Posted on

GAS-COAL FIELDS OF THE LVIV-VOLYN COAL BASIN

Home > Archive > No. 3–4 (195–196) 2024 > 62–72


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 62–72

https://doi.org/10.15407/ggcm2024.195-196.062

Iryna BUCHYNSKA1, Mykhailo MATROFAILO2

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1ibuchynska@ukr.net; 2mmatrofaylo@gmail.com

Abstract

Methane deposits in coal beds are related to unconventional deposits of natural gas. The purpose of the work is to generalize data on the gas presence in the gas-coal fields of the Lviv-Volyn Coal Basin; to ascertain alterations of methane presence of the coal-bearing series across the area of the Lviv-Volyn Coal Basin.

We have analyzed gas-coal deposits of the Lviv-Volyn Coal Basin. General view of the change in methane presence across the area of the basin is the following:

– of the Volyn field seams of the Bashkirian stage have the least methane presence. Thus, for the seam b3 it doesn’t exceed 0.1–1. cu m/t. dry ash-free mass (cu m/t. a.-f. m.), and for the seam b1, it is equal to 0.2–3.0 cu m/t. a.-f. m.). The methane presence the Serpukhovian stage is higher and is changed within on a large scale from 0.01 to 3.0 cu m/t. a.-f. m. In the northern part of the basin, at the Volyn field the commercial coal seams have insignificant methane presence from 0.01 to 1.4 cu m/t. a.-f. m. Only is the far north-west it is increased up to 4–8 cu m/t. a.-f. m.;

– in the northern and north-eastern parts of the Zabuzhzhia field, the methane presence of coalbeds of the Serpukhovian stage is from 0.01 to 1. cu m/t. a.-f. m. With the increase in the depth of occurrence up to 500–650 m in the south-western part of the field, the methane presence increases to 2–10 cu m/t. a.-f. m. and at some plots it reaches 12–17 cu m/t. a.-f. m.;

– іn the Mezhyrichchia field the methane presence of the seams n11, n12, as well as of the main working seams of north-eastern part and along their outcrops into Carboniferous hardly reaches 3–5 cu m/t. a.-f. m. Characteristic of the field is that with increase of the depth of occurrence of beds from 380 to 450 m in the east and to 500–570 m in the west, the methane presence increases from 3–8 to 5–17 cu m/t. a.-f. m.;

– in the Tyagliv field, the methane presence of coalbeds reaches of its maximum and in the depth of 800–870 m it is from 8 to 31 cu m/t. a.-f. m. Тhe Tyagliv field is the most gas-bearing in the Lviv-Volyn Coal Basin;

– in the Lyubelya field, in its southern part, coal-bearing bearing series up to coal seam n7 is degassed, and the methane content in the gas mixture is from 0 to 0.8 cu m/t. a.-f. m. In the northern direction of the field the methane presence increases to 5–15 cu m/t. a.-f. m., and in the seam v6 up to 20 cu m/t. a.-f. m. at the mine fields No. 4 and No. 5.

To ascertain prospects of the areas for commercial extraction of coalbed methane it is necessary to take all geological factors, influencing the spreading and distribution of coal gases, into consideration. Complex approach to coal production with studying gas bearingness in the gas-bearing series is very important for the perspectiveness of the areas. The usage of such methods is one of the perspective directions of a stable development of coal-producing regions with gradual transfer from the monocentrified production to the multiprofile purposefulness.

Keywords

gas bearingness, coal seam, gas-coal fields, complex approach, Lviv-Volyn coal basin

Referenses

Byk, S. I., Buchynska, I. V., Knysh, I. B., & Yavnyi, P. M. (2009). Metanonosnist polia shakhty “Stepova” Lvivsko-Volynskoho baseinu. Heoloh Ukrainy, 3, 23–26. [in Ukrainian]

Buchynska, I., Knysh, I., Kruglova, R., Shevchuk, O., & Yavny, P. (2008). Gas potential of coalbeds from the Chervonogradska-4 area of the Lviv-Volyn basin. In 7-th European Coal Conference (Lviv, Ukraine, August 26–29, 2008) (pp. 23–24). Lviv.

Buchynska, I. V., Knysh, I. B., Kruhlova, R. L., Shevchuk, O. M., & Yavnyi, P. M. (2008). Hazonosnist vuhilnykh plastiv dilianky № 3 Chervonohradska Lvivsko-Volynskoho baseinu. In Forum hirnykiv – 2008: materialy mizhnarodnoi konferentsii (Dnipropetrovsk, 13–15 zhovtnia 2008 r.) (pp. 29–33). Dnipropetrovsk. [in Ukrainian]

Buchynska, I., & Matrofailo, M. (2021). Perspektyvy naroshchuvannia mineralno-syrovynnoi bazy Lvivsko-Volynskoho kamianovuhilnoho baseinu. Hirnycha heolohiia ta heoekolohiia, 1, 5–23. https://doi.org/10.59911/mgg.2786-7994.2020.1.234260 [in Ukrainian]

Buchynska, I., Matrofailo, M., & Poberezhskyi, A. (2023). Kompleksne osvoiennia suputnikh korysnykh kopalyn i komponentiv vuhillia Liubelskoho rodovyshcha Lvivsko-Volynskoho baseinu. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiia, 2(101), 62–67. https://doi.org/10.17721/1728-2713.101.09 [in Ukrainian]

Buchynska, I. V., & Yavnyi, P. M. (2012). Metanonosnist vuhlenosnoi tovshchi Lvivsko-Volynskoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 17–28. [in Ukrainian]

Buchynska, I., Yavnyi, P., Knysh, I., & Shevchuk, O. (2011). Vuhlenosnist i rozpodil vuhilnykh haziv u rozrizi nyzhnoho karbonu Liubelskoho rodovyshcha Lvivsko-Volynskoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 57–67. [in Ukrainian]

Instruktsiia iz zastosuvannia Klasyfikatsii zapasiv i resursiv korysnykh kopalyn derzhavnoho fondu nadr do heoloho-ekonomichnoi otsinky zahalnykh (emisiinykh) ta vydobuvnykh zapasiv shakhtnoho metanu vuhlehazovykh rodovyshch u zonakh suputnoi tekhnolohichno neobkhidnoi dehazatsii pid chas rozrobky vuhilnykh plastiv. (2008). Retrieved 01.10.2024 from https://zakon.rada.gov.ua/laws/show/z0007-09#Text [in Ukrainian]

Kostyk, I., Matrofailo, M., Lelyk, B., & Korol, M. (2016). Vuhleutvorennia na pochatkovomu etapi formuvannia kamʼianovuhilnoi formatsii Lvivsko-Volynskoho baseinu. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 1, 19–31. http://nbuv.gov.ua/UJRN/Nvngu_2016_1_5 [in Ukrainian]

Kravtcov, A. I. (Ed.). (1980). Gazonosnost ugolnykh basseinov i mestorozhdenii SSSR: Vol. 3. Genezis i zakonomernosti raspredeleniia prirodnykh gazov ugolnykh basseinov i mestorozhdenii SSSR. Moskva: Nedra. [in Russian]

Pavlov, S. D. (2005). Puti osvoeniia prirodnykh gazov ugolnykh mestorozhdenii. Kharkov: Kolorit. [in Russian]

Pro haz (metan) vuhilnykh rodovyshch (Zakon Ukrainy № 1392-VI). (2009). Vidomosti Verkhovnoi Rady Ukrainy, 40, 578. Retrieved 01.10.2024 from https://zakon.rada.gov.ua/laws/show/1392-17#Text [in Ukrainian]

Radzivill, A. Ia. (Ed.). (2007). Korreliatciia karbonovykh uglenosnykh formatcii Lvovsko-Volynskogo i Liublinskogo basseinov. Kiev: Varta. [in Russian]

Sokorenko, S., Kostyk, I., & Matrofailo, M. (2011). Osoblyvosti suchasnoi pryrodnoi hazonosnosti vuhilnykh plastiv ta vuhlevmisnykh porid Liubelskoho rodovyshcha kamianoho vuhillia Lvivsko-Volynskoho baseinu. Heoloh Ukrainy, 2(34), 81–89. [in Ukrainian]

