohazonosnosti zony zchlenuvannia Duklianskoho, Chornohorskoho i Krosnenskoho pokroviv Ukrainskykh Karpat v 1991–1994 rr. (T. 1). Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]

Shlapinskiy, V. E. (2003). Pryamyye i nepryamyye priznaki neftegazonosnosti Ukrainskikh Karpat kak novyye kriterii eye otsenki. In Novyye idei v naukakh o Zemle: VI Mezhdunarodnoy konferentsii (T. 1, s. 277). Moskva. [in Russian]

Shlapinskyi, V. (2012). Deiaki pytannia tektoniky Ukrainskykh Karpat. Pratsi Naukovoho tovarystva imeni Shevchenka. Heolohichnyi zbirnyk, 30, 48–68. [in Ukrainian]

Shlapinskyi, V. Ye. (2015). Kompleksna otsinka perspektyv naftohazonosnosti peredovoi chastyny Skladchastykh Ukrainskykh Karpat. In Heolohiia horiuchykh kopalyn: dosiahnennia i perspektyvy: Mizhnarodna naukova konferentsiia (Kyiv, 2–4 veresnia 2015 r.) (s. 248–251). Kyiv. [in Ukrainian]

Slavin, V. I. (1947). Novyye dannyye po stratigrafii i tektonike yurskikh otlozheniy tak nazyvayemoy «klippenovoy zony» Karpat. In Materialy po geologii i gidrogeologii Ukrainskogo geologicheskogo upravleniya za 1946 g. (Sb. 4, s. 135–139). Kiev. [in Russian]

Zatsikha, B. V. (1989). Kristallogenezis i tipomorfnyye osobennosti mineralov rtutnogo i flyuoritovogo orudeneniya Ukrainy. Kiev: Naukova dumka. [in Russian]

Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1966). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Lyuta Zakarpatskoy oblasti USSR v 1964–1965 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1968). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Perechin Zakarpatskoy oblasti USSR v 1966–1967 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhigunova, Z. F., Petrov, V. G., & Koval, Zh. S. (1969). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Turia Polyana Zakarpatskoy oblasti USSR v 1969 g. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhilovskiy, N. I., Dabagyan, N. V., & Smirnov, S. E. (1961). Geologicheskoye stroyeniye i perspektivy neftegazonosnosti ploshchadi Svalyava–Nelipino (Zakarpatskaya oblast) (T. 1). Lvov: Fondy UkrGGRI. [in Russian]

Posted on

GEOCHEMICAL PECULIARITIES OF NATURAL WATERS OF SE “SANATORIUM-RESORT MEDICAL CENTER “SHKLO” (LVIV REGION)

Home > Archive > No. 1 (178) 2019 > 74-82


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 74-82.

https://doi.org/10.15407/ggcm2019.01.074

Mariya KOST’, Halyna MEDVID, Vasyl HARASYMCHUK, Olha TELEGUZ, Iryna SAKHNYUK, Orysia MAJKUT

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The geochemical features of natural waters of the SE “Sanatorium-resort medical center “Shklo” are established by researches of their ecological-geochemical composition and anthropogenic influence.
The mineral water “Naftusya-Shklo” from the pump room in the territory of the sanatorium is selected and analyzed, which is recognized as an analogous to water “Naftusya” by the biological action. The composition of water is hydrocarbonate sodium, having mine-ralization of 0.76 g/dm3, the total hardness of 0.55 mg-eq/dm3, sulfate content of 0.64 g/dm3, and Eh – −79 mV.
The sample of water from baths, which is fed from a depth of 129.0 m, is investigated. Therapeutic hydrogen sulfide water is classified as sodium salt-calcium sulfate with mineralization of 2.97 g/dm3 and high sulfate content (1.76 g/dm3). The balneological active component of the therapeutic water is hydrogen sulfide, the content of which is set at 101.75 mg/dm3. The common feature of these waters is the negative values of the oxidation-reduction potential, which is due to the presence of relatively high content of H2S and HS−.
In addition to the mineral, a sample of water from the water pipe (drinking water from the Opillia suite of the Lower Neogene) was studied. According to the salt composition, it refers to sulfate-hydrocarbonate sodium-calcium with mineralization of 0.53 g/dm3. The content of the determined macro- and microcomponents do not exceed the maximum permissible concentrations for drinking water, which indicates the absence of influence of the lower horizons.
The water sample was also selected from the largest lake of the park, the sanatorium “Shklo”, which is not related to reservoirs with a special regime of protection, therefore access to it is free. The salinity of water refers to chloride-sulfate-hydro carbonate sodium-calcium with mineralization of 0.35 g/dm3.
Two samples of water from the Shklo River after its leak from Yavoriv lake showed that these waters are weakly mineralized, weakly alkaline, calcium hydro carbonate sulfate or sulfate calcium. Quantitatively, sulfate ions are 2–3 times more than hydrocarbons. The content of sulfates, Sodium, Calcium, Magnesium is also high, indicating their contamination. Further down the salt content decreases as a result of mixing with the water of droplets. Several sources of supply of sulfate-ion can be named: karst waters formed on gypsum anhydrite; reservoir waters of the Upper Badenian limestones, hydrogen sulfur of the formation waters of the Badenian horizon; hydrogensulfur, formed as a result of reduction of sulfate at the bottom of Yavoriv lake. Ecological and geochemical parameters of water of surface water reservoirs and watercourses generally also correspond to state standards for their use as recreational.