Vdovenko, M. V., Polietaiev, V. I., & Shulha, V. F. (2013). Stratyhrafiia karbonu Lvivskoho paleozoiskoho prohynu. In Stratyhrafiia verkhnoho proterozoiu ta fanerozoiu Ukrainy: Vol. 1. Stratyhrafiia verkhnoho proterozoiu, paleozoiu ta mezozoiu Ukrainy (P. F. Hozhyk, Ed.) (pp. 316–331). Kyiv: Lohos. [in Ukrainian]

Yavnyi, P. M., Byk, S. I., Buchynska, I. V., Knysh, I. B., Shevchuk, O. M., & Kruhlova, R. L. (2008). Potentsial metanu robochykh vuhilnykh plastiv dilianky № 4 Chervonohradska Lvivsko-Volynskoho kamianovuhilnoho baseinu. Geotekhnicheskaia mekhanika, 80, 172–178. [in Ukrainian]

Yavnyi, P., Knysh, I., Buchynska, I., & Byk, S. (2009). Prohnoz hazonosnosti vuhilnykh plastiv Tiahlivskoho rodovyshcha Lvivsko-Volynskoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 39–51. [in Ukrainian]

Zahalnoderzhavna prohrama rozvytku mineralno-syrovynnoi bazy Ukrainy na period do 2030 roku. (2011). Vidomosti Verkhovnoi Rady Ukrainy, 44, 457. Retrieved 01.10.2024 from https://zakon.rada.gov.ua/laws/show/3268-17#Text [in Ukrainian]


Posted on

USE OF THE POINT ELECTROMAGNETIC SOUNDING METHOD FOR PREDICTION OF HYDROCARBON RESERVOIRS IN THE NARIZHNYAN AREA OF THE DNIPRO-DONETS DEPRESSION

Home > Archive > No. 3–4 (195–196) 2024 > 48–61


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 48–61

https://doi.org/10.15407/ggcm2024.195-196.048

Ihor SKOPYCHENKO1, Vitaly FINCHUK2

1 State Institution “Scientific Center of Mining Geology, Geoecology and Infrastructure Development of the National Academy of Sciences of Ukraine”, Kyiv, Ukraine, e-mail: i.skopychenko@gmail.com
2 An individual entrepreneur Finchuk Vitaly Vasyliovych, Kyiv, Ukraine

Abstract

Geological exploration for oil and gas in the Dnipro-Donets Basin has shown that most fields have a complex structure, which significantly complicates the search for hydrocarbon deposits. The studies were conducted within the structural zone in the Narizhnyanska area to predict hydrocarbon deposits in the Lower Carboniferous Visean and Serpukhivian and Middle Carboniferous Bashkirian deposits, as well as to clarify the structure of the unconformable shielding dump. Fieldwork was carried out along 23 profiles crossing the Narizhnyanska, Rogivska, Shylivska and Burivska structures to identify and delineate electromagnetic anomalies. According to the interpretation of the obtained data, the zones of unconfined rocks are the channels of hydrocarbon migration, and the compression zones are the barriers in front of which they accumulate. The most promising areas for hydrocarbon accumulation are those where the anomalies of the maximum values of the nFisum.mean parameter are located in the southern part, and the anomalies of the minimum values of the parameter are located in the northern part of the area. According to the results of the study, the Point electromagnetic sounding method determined: Narizhnyanska, Rogivska and the northern part of Burivska structure are the most promising areas of the Narizhnyanska area in terms of hydrocarbon deposits.

The results of the work on the Narizhnyanska area showed that the Point electromagnetic sounding method can be used in a complex of exploration and prospecting works to study seismic or other anomalies, determine the depths of horizons of anomalous electromagnetic properties that are promising for hydrocarbon accumulation.

Keywords

oil and gas content of the subsoil, PEMS method, electrical exploration, electromagnetic sounding, electromagnetic anomalies, vertical gradient of change in the secondary field strength, Narizhnyanska structure

Referenses

Chebanenko, I. I., Kraiushkin, V. O., Klochko, V. P., Hozhyk, P. F., Yevdoshchuk, M. I., Hladun, V. V., Maievskyi, B. Y., Tolkunov, A. P., Tsokha, O. H., Dovzhok, T. E., Yehurnova, M. H., & Maksymchuk, P. Ya. (2002). Naftohazoperspektyvni obiekty Ukrainy. Naftohazonosnist fundamentu osadovykh baseiniv. Kyiv: Naukova dumka. [in Ukrainian]

Demianenko, I. I. (2000). Tendentsii vuhlevodnevoho zapovnennia pastok v produktyvnykh strukturakh fanerozoiu Dniprovsko-Donetskoi zapadyny. In Teoretychni ta prykladni problemy naftohazovoi heolohii (pp. 127–130). Kyiv. [in Ukrainian]

Demianenko, I. I. (2001). Hipsometrychni poverkhy naftohazonosnosti fanerozoiu Dniprovsko-Donetskoi zapadyny. Chernihiv: TsNTI. [in Ukrainian]

Demianenko, I. I. (2004). Problemy i optymizatsiia naftohazoposhukovykh i rozviduvalnykh robit na obiektakh Dniprovsko-Donetskoi zapadyny. Chernihiv: TsNTI. [in Ukrainian]

Etapy i stadii heolohorozviduvalnykh robit na naftu i haz (HSTU 41-00032626-00-011-99). (1999). Kyiv. [in Ukrainian]

Finchuk, V. V., & Skopychenko, I. M. (2011). Rezultaty prohnozuvannia skupchen vuhlevodniv na Narizhnianskii ploshchi Dniprovsko-Donetskoi zapadyny za danymy elektrorozviduvalnykh robit metodom tochkovykh elektromahnitnykh zonduvan. Heolohichnyi zhurnal, 3, 131–138. https://doi.org/10.30836/igs.1025-6814.2011.3.139195 [in Ukrainian]

Skopychenko, I. M., Finchuk, V. V., & Verhelska, N. V. (2018). Vyznachennia zon skupchennia hazu-metanu u vuhleporodnykh masyvakh metodom tochkovoho elektromahnitnoho zonduvannia (na prykladi vuhilnoho baseinu San-Juan, SShA). Heofizychnyi zhurnal, 40(3), 192–198. https://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137201 [in Ukrainian]

Skopychenko, I., Mikhaylyuk, S., & Prosnyakov, V. (2020). Using the method of pulsating electromagnetic sounding to determine disturbed zones in the lithosphere. In Proceedings of the IX International Geomechanics conference (7–11.09.2020, Varna, Bulgaria) (pp. 75–79). Varna.

Starostin, V. A., & Koval, Ya. M. (2011). Indyvidualne modeliuvannia elektroprovidnosti hazonasychenykh porid-kolektoriv skladnoi budovy. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 4(41), 41–46. [in Ukrainian]

Starostin, V. A., & Nahorniak, R. I. (2014). Filtratsiina model naftohazovykh rodovyshch yak kryterii kontroliu vyiavlennia propushchenykh produktyvnykh intervaliv. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 1(50), 140–150. [in Ukrainian]

Zavialov, V. M. (1971). Pro osoblyvosti prostorovoho rozmishchennia pokladiv nafty ta hazu v Dniprovsko-Donetskii zapadyni. Heolohiia i heokhimiia horiuchykh kopalyn, 28, 3–8. [in Ukrainian]


Posted on

STUDIES OF COMPOSITE RESERVOIR ROCKS FROM SHALLOW LYING HORIZONS OF THE PRYLUKY UPLIFT OF THE DNIEPER-DONETS DEPRESSION

Home > Archive > No. 3–4 (195–196) 2024 > 36–47


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 36–47

https://doi.org/10.15407/ggcm2024.195-196.036

Ihor KUROVETS, Oleksandr ZUBKO, Ihor HRYTSYK, Pavlo CHEPUSENKO, Oleksandr PRYKHODKO, Svitlana MELNYCHUK, Zoryana KUCHER

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: i.kurovets@gmail.com

Abstract

Increase in the production and stepping up the rate of hydrocarbon reserves is an important task for keeping Ukraine supplied with its own resources. Development of the missed upper horizons or those that are considered to be non-commercial is the cheapest way to increase production. Shallow lying horizons C-8 and C-9 of the Serpukhovian deposits of the Pryluky uplift belong to such objects. Unconventional reservoirs composed of layered, lithologically uneven layers of composite structure of porous space and considerable changeability of the composition are considered to be perspective. Relatively low natural radio-activity according to data of gamma-ray logging, the absence of spontaneous potential-anomalies, somewhat low values of specific resistance, insignificant increase in indices of potential sounding in comparison with gradient sounding, increased values of residual saturation factor are characteristic indications of these reservoir rocks.

According to data of geophysical well logging, the reliable ways and methods of predicting qualitative and quantitative characteristics of the main petrophysical parameters of the reservoirs of given type are absent up to the present because petrophysical properties of such reservoirs are studied not fully. Their development requires the execution of experimental complex investigations of the core samples selected from these horizons that allows us to study the interconnections and mutual stipulating of collecting and geophysical properties of reservoirs with controlled change in parameters in the course of the experiments and to determine the complex of informative parameters of the well logging.

As a result of conducted studies of the rock samples, the lithological type of reservoir was determined and its lithological-petrophysical characteristic was given. Matrix of the rock contains porous space of different type and genesis. Porosity of the interlayers of sandy aleurolites, that are the main oil-saturated reservoirs, reaches the value of 23 to 28 per cent, and with the aid of fractures along bedding of all another lithological varieties, including clayish, they are connected into a single hydrodynamic system bifurcated in the rocks with decreased solidity, and therefore very sensitive to stress redistribution and formation pressure.

There correlational ties between geophysical and capacity-filtration parameters of the reservoir rocks were determined, petrophysical models were constructed for normal and formational conditions and the main factors, sufficiently influencing their value, were determined.

Keywords

Pryluky uplift, shallow lying horizons, composite reservoir rocks, laboratory studies, petrophysical model

Referenses

Babadagly, V. A., Vakarchuk, G. I., Gavrilko, V. M., Golovatckii, I. N., Izotova, T. S., Kelbas, B. I., Kozak, G. P., Kucheruk, E. V., & Lazaruk, Ia. G. (1982). Metody poiskov neantiklinalnykh zalezhei uglevodorodov na Ukraine: TrudyUkrNIGRI, 31. [in Russian]

Ivaniuta, M. M. (Ed.). (1998). Atlas rodovyshch nafty i hazu Ukrainy (Vol. 1). Lviv: Tsentr Yevropy. [in Ukrainian]

Karpenko, O. M., & Fedoryshyn, D. D. (2003). Statystychna model tonkosharuvatoho rozrizu sverdlovyny za danymy HDS. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 2(7), 44–49. [in Ukrainian]

Kononenko, L. P. (1998). Stratyhrafichne rozchlenuvannia serpukhovskoho yarusu na produktyvni horyzonty, koreliatsiia yikh ta indeksatsiia na sumizhnii terytorii DHP ChNHH i PNHH DDZ (Vol. 1) [Research report]. Chernihiv. [in Ukrainian]

Kurovets, I., Zubko, O., Hrytsyk, I., Prykhodko, O., & Kucher, R.-D. (2023). Aparaturno-metodychnyi kompleks doslidzhen petrofizychnykh vlastyvostei trishchynuvatykh porid-kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(191–192), 37–44. https://doi.org/10.15407/ggcm2023.191-192.037 [in Ukrainian]

Kurovets, I. M., Zubko, O. S., Kit, N. O., & Hvozdevych, O. V. (2007). Prystrii dlia vyznachennia pronyknosti zrazka hirskoi porody (Deklaratsiinyi patent Ukrainy № 80551). Biuleten, 16. [in Ukrainian]

Logovskaia, G. K., & Sarkisova, E. A. (1982). Vydelenie neftegazonosnykh obektov v razrezakh s peschano-glinistymi sloistymi kollektorami: Obzor VIEMS. Ser. Region. razved. i promysl. geofizika. Moskva. [in Russian]

Zubko, A. S. (1989). Nekotorye osobennosti metodiki laboratornogo opredeleniia vodonasyshchennosti porod-kollektorov. In Geofizicheskaia diagnostika neftegazonosnykh i uglenosnykh razrezov: sbornik nauchnykh trudov AN USSR (pp. 103−113). Kiev: Naukova dumka. [in Russian]

Zubko, A. S., & Sheremeta, O. V. (1988). Razrabotka universalnoi ustanovki vysokogo davleniia UVD-500 i metodika izucheniia petrofizicheskikh svoistv gornykh porod dlia uslovii, modeliruiushchikh plastovye [Research report]. Lvov: Fondy IGGGI AN USSR. [in Russian]


Posted on

LITHOLOGICAL AND FACIAL STRUCTURE AND PROSPECTS OF THE OIL AND GAS CAPACITY OF THE MIDDLE JURASSIC SEDIMENTS OF THE PREDOBROGEAN DEPRESSION

Home > Archive > No. 3–4 (195–196) 2024 > 24–35


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 24–35

https://doi.org/10.15407/ggcm2024.195-196.024

Kostyantyn HRIGORCHUK1, Volodymyr HNIDETS2, Oksana KOKHAN, Lina BALANDYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1kosagri@ukr.net; 2vgnidets53@gmail.com

Abstract

The paper presents the results of complex lithogenetic studies of the Middle Jurassic deposits of the Predobrogean depression. The nature of the lithological-lithmological space-age variability of the Callovian and Bath-Bajocian deposits was established, lithophysical models were built on this basis, and the peculiarities of the development of reservoir rocks of various types and aquitards were clarified. In the lithological structure of the Middle Jurassic, three types of section are distinguished according to the ratio of rock components. It was established that the lithological structure of the Callovian and Bath-Bajocian deposits is significantly different: clayey, as well as siltstone-sand litmites are characteristic of the Bath-Bajocian, and mixed and terrigenous litmites with a carbonate component are characteristic of the Callovian. The lateral lithological and lithological heterogeneity of the sediments indicates that the studied profiles cross several facies zones. Two clastogenic packs of regional distribution were identified in the section of the Bath-Bajocian in the lower and middle parts of the section, 55–60 m and 50–240 m thick, respectively, separated by a pack of clay formations. The Callovian deposits are characterized by the development of mixed litmites, to a certain extent enriched in carbonate rocks. Three oil and gas promising areas have been localized. First, this is the district of Well Suvorivska-4, where the development of a combined (anticlinal and lithologically limited) trap is predicted in the Callovian deposits. Secondly, the area between Well Chervonoarmiyska-2 and Suvorivska-4, where 10 horizons of both pore and fracture reservoirs are wedged in the Bath-Bajocian deposits. The third is the district of Well Starotroyanivska-1, where there is a anticlinal trap with the development in the Bath-Bajocian deposits of two horizons of pore collectors, which are shielded by rather powerful aquitards.

Keywords

deposits of the Middle Jurassic, litho-lithmological features, reservoir rocks, Predobrogean depression

Referenses

Belozerov, V. B. (2011). Rol sedimentatcionnykh modelei v elektrofatcialnom analize terrigennykh otlozhenii. Izvestiia Tomskogo politekhnicheskogo universiteta, 319(1), 116–123. [in Russian]

Dulub, V. G., Leshchukh, R. I., & Polukhtovich, B. M. (1985). K stratigrafii iurskikh otlozhenii Preddobrudzhskogo progiba. Geologicheskii zhurnal, 45(5), 74–79. [in Russian]

Hnidets, V. P., Hryhorchuk, K. H., Kokhan, O. M., Rever, A. O., & Balandiuk, L. V. (2023). Litohenez maikopskykh vidkladiv Prychornomorskoho mehaprohynu. Lviv. http://iggcm.org.ua/wp-content/uploads/2023/12/ЛІТОГЕНЕЗ-МАЙКОПСЬКИХ-ВІДКЛАДІВ.pdf [in Ukrainian]

Hnidets, V. P., Hryhorchuk, K. H., Kurovets, I. M., Kurovets, S. S., & Prykhodko, O. A. (2013). Heolohiia verkhnoi kreidy Prychornomorsko-Krymskoi naftohazonosnoi oblasti Ukrainy (heolohichna paleookeanohrafiia, litohenez, porody-kolektory i rezervuary vuhlevodniv, perspektyvy naftohazonosnosti). Lviv. [in Ukrainian]