Keywords

drinking water, ecological-geochemical parameters, anthropogen influence.

REFERENCES

Babinets, A. E., Marus, V. I., Koynov, I. M. (1978). Mineralnyye i termalnyye vody Sovetskikh Karpat. Kiev: Naukova dumka. [in Russian]

Derzhavne pidpryiemstvo “Sanatorno-kurortnyi likuvalnyi tsentr “Shklo”. (2018). Vziato z https://dsa.court.gov.ua/dsa/about_dsa/456/54675656. [in Ukrainian]

Haidin, A. M., Zozulia, I. I. (2007). Yavorivske ozero. Lviv: Afisha. [in Ukrainian]

Herenchuk, K. I. (Red.) (1972). Pryroda Lvivskoi oblasti. Lviv: Vyshcha shkola; Vydavnytstvo pry Lvivskomu universyteti. [in Ukrainian]

Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu. (2010). DSanPiN 2.2.4-171-10. Nakaz Ministerstva okhorony zdorovia Ukrainy № 400 vid 2010-05-12. Kyiv. [in Ukrainian]

Ivanov, M. V. (1964). Rol mikrobiologicheskikh protsessov v genezise mestorozhdeniy samorodnoy sery. Moskva: Nauka. [in Russian]

Kyryliuk, D. H. (Head) (2013). Heoloho-ekonomichna otsinka zapasiv dilianky Shklivskoho rodovyshcha mineralnykh likuvalnykh pidzemnykh vod. Yavorivskyi raion Lvivskoi oblasti: zvit (63931) (Kn. 1).Kyiv: DNVP “HEOINFORM Ukrainy”. [in Ukrainian]

Pankiv, R. et al. (2009). Hidrokhimichna kharakterystyka transkordonnykh richok Yavorivshchyny. Heolohiia i heokhimiia horiuchykh kopalyn, 2 (147), 84–89. [in Ukrainian]

Shtohryn, O. D., & Havrylenko, K. S. (1968). Pidzemni vody zakhidnykh oblastei Ukrainy. Kyiv: Naukova dumka. [in Ukrainian]

Posted on

PETROPHYSICAL MODELS OF TERRIGENOUS RESERVOIRS OF THE CARBONIFEROUS DEPOSITS OF THE CENTRAL PART OF THE DNIEPER-DONETS DEPRESSION

Home > Archive > No. 1 (178) 2019 > 63-73


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 63-73.

https://doi.org/10.15407/ggcm2019.01.063

Yulia LYSAK, Yuriy SHPOT, Andriy SHYRA, Zoriana KUCHER, Ihor KUROVETS

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: y.shufliak@gmail.com

Abstract

The purpose of the work was to construct petrophysical models of reservoir rocks of different rank: typical and unified. Typical models describe connections between the parameters of individual rocks lithotypes occurring in definite geological conditions and serving as the basis for the development of petrophysical classification of reservoir rocks in the oil geology. The principle of unification provides for creation of the models structure for different reservoir lithotypes both in the geological section and in the area.

We have studied petrophysical properties of reservoir rocks of Carboniferous deposits in the central part of the Dnieper-Donets depression. Petrophysical properties of rocks in conditions close to the formational ones and relations between them were studied on a number of samples formed by the core samples of different age. Main geological factors that have an influence on reservoir properties of rocks were taken into consideration.

While constructing and analysing of petrophysical models we have used a probable-statistic approach with the use of the correlative-regressive analysis.

Result of the work is contained in typical petrophysical models for individual areas and in unified models obtained on consolidated samples for Lower Carboniferous deposits of this region. Characteristic features in variations of petrophysical properties of reservoir rocks of Carboniferous deposits and their models have been ascertained.