Hnidets, V. P., Hryhorchuk, K. H., Pavliuk, M. I., Koshil, L. B., & Yakovenko, M. B. (2021). Litohenetychni peredumovy formuvannia rezervuariv i porid-kolektoriv u serednodevonskykh vidkladakh Skhidnosaratskoho rodovyshcha (Pereddobrudzkyi prohyn). Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 3(80), 7–18. https://doi.org/10.31471/1993-9973-2021-3(80)-7-18 [in Ukrainian]

Leshchukh, R. Y., Permiakov, V. V., & Polukhtovych, B. M. (1999). Yurski vidklady pivdnia Ukrainy. Lviv: Yevrosvit. [in Ukrainian]

Lukin, O. Yu. (Vidp. vyk.). (2005). Naukove obgruntuvannia osvoiennia vuhlevodnevykh resursiv karbonatnykh formatsii Ukrainy: Vol. 2. Pivdennyi naftohazonosnyi rehion Ukrainy [Research report]. Chernihiv. [in Ukrainian]

Muromtcev, V. S. (1984). Elektrometricheskaia geologiia peschanykh tel litologicheskikh lovushek nefti i gaza. Leningrad: Nedra. [in Russian]

Naumenko, O. D., Korzhnev, P. M., Stryzhak, V. P., & Dezes, M. O. (2019). Prohnoz naftohazonosnosti seredno- ta verkhnoiurskykh karbonatnykh tovshch pivnichno-zakhidnoi chastyny Chornoho moria ta prylehloho sukhodolu za sedymentatsiino-paleoheomorfolohichnymy kryteriiamy. Heolohiia i korysni kopalyny Svitovoho okeanu, 15(2), 52–67. https://doi.org/10.15407/gpimo2019.02.052 [in Ukrainian]

Permiakov, V. V., Sapunov, I. G., Teslenko, Iu. V., & Chumachenko, P. V. (1986). Korreliatciia iurskikh otlozhenii chernomorskikh poberezhii Bolgarii i Ukrainy [Preprint]. Kiev: AN USSR, Institut geologicheskikh nauk. [in Russian]

Polukhtovich, B. M., Samarskaia, E. V., & Samarskii, A. D. (1985). Osobennosti stroeniia verkhneiurskikh rifov Iuga Ukrainy. In Geologiia rifov i ikh neftegazonosnost: tezisy dokladov Vsesoiuznogo soveshchaniia (g. Karshi, UzSSR, 16–18 aprelia 1985 g.) (pp. 134–136). Karshi. [in Russian]


Posted on

A NEW MODEL OF THE FORMATION OF THE FOUNDATION OF THE TRANSCARPATHIAN FOREDEEP (in the context of prospects for oil and gas presence)

Home > Archive > No. 3–4 (195–196) 2024 > 5–23


Geology & Geochemistry of Combustible Minerals No. 3–4 (195–196) 2024, 5–23

https://doi.org/10.15407/ggcm2024.195-196.005

Volodymyr SHLAPINSKYI1, Myroslav PAVLYUK2, Olesya SAVCHAK3, Myroslav TERNAVSKYI4

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1vlash.ukr@gmail.com; 2igggk@mail.lviv.ua; 3Savchakolesya@gmail.com; 4miroslavtmm@gmail.com

Abstract

In the Transcarpathian Foredeep, the foundation rocks are not exposed on the day surface. They are available for study only based on the results of drilling in the post-war period or geophysical research. Over the entire long period of time, two hundred and fifty wells were drilled in the Transcarpathian Foredeep on twenty-two structures, with a total area of more than two hundred thousand meters. The deep drilling of one hundred and seventy thousand meters (about seventy wells) was carried out on ten structures. Five gas fields have been discovered within the foredeep. Thanks to this, the existence of the Transcarpathian gas-bearing region was established, which entered the boundaries of the Carpathian oil and gas-bearing province. All gas fields known here are localized in the Neogene cover. Meanwhile, one should not ignore the prospects and the not yet sufficiently studied pre-Neogene foundation. Fissured and cavernous limestones and dolomites of the Triassic and Jurassic, as well as terrigenous sediments of the Cretaceous and Paleogene have satisfactory reservoir properties (open porosity 10 % and higher). Significant inflows of combustible gas were recorded in a number of wells. Unfortunately, due to the complexity of the structure of the foundation of the Transcarpathian Foredeep and due to insufficient coverage of it by drilling and geophysical research, ideas about its geological structure cannot be considered satisfactory, unlike the Neogene cover. Therefore, improving knowledge about the structure of the foundation is of great practical importance. Due to the fact that new drilling operations are not currently being conducted to open the foundation, we have tried to rethink the existing geological factual material available to us through its in-depth analysis. As a result, a fundamentally new scheme of tectonic zoning of the foundation of the Transcarpathian Foredeep was proposed. In its composition, we have identified cover units (covers, sub-covers and scales), which better reflects the real state of affairs than existing schemes and expands the possibilities of carrying out exploration work in order to discover industrial accumulations of combustible gas in it.

Keywords

Transcarpathian Foredeep, foundation, tectonics, faults, cover units

Referenses

Burov, V. S., & Glushko, V. V. (1976). Nekotorye voprosy stroeniia i razvitiia Karpatskoi sistemy. Geologicheskii zhurnal, 6, 32–39. [in Russian]

Burov, V. S., Vishniakov, I. B., Glushko, V. V., Dosin, G. D., Kruglov, S. S., Kuzovenko, V. V., Sviridenko, V. G., Smirnov, S. E., Sovchik, Ia. V., Utrobin, V. N., & Shakin, V. A. (1986). Tektonika Ukrainskikh Karpat: obiasnitelnaia zapiska k tektonicheskoi karte Ukrainskikh Karpat. Masshtab 1 : 200 000 (S. S. Kruglov, Ed.) (pp. 1–152). Kiev. [in Russian]

Ivanova, G. G., Kolchintceva, L. V., & Kuzovenko, V. V. (1977). K litologii i stratigrafii razreza severo-zapadnoi chasti Zakarpatskogo progiba (po materialam izucheniia parametricheskoi skvazhiny Nevitckoe. Geologiia i geokhimiia goriuchikh iskopaemykh, 49, 23–31. [in Russian]

Khomenko, V. I. (1971). Hlybynna budova Zakarpatskoho prohynu. Kyiv: Naukova dumka. [in Ukrainian]

Klitochenko, I. F., Antcupov, P. V., & Vul, M. A. (1964). O vremeni skladkoobrazovaniia vo Vnutrennei zone Predkarpatskogo progiba. In Neft. i gazov. geol. (pp. 8–70). Moskva: TcNIITENeftegaz. [in Russian]

Kruglov, S. S. (1989). Geodinamicheskoe razvitie v rannem melu Utesovykh zon Sovetskogo Zakarpatia. In XIV kongress KBGA: tezisy dokladov (pp. 385–388). Sofiia. [in Russian]

Kruglov, S. S., & Smirnov, S. S. (1965). Geologicheskoe stroenie oblasti Zakarpatskikh utesov i otcenka ee mineralno-syrevoi bazy. In Tezisy dokladov nauchnoi sessii UkrNIGRI (pp. 36–44). Lvov. [in Russian]

Kruglov, S. S., & Smirnov, S. S. (1967). Geologicheskaia istoriia oblasti rasprostraneniia Zakarpatskikh utesov v kontce mela – nachale paleogena (pp. 46–57). Lvov: Izdatelstvo Lvovskogo universiteta. [in Russian]

Kruhlov, S. S. (1998). Tektonika i heodynamika Ukrainskykh Karpat. Heodynamika, 1, 86–89. [in Ukrainian]

Kuzovenko, V. V., Glushko, V. V., Myshkin, L. P., & Shlapinskii, V. E. (1990). Izuchenie geologo-geofizicheskikh materialov po Skibovoi i Krosnenskoi zonam Skladchatykh Karpat, s tceliu vyiavleniia perspektivnykh na neft i gaz obektov za 1988–1990 gg. [Research report]. PGO “Zapadukrgeologiia”. Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]

Lazko, E. M., & Rezvoi, D. P. (1962). O tektonicheskoi prirode zony Karpatskikh utesov.Visnyk Lvivskoho universytetu. Seriia heolohichna, 1, 60–65. [in Russian]

Lozyniak, P., & Misiura, Ya. (2010). Osoblyvosti heolohichnoi budovy doneohenovoho fundamentu Zakarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(152–153), 73–77. [in Ukrainian]

Patrulius, D., Motash, I., & Bliakhu, M. (1960). Geologicheskoe stroenie Rumynskogo Maramuresha. In Materialy Karpato-Balkanskoi assotciatcii (№ 1). Kiev: Izdatelstvo AN USSR. [in Russian]

Pavliuk, M. I., & Medvediev, A. P. (2004). Pankardiia: problemy evoliutsii. Lviv: Liha-Pres. [in Ukrainian]

Pavliuk, M., Naumko, I., Lazaruk, Ya., Khokha, Yu., Krupskyi, Yu., Savchak, O., Rizun, B., Medvediev, A., Shlapinskyi, V., Kolodii, I., Liubchak, O., Yakovenko, M., Ternavskyi, M., Hryvniak, H., Triska, N., Seniv, O., & Huzarska, L. (2022). Rezerv naftohazovydobutku Zakhidnoho rehionu Ukrainy (Digital ed.). Lviv. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf [in Ukrainian]

Pavliuk, M., Shlapinskyi, V., Medvediev, A., Rizun, B., & Ternavskyi, M. (2019). Problemni aspekty formuvannia Ukrainskoho sehmentu Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 3(180), 5–24. https://doi.org/10.15407/ggcm2019.03.005 [in Ukrainian]

Petrashkevich, M. I. (1968). Geologicheskoe stroenie i neftegazonosnost Zakarpatskogo vnutrennego progiba. In Geologiia, geofizika i burenie skvazhin neftianykh i gazovykh mestorozhdenii Ukrainy: Trudy UkrNIGRI, 21, 94–119. [in Russian]

Petrashkevich, M. I., & Lozyniak, P. Iu. (1988). Strukturnoe raionirovanie osnovaniia Zakarpatskogo progiba. In Regionalnaia geologiia USSR i napravleniia poiskov nefti i gaza: sbornik nauchnykh trudov (pp. 72–79). Lvov: UkrNIGRI. [in Russian]

Prykhodko, M. H., & Ponomarova, L. D. (2018). Heolohichna budova Zakarpatskoho prohynu. Kyiv: UkrDHRI. [in Ukrainian]

Shcherba, V. M. (1976). Razlomnaia tektonika Zakarpatskogo progiba. In Razlomnaia tektonika Predkarpatskogo i Zakarpatskogo progibov i ee vliianie na raspredelenie zalezhei nefti i gaza (pp. 90–103). Kiev: Naukova dumka. [in Russian]

Shlapinskyi, V. (2012). Deiaki pytannia tektoniky Ukrainskykh Karpat. Pratsi Naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 30, 48–68. [in Ukrainian]

Shlapinskyi, V. Ye., Kuzovenko, V. V., & Machalskyi, D. V. (1998). Vyvchennia heoloho-heofizychnykh materialiv po pivdenno-skhidnii chastyni vnutrishnikh flishovykh pokroviv Ukrainskykh Karpat z metoiu vyiavlennia perspektyvnykh na naftu ta haz obiektiv (1995–1998 rr.) (Vol. 1) [Research report]. Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]

Shlapinskyi, V. Ye., Machalskyi, D. V., & Khomiak, L. M. (2013). Utochneni dani shchodo paleohenovykh vidkladiv Peninskoho pokryvu Ukrainskykh Karpat. Tektonika i stratyhrafiia, 40, 125–133. [in Ukrainian]

Shlapinskyi, V. Ye., Zhabina, N. M., Machalskyi, D. V., & Ternavskyi, M. M. (2017). Heolohichna budova Peninskoho pokryvu Ukrainskykh Karpat. Heodynamika, 1(22), 55–73. [in Ukrainian]

Subbotin, S. I. (1955). Glubinnoe stroenie Sovetskikh Karpat i prilegaiushchikh territorii po dannym geofizicheskikh issledovanii. Kiev: Izdatelstvo AN USSR. [in Russian]

Vasylenko, A. Yu. (2016). Neohenovyi mahmatyzm v systemi Zakarpatskoho hlybynnoho rozlomu [Extended abstract of Candidateʼs thesis, Kyivskyi natsionalnyi universytet imeni Tarasa Shevchenka]. Kyiv. [in Ukrainian]


Posted on

RESEARCH OF CHANGES IN THE QUALITY OF DRINKING WATER IN THE SOUTH-WESTERN PART OF BRYUKHOVYCHI (Lviv Region, Ukraine)

Home > Archive > No. 1–2 (193–194) 2024 > 141–153


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 141–153

https://doi.org/10.15407/ggcm2024.193-194.141

Solomiia KALMUK, Iryna SAKHNIUK, Oksana KOKHAN, Halyna ZANKOVYCH

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: solomiya.kalmuk@gmail.com

Abstract

The drinking water supply of Lviv Region requires special water treatment, a large part of which does not meet the standards due to increased mineralization, hardness and pollution by industrial and domestic effluents. A study of changes in the quality of drinking water from wells of private houses from two streets of the southwestern part of the village of Bryukhovychi was conducted. It was established that for the period 2011–2023 in most of the sampling points, the quality of water has significantly deteriorated, in some – the water composition has changed, many indicators of macro components have exceeded the maximum permissible concentration (MPC). According to the hydrogen indicator, the water from the studied wells is neutral and does not exceed the MPC. According to the degree of mineralization, the investigated water samples from wells of private residences belonged to fresh water, with the exception of the household on the street. Ozhinova, 2, where the water was weakly mineralized. Over the course of 12 years, the situation worsened significantly — in two more wells, the mineralization increased and exceeded the MPC, and fresh water became weakly mineralized. The best situation regarding the mineralization indicator is observed in the well of the household on the Lisna, 8a: the water is fresh, the growth of mineralization is insignificant and the MPC is not exceeded.

As for water hardness, in all studied samples the water became hard and exceeded the MPC in two wells. The content of macrocomponents, which exceeds or approaches the maximum permissible concentrations, has also changed. The chemical composition of the studied water samples also changed over the course of 12 years, mainly due to the increase in the content of sulfate, chloride, and sodium ions. That is, in all the selected samples there is a tendency to deterioration of the quality of drinking water. Only from the well on the street in Lisna 8a, the macrocomponent composition of the sample almost did not change, and the water quality of this household remained the best.

The content of ammonium, nitrates and nitrites in the studied water samples decreased or increased insignificantly, which indicates a slight anthropogenic influence. Proximity to the Soluky mineral water deposit can probably be a factor in the change in the quality of drinking water. Since the water of the Soluky deposit is sulfate-chloride calcium-sodium, and the water from the wells of the Ozhinova 2, 6, and 7 buildings has changed its chemical composition, being enriched with sulfate, chloride, and sodium ions, similar to the composition of the Soluky, it can be assumed that in the sediments of cracked marls of the Upper Cretaceous, groundwater flows occur.