A conclusion has been made that multidimensional models, in which the depth of occurrence of deposits is one of the parameters that are necessary to consider while constructing petrophysical models, are the most informative for determination of petrophysical properties of the studied deposits, and the models obtained by us are known to be a petrophysical basis for quantitative interpretation of data from geophysical studies in the boreholes of the given region.

Keywords

petrophysical models, Dnieper-Donets depression, catagenetic processes.

REFERENCES

Atlas rodovyshch nafty i hazu Ukrainy. T. 1. Skhidnyi naftohazonosnyi rehion. (1998). Lviv: UHNA. [in Ukrainian]

Ellanskiy, M. M. (1978). Petrofizicheskiye svyazi i kompleksnaya interpretatsiya dannykh promyslovoy geofiziki. Moskva: Nedra. [in Russian]

Gurzhiy, D. V. et al. (1989). Litologiya i porody kollektory na bolshikh glubinakh v neftegazonosnykh provintsiyakh Ukrainy. Kiev: Naukova dumka. [in Russian]

Kabyshev, B. P. et al. (1989). Geologiya i neftegazonosnost Dneprovsko-Donetskoy vpadiny. Kiev: Naukova dumka. [in Russian]

Kurovets, I. M. (2001). Stan i problemy vyvchennia petrofizychnykh vlastyvostei porid-kolektoriv nafty i hazu. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 136–147. [in Ukrainian]

Kurovets, I. M., & Prytulka, H. Y. (2001). Otsinka vplyvu heolohichnykh faktoriv na petrofizychni vlastyvosti teryhennykh kolektoriv. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 81–92. [in Ukrainian]

Kurovets, I. M., Prytulka, H. Y., Zubko, O. S., & Sheremeta, O. V. (1999). Petrofizychna parametrychna osnova dlia pidrakhunku zapasiv hazu v sarmatskykh vidkladakh Bilche-Volytskoi zony Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 15–24. [in Ukrainian]

Petkevich, G. I., Sheremeta, O. V., & Pritulka, G. I. (1979). Metodika petrofizicheskogo izucheniya kollektorov nefti i gaza v usloviyakh. modeliruyushchikh plastovyye. Kiev: Naukova dumka. [in Russian]

Posted on

DETERMINATION OF GAS GENERATION CAPACITY OF THE UKRAINIAN CARPATHIANS BITUMINOUS ARGILLITES BY JAYNES’ FORMALISM

Home > Archive > No. 1 (178) 2019 > 47-62


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 47-62.

https://doi.org/10.15407/ggcm2019.01.047

Yuri KHOKHA, Oleksandr LYUBCHAK, Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The analysis of literature was carried out and the main criteria for determining the gas generating potential of rocks were determined. These criteria are divided into two groups: the first one is geochemical, which includes the content of organic carbon and the thermal maturity of the rocks. The second group combines the geological and economic criteria that determine the suitability of rocks for the removal of hydrocarbon gases from them. In our opinion, the most important group of criteria should be considered a geochemical group.
Traditionally, to determine the ability of organic matter to form hydrocarbons, the Rock-Eval analysis was used. As a result, determined are the total organic carbon (TOC) and other parameters, such as hydrogen index (HI) or production index (PI).
In this paper, we are trying to expand the range of parameters that can be used to determine the gas generation potential of the rocks. The elemental composition of the organic matter dissipated in the rocks, in general terms, should affect on the composition and amount of hydrocarbons that they synthesize. To determine the influence of elemental composition on the gas-generating potential, equilibrium thermodynamics is used in conjunction with the Jaynes’ formalism.
Samples for investigation – bituminous argillites from Menilite suite of Oligocene, were taken from two fields of the Ukrainian Carpathians. For samples, the elemental composition of the organic matter and the mineral composition of the inorganic part (by X-ray crystallography) are determined. The data on the elemental composition came into the calculation, the result of which is the distribution of the additive components in the organic matter and the composition of gases.
The results of the calculations were compared with the results obtained by the Rock-Eval method. It was found that the calculation by the thermodynamic method gives understated results. On the other hand, it allows the establishment of a change in the chemical structure of organic matter of rocks. We are outlined ways to further improvement of the method.

Keywords

gas-generating potential, Jaynes’ formalism, equilibrium thermodynamic, dissipated organic matter.

REFERENCES

Behar, F., Roy, S., & Jarvie, D. (2010). Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling. Organic Geochemistry, 41, 1235-1247
https://doi.org/10.1016/j.orggeochem.2010.08.005
 
Diakonchuk, S. A., & Kuzmenko, T. M. (2015). Heolohichna kharakterystyka pokladiv netradytsiinykh typiv vuhlevodniv na osnovi 3D-modeliuvannia. Heodynamika, 2 (19), 26-33. [in Ukrainian]
https://doi.org/10.23939/jgd2015.02.026
 
Gabinet, M. P., Kulchitskiy, Ya. O., & Matkovskiy, O. I. (1976). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat. (Ch. 1). Lvov: Vyshcha shkola. [in Russian]
 
Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti. Kyiv: Naukova dumka. [in Ukrainian]
 
Khokha, Yu., Liubchak, O., & Yakovenko, M. (2018). Vplyv temperaturnoho rezhymu na hazoheneratsiinyi potentsial huminovykh kyslot orhanichnoi rechovyny. Heolohiia i heokhimiia horiuchykh kopalyn, 3-4 (176-177), 49-63. [in Ukrainian]
 
Koltun, Y., Espitalié, J., Kotarba, M., Roure, F., Ellouz, N., & Kosakowski, P. (1998). Petroleum generation in the Ukrainian external Carpathians and the adjacent foreland. Journal of Petroleum Geology, 21 (3), 265-288.
https://doi.org/10.1111/j.1747-5457.1998.tb00782.x
 
Van Krevelen D. W., & Chermin H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1 (2), 66-80.
https://doi.org/10.1016/0009-2509(51)85002-4
 
Krupskyi, Yu. Z. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]
 
Krupskyi, Yu. Z., Kurovets, I. M., & Senkovskyi, Yu. M. (2014). Zakhidnyi naftohazonosnyi rehion. In Netradytsiini dzherela vuhlevodniv Ukrainy (Kn. 2). Kyiv: Nika-Tsentr. [in Ukrainian]
 
Lebeha, O. V. (2017). Faktory ta heoloho-ekonomichni pokaznyky, shcho vyznachaiut tsinnist hazoslantsevykh rodovyshch. Ekonomichnyi analiz, 2 (27), 162-171. [in Ukrainian]
 
Liubchak, O. V., Khokha, Yu. V., & Yakovenko, M. B. (2018). Spivvidnoshennia strukturnykh elementiv vuhlevodnevoi skladovoi arhilitiv skhidnykh Karpat za formalizmom Dzheinsa. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, seriia “Heolohiia. Heohrafiia. Ekolohiia”, 49, 15-23. [in Ukrainian]
 
Novak, J., Kozler, J., Janos, P., Cezıkova, J., Tokarova, V., & Madronova, L. (2001). Humic acids from coals of the North-Bohemian coal field: I. Preparation and characterisation. Reactive & Functional Polymers, 47, 101-109.
https://doi.org/10.1016/S1381-5148(00)00076-6
 
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin; Heildelberg; New York; Tokyo: Springer-Verlag.
https://doi.org/10.1007/978-3-642-87813-8
Posted on

QUANTITATIVE INDEX OF TOC CONTENT OF DIFFERENT AGE THICKNESSES OF TRANSCARPATHIAN DEPRESSION AS OIL GAS GENERATION ESTIMATION CRITERIA

Home > Archive > No. 1 (178) 2019 > 41-46


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 41-46.

https://doi.org/10.15407/ggcm2019.01.041

Andrii Andriiovych LOKTIEV

ТзОВ «Компанія «Геопошук ЛТД», смт Рожнятів, Івано-Франківська обл.,
e-mail: shon327@hotmail.com

Abstract

The Transcarpathian foredeep of Ukraine is a geological unit within the Carpathian folded structure, presented by Neogene molasses, which cover Pre-Neogene folded base.

Five deposits of combustible gas were discovered within the foredeep – Russko-Komarivske, Stanivske and Korolevskoye within the Mukachevo depression and Solotvino and Dibrovske fields within the Solotvino depression. Despite the fact that most domestic researchers adhere to the view of gas migration along deep tectonic faults into the sedimentary cover of the Transcarpathian foredeep, it is important to analyze the basin for favourable conditions for the generation of natural gases within the sedimentary cover.