Keywords

aquifer, hydrogen index, mineralisation, water hardness, drinking water, Bryukhovychi

Referenses

Andreichuk, Yu. M., Voloshyn, P. K., Savka, H. S., Shandra, Yu. Ya., & Shushniak, V. M. (2020). Nova spetsialna hidroheolohichna karta Lvova. In Resursy pryrodnykh vod Karpatskoho rehionu (Problemy okhorony ta ratsionalnoho vykorystannia): zbirnyk naukovykh statei XIX Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 8–9 zhovtnia 2020 r.) (pp. 6–9). Lviv. [in Ukrainian]

Didula, R. P., Kondratiuk, Ye. I., Blavatskyi, Yu. B., Usov, V. Yu., & Pylypovych, O. V. (2018). Otsinka sanitarno-khimichnykh pokaznykiv bezpechnosti ta yakosti vody populiarnykh dzherel riznykh heostrukturnykh zon Lvivshchyny. Hidrolohiia, hidrokhimiia i hidroekolohiia, 4, 87–101. http://nbuv.gov.ua/UJRN/glghge_2018_4_8 [in Ukrainian]

Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu (DSanPiN 2.2.4-171-10). (2010). Kyiv. [in Ukrainian]

Kalmuk, S. D., Sakhniuk, I. I., & Mandzia, O. B. (2013). Otsinka yakosti pytnoi vody u pivnichno-zakhidnii chastyni Briukhovych. In Resursy pryrodnykh vod Karpatskoho rehionu (Problemy okhorony ta ratsionalnoho vykorystannia): zbirnyk naukovykh statei XII Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 30–31 travnia 2013 r.) (pp. 122–124). Lviv. [in Ukrainian]

Kokhan, O., Zankovych, H., Kalmuk, S., Sakhniuk, I., & Herlovskyi, Yu. (2023). Monitorynh otsinky yakosti pytnoi vody u pivnichno-zakhidnii chastyni smt Briukhovychi (vul.Ozhynova). In Resursy pryrodnykh vod Karpatskoho rehionu (Problemy okhorony ta ratsionalnoho vykorystannia): zbirnyk naukovykh statei XXI Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 25–26 travnia 2012 r.) (pp. 31–33). Lviv. [in Ukrainian]

Kolodii, V. V., Kolodii, I. V., & Maievskyi, B. Y. (2009). Naftohazova hidroheolohiia. Ivano-Frankivsk: Fakel. [in Ukrainian]

Kolodii, V., Pankiv, R., & Maikut, O. (2007). Do hidroheolohii i hidroheokhemii Lvova y okolyts. Pratsi naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 19, 175–181. [in Ukrainian]

Kondratiuk, Ye., Didula, R., Blavatskyi, Yu., & Tryhuba, L. (2012). Vyvchennia yakosti hospodarsko-pytnykh vod mista Lvova. Sut ta aktualnist problemy. Medychna hidrolohiia ta reabilitatsiia, 10(4), 1–10. http://nbuv.gov.ua/UJRN/MedGid_2012_10_4_12 [in Ukrainian]

Matolych, B. M. (Red.). (2007). Ekolohichnyi atlas Lvivshchyny. Lviv. [in Ukrainian]

Medvid, H., Yanush, L., Solovey, T., Panov, D., & Harasymchuk, V. (2023). Assessment of groundwater vulnerability within the cross-border areas of Ukraine and Poland. Visnyk of V. N. Karazin Kharkiv National University. Series “Geology. Geography. Ecology”, 58, 73–84. https://doi.org/10.26565/2410-7360-2023-58-06

Ostroukh, O. A. (2014). Bahatorichni tendentsii zmin mineralizatsii gruntovykh pidzemnykh vod terytorii pivdenno-zakhidnoi chastyny Zakarpatskoi oblasti (na osnovi HIS). Visnyk Dnipropetrovskoho universytetu. Seriia “Heolohiia. Heohrafiia”, 15, 2–8. [in Ukrainian]

Shestopalov, V. M., Boguslavskiy, A. S., & Bublyas, V. N. (2007). Otsenka zashchishchennosti i uyazvimosti podzemnykh vod s uchetom zon bystroy migratsii. Kiev: Institut geologicheskikh nauk NAN Ukrainy. [in Russian]

Voloshyn, P. K. (2003). Monitorynhovi doslidzhennia pidzemnykh vod urbosystemy Lvova. Naukovi pratsi UkrNDHMI, 252, 80–96. [in Ukrainian]

Voloshyn, P. (2012). Otsinka pryrodnoi zakhyshchenosti ta urazlyvosti pidzemnykh vod terytorii Lvova vid antropohennoho zabrudnennia. Visnyk Lvivskoho universytetu. Seriia “Heohrafiia”, 40(1), 149–155. http://publications.lnu.edu.ua/bulletins/index.php/geography/article/view/2039 [in Ukrainian]

Voloshyn, P. K., Nakonechnyi, M. V., & Ilchenko, A. V. (2003). Ekolohichnyi stan vod pidzemnoi hidrosfery istorychnoi zabudovy Lvova. Heoinformatyka, 2, 93–98. [in Ukrainian]


Posted on

INNOVATIVE STUDY COMPLEX OF COMPLEXLY STRUCTURED HYDROCARBON RESERVOIR ROCKS, BASED ON PETROPHYSICAL AND GEOCHEMICAL PARAMETERS (on the example of the Boryslav-Pokuttia zone of the Pre-Carpathian depression)

Home > Archive > No. 1–2 (193–194) 2024 > 130–140


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 130–140

https://doi.org/10.15407/ggcm2024.193-194.130

Roman-Danyil KUCHER, Oksana SENIV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The article examines methods of studying the capacity-filtration properties of reservoir rocks of hydrocarbon deposits and transformation processes and the state of kerogen depletion within the Boryslav-Pokuttia zone of the Pre-Сarpathian depression.

The complex stressed state of rocks, which arises because of the action of geodynamic stresses, and the processes of catagenetic changes cause the development of secondary pore-crack and crack-cavernous reservoirs. Crack formation is caused by deformation and depends on the mechanical properties of rocks. The development of traps, pore-crack and crack-cavernous reservoirs is associated with rock loosening zones, which tend to tectonic disturbances and to places of intrusion of fluids from great depths into the sedimentary layer. At the same time, two multidirectional processes – thermal degradation and consolidation under the influence of pressure – cause changes that occur in the structure of kerogen during its evolution.

Based on the results of the analysis of the actual and theoretical material, the optimal methodical set of studies of the most important characteristics of the reservoirs and the processes of kerogen evolution for the considered zone is substantiated. An analysis of the geological and petrophysical characteristics of the Oligocene deposits of the Inner Zone of the Pre-Carpathian Trough was carried out and database were formed.

It has been established that pore-crack and crack reservoirs have a complex structure, and their distribution and capacity are controlled by two factors of different nature – lithological-facies and structural-deformation. It was found that thermodynamic modelling models – maximization of entropy and constants of independent chemical reactions – provide reliable results of the distribution of elements between the components of complex heterogeneous and homogeneous geochemical systems. It is shown that the chosen method of calculating the Gibbs energy of individual components of geochemical systems has sufficient accuracy for use in the above models.

Keywords

Boryslav-Pokuttia zone, complicated reservoir rocks, petrophysical and geochemical parameters

Referenses

Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498–2508. https://doi.org/10.1021/ie4033999

Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A code calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225(1). https://doi.org/10.3847/0067-0049/225/1/4

Chekalyuk, E. B. (1971). Termodinamicheskiye osnovy teorii mineralnogo proiskhozhdeniya nefti. Kiev: Naukova dumka. [in Russian]

Glushko, V. P. (1972). Termodinamicheskiye svoystva individualnykh veshchestv. Moskva: Nauka. [in Russian]

Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti. Kyiv: Naukova dumka. [in Ukrainian]

Khokha, Yu. V., Liubchak, O. V., & Yakovenko, M. B. (2019). Enerhiia Hibbsa utvorennia komponentiv pryrodnoho hazu v osadovykh tovshchakh. Heolohiia i heokhimiia horiuchykh kopalyn, 2(179), 37–46. https://doi.org/10.15407/ggcm2019.02.037 [in Ukrainian]

Koukkari, P. (2014). Introduction to constrained Gibbs energy methods in process and materials research. VTT Technical Research Centre of Finland. VTT Technology No. 160. https://publications.vtt.fi/pdf/technology/2014/T160.pdf

van Krevelen, D. W., & Chermin, H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1(2), 66–80. https://doi.org/10.1016/0009-2509(51)85002-4

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Chepil, P. M., Dryhant, D. M., Shlapinskyi, V. Ye., Koltun, Yu. V., Chepil, V. P., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kucher, R.-D. A., & Seniv, O. R. (2024). Obgruntuvannia optymalnoho metodychnoho kompleksu doslidzhen yemnisno-filtratsiinykh vlastyvostei kolektoriv ta protsesiv transformatsii kerohenu Boryslavsko-Pokutskoi zony Peredkarpatskoho prohynu. In Suchasni problemy nauk pro Zemliu: materialy XIII Vseukrainskoi konferentsii-shkoly (Kyiv, 10–12 kvitnia 2024 r.) (pp. 22–24). Kyiv. [in Ukrainian]