Samples of core material, selected from 57 intervals of different age complexes of rocks from Transcarpathian wells for quantitative estimation of total organic carbon in rock, were analyzed in the department of sedimentary strata of IGGCM NASU. The results of the studies indicate the presence of rocks with low as well as good and even very good oil and gas potential for total organic carbon content, which are overwhelmingly related to the deposits of Pre-Neogene folded base. In general, a wide range of TOC content is established by the analysis. Rocks with TOC content of more than 1% are found both in rocks of the Pre-Neogene base (w. № 22-, 23-Solotvino, 1-Bushtinska, 1-Borodivsko-Novosilska), and in the molar thickness of the Neogene (St. No. 1-Velyko-Dobronska, 8-Tyachivska), which indicates sufficient content to generate hydrocarbons.

Further research aimed at determining the oil and gas potential will allow to determine the priority directions of oil and gas exploration within the Transcarpathian foredeep.

Keywords

gas, generation, migration, Transcarpathian foredeep, field, source rocks, TOC.

REFERENCES

Boiko, H. Yu. et al. (2003). Hlybynna heolohichna budova Karpatskoho rehionu. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 12-22. [in Ukrainian]
 
Dembicki, Jr. H. (2009). Three common source rock evaluation errors made by geologist during prospect or play appraisals. AAPG Bulletin, 93, 341-356.
https://doi.org/10.1306/10230808076
 
Dolenko, G. N. et al. (1980). Glubinnoye stroyeniye razvitiye i neftegazonosnost Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]
 
Dolton, G. L. (2006). Pannonian Basin Province, Central Europe (Province 4808) – Petroleum geology, total petroleum systems, and petroleum resource assessment. U.S. Geological Survey, Bulletin 2204-B, 47 p.
 
Krupskyi, Yu., & Krupska, O. (2008). Vydilennia perspektyvnykh terytorii dlia poshuku rodovyshch zi znachnymy zapasamy vuhlevodniv u Zakhidnomu naftohazonosnomu rehioni. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 5-10. [in Ukrainian]
 
Misiura, Ya. B. (2008). Do pytannia naftohazonosnosti Zakarpatskoho neohenovoho prohynu. Zbirnyk naukovykh prats UkrDHRI, 1, 13-14. [in Ukrainian]
Posted on

GEOLOGICAL-GEOCHEMICAL FEATURES OF MIGRATION AND FORMATION OF GAS FIELDS IN OIL- AND GAS-BEARING REGIONS OF UKRAINE

Home > Archive > No. 1 (178) 2019 > 21-40


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 21-40.

https://doi.org/10.15407/ggcm2019.01.021

Olesya SAVCHAK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

Geochemical composition of main components of natural gas has been analysed for three oil- and gas-bearing regions of the Ukraine, namely: Western (40 fields of the Precarpathian deep, 4 gas fields of the Transcarpathian deep and 2 gas fields located within the limits of the Lviv Paleozoic deep), Eastern (composition of natural gases at 12 fields) and Southern (analysis of data on chemical composition of natural gases from 8 fields in the water area of the deep and 13 fields on land).

Comparative analysis of the composition of natural hydrocarbons has been carried out within the limits of the Western region based on the main structural-tectonic elements of the region: outer and inner zones of the Precarpathian deep, the Transcarpathian deep and the Lviv Paleozoic deep; within the Eastern region – the Northern edge of the deep and the deep itself; within the Southern region – water area and land. On this basis the definite zonality of the distribution of hydrocarbon components of natural gases within the bounds of the oil-gas regions has been determined. Such different composition of gases testifies to independent sources of hydrocarbon supply and different duration of migration of the latter.

The analyses of the features of the distribution of the components of natural gas of main oil- and gas-bearing regions of the Ukraine and of the gas presence in the aggregate have enabled us to determine main aspects of the processes both of lateral and vertical migration of hydrocarbons.

Keywords

geochemical features, migration, hydrocarbons, Western, Eastern and Southern oil-gas regions of Ukraine.

REFERENCES

Atlas rodovyshch nafty i hazu Ukrainy. T. 4-5. Zakhidnyi naftohazonosnyi rehion. (1998). Lviv: UHNA. [in Ukrainian]
 
Pavliuk, M. I., Varichev, S. O., Rizun, B. P., & Savchak, O. Z. (2002). Naftohazonosni provintsii Ukrainy (heodynamichnyi aspekt). Heolohiia i heokhimiia horiuchykh kopalyn, 1, 3-12. [in Ukrainian]
 
Pavliuk, M. et al. (2008). Heodynamichni umovy formuvannia naftohazonosnykh provintsii Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3 (144), 16-25. [in Ukrainian]
 
Savchak, O. Z. (2003). Heokhimichni osoblyvosti naft i kondensativ Pivdennoho naftohazonosnoho rehionu Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3-4, 27-37. [in Ukrainian]
 