Kurovets, I., Hrytsyk, I., Prykhodko, O., Chepusenko, P., Kucher, Z., Mykhalchuk, S., Melnychuk, S., Lysak, Yu., & Petelko, L. (2021). Petrofizychni modeli vidkladiv menilitovoi svity olihotsenovoho flishu Karpat i Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 33–43. https://doi.org/10.15407/ggcm2021.03-04.033 [in Ukrainian]

Kurovets, I., Hrytsyk, I., Zubko, O., Prykhodko, O., & Kucher, R.-D. (2023). Aparaturno-metodychnyi kompleks doslidzhen petrofizychnykh vlastyvostei trishchynuvatykh porid-kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(191–192), 37−44. https://doi.org/10.15407/ggcm2023.191-192.037 [in Ukrainian]

Kurovets, I. M., Prytulka, H. Y., Sheremeta, O. V., Zubko, O. S., Osadchyi, V. H., Hrytsyk, I. I., Prykhodko, O. A., Kosianenko, H. P., Chepusenko, P. S., Shyra, A. I., Kucher, Z. I., & Oliinyk, K. A. (2006). Petrofizychni modeli skladnopobudovanykh kolektoriv vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 119–139. [in Ukrainian]

Kurovets, I., Zubko, O., Hrytsyk, I., Prykhodko, O., & Kucher, R.-D. (2023). Osoblyvosti formuvannia yemnisno-filtratsiinykh vlastyvostei porid-kolektoriv Vnutrishnoi zony Peredkarpatskoho prohynu. In Heofizyka i heodynamika: prohnozuvannia ta monitorynh heolohichnoho seredovyshcha: zbirnyk materialiv XI Mizhnarodnoi naukovoi konferentsii (Lviv, 10−12 zhovtnia 2023 r.) (pp. 109−112). Lviv. [in Ukrainian]

Pavliuk, M., Naumko, I., Lazaruk, Ya., Khokha, Yu., Krupskyi, Yu., Savchak, O., Rizun, B., Medvediev, A., Shlapinskyi, V., Kolodii, I., Liubchak, O., Yakovenko, M., Ternavskyi, M., Hryvniak, H., Triska, N., Seniv, O., & Huzarska, L. (2022). Rezerv naftohazovydobutku Zakhidnoho rehionu Ukrainy (Digital ed.). Lviv. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf [in Ukrainian]

Sanford, G., & McBride, B. J. (1994). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. NASA reference publication, 1311.

Stull, D. R., Westrum Jr., E. F., & Sinke, G. C. (1969). The Chemical Thermodynamics of Organic Compounds. NewYork: J. Wiley and Sons, Inc.

Tribus, M. (1961). Thermostatics and thermodynamics: an introduction to energy, information and states of matter, with engineering applications. Princeton: D. Van Nostrand Company Inc.


Posted on

USE OF INFRARED SPECTROSCOPY METHODS FOR RESEARCH OF PEAT (Honchary deposit, Lviv Region)

Home > Archive > No. 1–2 (193–194) 2024 > 113–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 113–129

https://doi.org/10.15407/ggcm2024.193-194.113

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1 myroslavakoshil@ukr.net; 2 khoha_yury@ukr.net

Abstract

The problems of peat analysis using near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods are considered.

Infrared spectroscopic researches of selected peat samples in a vertical section (depth 0–140 cm) from the Honchary deposit of the Lviv Region were carried out using instrumental analytical methods of infrared spectroscopy (near-infrared reflectance, NIR and mid-infrared reflectance, MIR) in order to determine the characteristics of the chemical group composition, mineral and organic components of peat to assess the quality of peat and its further exploitation in various industries.

As a result, the spectra of chemical compounds were identified, among which the largest number are: hydroxyl, methylene, methyl and aromatic groups.

Direct analysis of infrared spectrogram sections of the studied peat showed significantly greater informativeness of IR spectroscopy in the mid-infrared range (400–4000 cm−1) in contrast to the mid-infrared frequency range (from 3900 to 7400 cm−1).

The possibility and effectiveness of using near- and mid-infrared spectroscopy methods to analyze the chemical composition of peat and obtain information on the structure of organic matter at the level of functional groups has been assessed.

The advantage of this method in comparison with other instrumental research methods is also its speed and expressivity – the total time required for the preparation and analysis of peat samples was less than 5 minutes compared to 10–16 hours required for determining the content of moisture, proteins, lipids and ash by reference standard methods.

Near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods can be used and effectively applied in combination with other methods as an analytical tool for peat quality monitoring, simultaneous measurement of several quality parameters and its further use in various industries and development of environmentally friendly technologies.

Keywords

peat, mineral and organic composition, infrared spectroscopy, near-infrared spectroscopy, mid-infrared spectroscopy, functional groups, peat quality

Referenses

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. (2013). Herisau: Metrohm AG.

Bellamy, L. J. (2013). The infra-red spectra of complex molecules. Springer Science & Business Media.

Burns, D. A., & Ciurczak, E. W. (Eds.). (2008). Handbook of near-infrared analysis (3rd ed.). CRC Press. https://doi.org/10.1201/9781420007374

Cross, A. D. (1960). An introduction to practical infra-red spectroscopy. Butterworths Scientific Publications.

Instytut gruntoznavstva ta ahrokhimii imeni O. N. Sokolovskoho Ukrainskoi akademii ahrarnykh nauk. (2008). Melioranty gruntu ta seredovyshcha rostu. Hotuvannia prob do khimichnoho ta fizychnoho analizu, vyznachennia vmistu sukhoi rechovyny, vmistu volohy ta laboratorno ushchilnenoi nasypnoi shchilnosti (EN 13040:1999, IDT) (DSTU EN 13040:2005). [in Ukrainian]

Mistry, B. D. (2009). A handbook of spectroscopic data – chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy). Oxford Book Company.

Myroniuk, O. V. (Сompiler). (2017). Instrumentalni metody khimichnoho analizu. Kyiv: NTUU “KPI im. I. Sikorskoho”. [in Ukrainian]

Rice, J. A., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 17(5), 635–648. https://doi.org/10.1016/0146-6380(91)90006-6

Stark, E., Luchter, K., & Margoshes, M. (1986). Near-infrared analysis (NIRA): A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, 22(4), 335–399. https://doi.org/10.1080/05704928608060440

Szymanski, H. A., & Erickson, R. E. (1970). Infrared Band Handbook: Vol. 1. 4240–999 cm−1/Vol. 2. 999–29 cm−1 [Electronic resource]. Boston, MA: Springer US: Imprint: Springer. https://doi.org/10.1007/978-1-4684-6069-8

Tekhnichnyi komitet standartyzatsii “Gruntoznavstvo”. (2016). Yakist gruntu. Vyznachennia zolnosti torfu i torfovoho gruntu (DSTU 7942:2015). [in Ukrainian]

Tsutsuki, K., & Kuwatsuka, S. (1978). Chemical studies on soil humic acids: II. Composition of oxygen-containing functional groups of humic acids. Soil Science and Plant Nutrition, 24(4), 547–560. https://doi.org/10.1080/00380768.1978.10433134

Yonebayashi, K., & Hattori, T. (1988). Chemical and biological studies on environmental humic acids: I. Composition of elemental and functional groups of humic acids. Soil Science and Plant Nutrition, 34(4), 571–584. https://doi.org/10.1080/00380768.1988.10416472

Yurchenko, O. M., Kormosh, Zh. O., Savchuk, T. I., & Korolchuk, S. I. (2021). Metodychni rekomendatsii do vyvchennia temy “Infrachervona spektroskopiia” z dystsypliny “Fizychni metody doslidzhennia rechovyny”. Lutsk. [in Ukrainian]


Posted on

CORRELATION OF THE EASTERN SEGMENT OF TETHYAN UPPER JYRASSIC REEF BARRIER AND ADJACENT FACIES (Carpathian-Crimean-Caucasian area)

Home > Archive > No. 1–2 (193–194) 2024 > 95–112


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 95–112

https://doi.org/10.15407/ggcm2024.193-194.095

Natalia ZHABINA

Institute of Geological Sciences of National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: zhabinanatalia@gmail.com

Abstract

The spread of the Oxfordian-Valanginian facial belts of the carbonate shelf is traced on the territory of the eastern segment of Tethyan Upper Jurassic reef barrier by the results of own research and analysis of the published data. It is based on the scheme of distribution of the standard facial belts (D. Wilson, 1980). Complex correlation of the reefogenic and related deposits is done on the basis of comparison of the litofacial and micropaleontological composition. Standard biozonal scheme by Tintinnida and correlative associations of the Foraminifera are used.