Savchak, O. Z. (2015). Heodynamichni aspekty roztashuvannia rodovyshch nafty i hazu naftohazonosnykh provintsii Ukrainy. In Heolohiia horiuchykh kopalyn: Materialy Mizhnar. nauk. konf. (Kyiv, 2-4 veresnia 2015 r.) (pp. 96-98). Kyiv. [in Ukrainian]
 
Savchak, O. Z. (2017a). Heokhimichni aspekty protsesiv naftohazonahromadzhennia naftohazonosnykh rehioniv Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 1-2 (170-171), 154-156. [in Ukrainian]
 
Savchak, O. Z. (2017b). Heokhimichni aspekty protsesiv mihratsii ta akumuliatsii vuhlevodniv Skhidnoho naftohazonosnoho rehionu Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3-4 (172-173), 9-29. [in Ukrainian]
 
Savchak, O. Z. (2018). Heodynamichni ta heokhimichni aspekty naftohazonahromadzhennia Zakhidnoho naftohazonosnoho rehionu Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3-4 (176-177), 5-20. [in Ukrainian]
 
Savchak, O. Z. (2019). Heoloho-heokhimichni osoblyvosti rozmishchennia rodovyshch nafty i hazu naftohazonosnykh provintsii Ukrainy. In Tezy dop. Nauk. konf., prysviachenoi 50-richchiu In-tu heokhimii, mineralohii ta rudoutvorennia im. M. P. Semenenka NAN Ukrainy (Kyiv, 14-16 travnia 2019 r.) (T. 2, pp. 82-84). Kyiv. [in Ukrainian]
Posted on

OLISTOSTROME IN OLIGOCENE OF THE KROSNO (TURKA SUBNAPPE) AND THE DUKLYA-CHORNOHORA NAPPES OF THE UKRAINIAN CARPATHIANS

Home > Archive > No. 1 (178) 2019 > 5-20


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 5-20.

https://doi.org/10.15407/ggcm2019.01.005

Volodymyr SHLAPINSKYI, Myroslav Pavlyuk, Albert МEDVEDEV, Myroslav TERNAVSKY

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

Olistostrome horizons in the Oligocene deposits of the south-western part in the Bytlya-Svydovets subcover of the Krosno nappe or in so-called Pre-Duklya folds are described in a number of works. There is not enough information about olistostrome in the northern part of the Krosno nappe in its Turka subcover and in the outer part of the Duklya-Chornohora nappe (Stavniany subcover). In the mentioned tectonic units olistostrome is localized in the Lower Verkhovynian deposits of Oligocene above the marker bed of stripped limestones in the region of the Smozhe populated area of the Skole district of the Lviv Region, Torun and Lopushna of the Mizhgirria region of the Transcarpathian Region as well as near Lyuta Village of the same region. Matrix is mainly composed by the grey carbonate flysh of the Krosno lithotype. Olistostrome horizons are presented by strongly crumped chaotic non-sorted formations. In its composition also are present more ancient rocks than matrix, olistolites of the Upper Cretaceous-Lower Oligocene age as well as redeposited rocks formed as a result of washout of more ancient deposits. Some geologists consider, according, to M. G. Leonov hypothesis (1978), that olistolites came off the front part of the Duklya nappe during its overthrusting to the north-east. Materials collected during geological surveys and later observations deny such a mechanism. This is proved by the following:

a) overthrust of the Duklya nappe couldn’t cause the formation of the Krosno olistostrome. Because olistostrome is also fixed in Oligocene of the Stavniany subcover of the given nappe of the Lyuta Village and the Mlaky ravine in the section of the Lyuta River.

 b) Olistostrome is traced at the strathigraphic level at a relatively narrow time interval. It means that sources of removal of olistolites were functioning not so long that contradicts the thesis on the permanent overthrusting movement.

c) If olistostrome was caused by the given overthrust, so it would (and olistolites) be observed continuously, but not discretely.

d) In sandstones of-the Lower Verkhovynian subsuite the presence of nummulites was fixed, and in argillites of Oligocene the microfauna of Cretaceous-Eocene age – this in the evidence of the washout event.

e) Over olistostrome are developed normal bedded high sections of-the Lower Verkhovynian subsuite, thus the overthrusting of the scales in Oligocene was absent.

f) In the composition of the Bytlya olistostrome are present rocks that are absent in the composition of Duklya-Chornohora nappe.

In the light of data mentioned above, the alternative thesis about cordillera as a source of removal of olistolites is rather grounded and non-alternative. It is possible that as sources of removal was a number of islands that were uplifted higher that sea level at the beginning of the Upper Verkhovynian time. In places the tongues of olistostromes into the Turka sub cove olistolites in the Smozhe and Torun Village possibly due to the presence of long alluvial fans. It is probable that cordillera occurred at the boundary between the Krosno and Dusynian basins of sedimentation that differed by the conditions of sediment forming that was manifested by the presence of two lithotypes of Oligocene of Krosno and Dusynian.

Keywords

Krosno, Duklya-Chornohora nappes, Bitlya-Svydovets, Turka, Stavnyany subnappes, Lower-Verkhovynian subsuite, olistrome horizons, cordillera.

REFERENCES

Dolenko, G. N. (1962). Geologiya nefti i gaza Karpat. Kiev: AN USSR. [in Russian]

Glushchenko, L. A. (1972). Geologicheskoye stroyeniye i podvodno-opolznevyye obrazovaniya yuzhnogo sklona Ukrainskikh Karpat v verkhoviakh Latoritsy i Riki. (Avtoref. dis. kand. geol.-min. nauk). Lvov. [in Russian]

Gruzman, A. D., & Smirnov S. Ye. (1982). Olistostrom v verkhnekrosnenskoy podsvite Ukrainskikh Karpat. Doklady AN USSR. Ser. B, 10, 11–14. [in Russian]

Hlushchenko, L. A. (1968). Pidvodno-zsuvni dyslokatsii tonkorytmichnoho flishu v baseini rik Latorytsia i Zhdenivka (Skhidni Karpaty). Dopov. Akad. nauk URSR. Ser. B, 3, 236–238. [in Ukrainian]

Hlushchenko, L. A., Zhygunova, Z. F., Kuzovyenko, V. V., & Lozynyak, P. Yu. (1980). Olistostroma v oligotsenovykh otlozheniyakh Krosnenskoy (Silezskoy) zony Ukrainskikh Karpat. In Materiali XI kongressa KBGA (litologiya) (p. 55–64). Kiev: Naukova dumka. [in Russian]

Hlushko, V. V., Kuzovenko, V. V., & Shlapinskyi, V. Ye. (1999). Novi pohliady na heolohichnu budovu pivnichno-zakhidnoi chastyny Duklianskoho pokrovu Ukrainskykh Karpat. Visnyk of the Lviv University. Ser. Geol., 13, 94–101. [in Ukrainian]

Hruzman, A. D., & Smyrnov, C. Ye. (1985). Olistostromy krosnenskoi svity Ukrainskykh Karpat. Doklady AN USSR. Ser. B, 4, 17–20. [in Russian]

Klishch, S. S. (1955). Otchet o geologicheskikh issledovaniyakh na ploshchadi Lopushnoye–Soymy Zakarpatskoy oblasti USSR. provedennykh v 1954 g. Lvov: Fondy DP “Zakhidukrgeologiya”. [in Russian]

Kruglov, S. S. (1989). Geodinamicheskoye razvitiye v rannem melu Utesovykh zon Sovetskogo Zakarpatia. In XIV kongress KBGA (p. 385–388). Sofiya. [in Russian]

Krupsky, Yu. Z. et al. (2014). Western gas-bearing region. In Unconventional hydrocarbon resources of Ukraine (Vol. 2). Kyiv: Nika-Centre.

Kulchitskiy, Ya. O. (1980). Olistostromy. olistolity i drugiye podvodno-opolznevyye yavleniya vo flishe Vostochnykh Karpat. In Materialy XI kongressa KBGA (litologiya) (p. 119–130). Kiev: Nauk. dumka. [in Russian]

Kuzovenko, V. V., Zhigunova, Z. F.,  & Bunda, V. A. (1982). Otchet o gruppovom geologicheskom doizuchenii i kompleksnoy syemke masshtaba 1 : 50 000 na ploshchadi Vyshkov Ivano-Frankovskoy i Zakarpatskoy oblastey USSR v 1978–1982 gg. (listy M-34-120-A, V; M-34-131-B; M-34-132-A, V). Lvov: Fondy DP “Zakhidukrgeologiya”. [in Russian]

Kuzovenko, V. V., Zhigunova, Z. F., & Petrov, V. G. (1977). Otchet o rezultatakh gruppovoy kompleksnoy geologicheskoy syemki masshtaba 1 : 50 000, provedennoy na ploshchadi Klimets Lvovskoy i Zakarpatskoy oblastey USSR v 1973–1976 gg. Lvov: Fondy DP “Zakhidukrgeologiya”. [in Russian]

Leonov, M. G. (1978). Olistostromi i ikh genezis. Geotektonika, 5, 18–33. [in Russian]

Mochalin, I. P., & Nekrasova, L. P. (1963). Otchet o geologicheskikh issledovaniyakh. provedennykh na ploshchadi Siglovatoye Lvovskoy oblasti USSR v 1962 g. Lvov: Fondy DP “Zakhidukrgeologiya”. [in Russian]

Shakin, V. A., & Sandler, Ya. M. (1963). Gipsy v oligotsenovom flishe Karpat. Trudy UkrNIGRI, 6, 110–173. [in Russian]

Shlapinskyi, V. (2012). Pro hranytsiu mizh olihotsenom i miotsenom v Boryslavsko-Pokutskomu pokrovi Peredkarpatskoho prohynu i Skladchastykh Karpatakh. Pratsi Naukovogo tovarystva im. Shevchenka, 30, 100–118. [in Ukrainian]

Shlapinskyi, V. E. (2018). Pokuttia deep fault and its influence on tectonics and the oil- and gas-bearing of the south-eastern segment of the Carpathians. Geodynamics, 2 (25), 3–69.

Shlapinskyi, V. Ye., Hlushko, V. V., & Kuzovenko, V. V. (1994). Vyvchennia heolohichnoi budovy i perspektyv naftohazonosnosti zony zchlenuvannia Duklianskoho, Chornohorskoho i Krosnenskoho pokroviv Ukrainskykh Karpat v 1991–1994 rr.: zvit (T. 1). Lviv: Fondy DP “Zakhidukrheolohiya”. [in Ukrainian]

Tsarnenko, P. N. (1974). Geologicheskoye stroyeniye Poloninsko-Chernogorskikh i Gorganskikh Karpat. (avtoref. dis. kand. geol.-min. nauk). Lvov. [in Russian]

Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1966). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Lyuta Zakarpatskoy oblasti USSR v 1964–1965 gg. Lvov: Fondy DP “Zakhidukrgeologiya”. [in Russian]

Posted on

ASSESSMENT OF THE INFLUENCE OF THE BUILDING OF THE WIND-POWER INSTALLATIONS UPON HYDROGEOLOGICAL AND GEOECOLOGIC CONDITIONS OF THE BORZHAVA VALLEY (TRANSCARPATHIA)

Home > Archive > No. 3-4 (176-177) 2018 > 110-125


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 110-125.

Vasyl DYAKIV

Ivan Franko National University of Lviv

Mykhailo YAREMOVYCH

Heol-Tekh LLC, Lviv

Andriy KOVALCHUK

Individual Entrepreneur

Marianna IVANSKA

Heol-Tekh LLC, Lviv

Abstract

In the press, Internet space and other mass media of the Transcarpathian region, the question of the expediency or the inexpediency of the harmful environmental impact on the construction of wind power plants in the Borzhava Valley has been widely debated recently. First of all, it should be noted that the intention of constructing such objects follows from the highest wind power potential of the Carpathian mountain regions in Ukraine, the high specific power of wind energy at a particular time and its total amount at different times (month, season, year), in particular average speed wind and boundary characteristics of wind power plants (the minimum and maximum speed at which the generator of wind turbines can work). This is that which determines the choice of investors for the construction of wind power plants in the Borzhava Valley.

Of course, the construction of any objects leads to one or another impact on the environment in general, and on hydrogeological and geoecological conditions in particular. However, how high is this influence, or does it lead to risks of violations of groundwater formation conditions and the negative changes in the chemical composition of underground and surface waters, is the purpose of this article.

Keywords

Borzhava Valley, wind power plants, hydrogeological and geoecological conditions, environment.

Referenses

Derevska, K. I., & Burlachenko, Yu. V. (2018). Problema budivnytstva vitroelektrostantsii na Polonyni Borzhava: vplyv na vodni resursy. https://www.facebook.com/notes/врятуй-боржаву/проблема-будівництва-вітроелектростанції-на-полонині-боржава-вплив-на-водні-ресу/211691606078846/ [in Ukrainian]

Dmytrenko, L. V., & Barandich, S. L. (2007). Vitroenerhetychni resursy v Ukraini. Naukovi pratsi UkrNDHMI, 256, 166–173. [in Ukrainian]

Vodna ramkova dyrektyva YeS 2000/60/ES. Osnovni terminy ta yikh vyznachennia. (2006). Kyiv. [in Ukrainian]