Most complete reefogenic deposits are presented in the West Ukrainian (Stryi Jurassic deep), where reefal, reef-front and back-reef facies are distributed. They are overlap by the deposits of the open shelf. This carbonate complex is significantly eroded to the East and represented only by Oxfordian back-reef facies on the Kovel ledge and by biohermic belt in the Belarus Brest cavity. In the Pieniny Klippen Belt in the Ukrainian Carpathians, the fragments of the Oxfordian-Valanginian pelagic facies of carbonate shelf are distributed. In the deep basement of the Ukrainian Transcarpathians, the Upper Tithonian, Berriassian and Valanginian deposits of open shelf are presented.

To the West, the similar Oxfordian-Valanginian facies of the carbonate shelf are spread out on the adjacent territory of Poland, but they are mostly eroded. Reef belt is represented only by Oxfordian bioherms on the Polish Lowland. Oxfordian and Kimmeridgian back-reef facies and Tithonian-Berriassian deposits are more widespread. Reef-front facies are represented only by the Oxfordian. These deposits are overlaped by the Berriassian–Valanginian open shelf sedimens. In the Polish Carpathian Pieniny Klippen Belt and Tatra Mts, the fragments of the Oxfordian–Valanginian pelagic deposits of carbonate shelf are presented. In the Flysch Carpathians, Tithonian-Berriassian reefal limestone and Oxfordian and Tithonian reef-front facies also are presented.

Upper Jurassic reefogenic belt spread on the south-east in Predobrogian deep, where it is very eroded and overlaped by Lower Cretaceous rocks. Reefal facies is represented only by Middle Oxfordian – Lower Kimmeridgian biohermes. Back-reef facies of the Middle Oxfordian – Lower Kimmeridgian and Upper Tithonian – Lower Berriassian are present. Kimmeridgian and Tithonian lagoone-evaporite facies are the most spread. Reef-front facies are represented by the Oxfordian – Lower Kimmeridgian and Upper Tithonian.

In the Crimean Orogen, Upper Jurassic reef barrier is represented by destroyed and insufficiently studied sections, because of that the complete regularity of facial directions is not found. Oxfordian – Lower Kimmeridgian and Upper Tithonian – Lower Berriassian reefal facies, as well as Lower Oxfordian, Upper Kimmeridgian – Lower Berriassian facies are presented.

In Greater Caucasus, the Upper Jurassic – Lower Cretaceous carbonate complex is completed with the Oxfordian and Tithonian reefal facies and Oxfordian-Tithonian back-reef facies and evaporates, as well as by the Oxfordian-Valanginian pelagic deposits. These sections are fragmental, and the complete regularity of facial directions is not found.

So, the eastern segment of Tethyan Upper Jurassic reefogenic complex is spread trough the regions of Carpathian Foredeep, Predobrogean deep, orogens of Carpathians, Crimea and Greater Caucasus. In the orogene structures, this complex is presented fragmentarily, and in the Polish Lowland and Predobrugean deep, it is very eroded. In the Stryi Jurassic deep, the complete complex of reef barrier is presented, and regularity of facial directions are determined. All specified facial belts in these regions are characterized by the similar lithologic composition, as well as by the same associations of Foraminifera and Tintinnida. This made it possible to implement the stratigraphic correlation of the lithofacies formations of the carbonate complex.

Keywords

Upper Jurassic, Lower Cretaceous, reef barrier, Carpathians and Precarpathians, Predobrogean deep, Mountainous Crimea, Greater Caucasus, facial belt, Foraminifera, Tintinnida, stratigraphic correlation

Referenses

Akimets, V. S., & Karimova, A. A. (2005). Stratigraficheskaya skhema yurskikh otlozheniy Belarusi. Litosfera, 1(22), 114–123. [in Russian]

Anikeieva, O. V., & Zhabina, N. M. (2009). Umovy sedymentatsii verkhnoiurskykh vidkladiv Hirskoho Krymu (Ialtynskyi amfiteatr). In P. F. Hozhyk (Ed.), Vykopna fauna i flora Ukrainy: paleoekolohichnyi ta stratyhrafichnyi aspekty: zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy (Vol. 2, pp. 99–103). Kyiv. https://doi.org/10.30836/igs.2522-9753.2009.147929 [in Ukrainian]

Arkadyev, V. V., & Rogov, M. A. (2006). Novyye dannyye po biostratigrafii i ammonitam verkhnego kimeridzha i titona vostochnogo Kryma. Stratigrafiya i geologicheskaya korrelyatsiya, 14(2), 90–104. [in Russian]

Borisenko, L. S., Kropacheva, S. K., Pivovarov, S. V., & Vasilevskaya, A. E. (1974). Pervaya nakhodka verkhneyurskikh galogennykh otlozheniy v Gornom Krymu. Doklady AN SSSR, 219(4), 933–935. [in Russian]

Dulub, V. G., Burova, M. I., Burov, V. S., & Vishnyakov, I. B. (1986). Obyasnitelnaya zapiska k regionalnoy stratigraficheskoy skheme yurskikh otlozheniy Predkarpatskogo progiba i Volyno-Podolskoy okrainy Vostochno-Evropeyskoy platformy. Leningrad: VSEGEI. [in Russian]

Dulub, V. H., Zhabina, N. M., Ohorodnik, M. Ye., & Smirnov, S. Ye. (2003). Poiasniuvalna zapyska do stratyhrafichnoi skhemy yurskykh vidkladiv Peredkarpattia (Stryiskyi yurskyi basein). Lviv: LV UkrDHRI. [in Ukrainian]

Gavrilishin, V. I., Leshchukh, R. I., & Polukhtovich, B. M. (1985). Makrofauna i stratigrafiya yury i mela vostochnoy chasti Preddobrudzhskogo progiba. In Iskopayemyye organizmy i stratigrafiya osadochnogo chekhla Ukrainy (pp. 96–100). Kiev: Naukova dumka. [in Russian]

Grabowski, J., & Pszchółkowski, A. (2006). Magneto- and biostratigraphy of the Tithonian–Berriasian pelagic sedi-ments in the Tatra Mountains (central Western Carpathians, Poland): sedimentary and rock magnetic changes at the Jurassic/Cretaceous boundary. Cretaceous Research, 27(3), 398–417. https://doi.org/10.1016/j.cretres.2005.07.007

Gutowski, J. (1998). Oxfordian and Kimmeridgian of the norteastern margin of the Holy Cross Mountains, Central Poland. Geological Quarterly, 42(1), 59–72.

Havrylyshyn, V. I. (1993). Stratyhrafiia yurskykh vidkladiv Volyni. Heolohiia i heokhimiia horiuchykh kopalyn, 1(82), 8–12. [in Ukrainian]

Hozhyk, P. F. (Ed.). (2013). Stratyhrafiia verkhnoho proterozoiu ta fanerozoiu Ukrainy: Vol. 1. Stratyhrafiia verkhnoho proterozoiu, paleozoiu ta mezozoiu Ukrainy. Kyiv: Lohos. [in Ukrainian]

Ivanik, M. M., Zhabina, N. M., & Anikeieva, O. V. (2013). Osoblyvosti budovy tyton-beriaskykh vidkladiv Pivdenno-skhidnoho Krymu (raion m. sv. Illi). Heolohichnyi zhurnal, 4, 33–45. https://doi.org/10.30836/igs.1025-6814.2013.4.139091 [in Ukrainian]

Klimenko, Z. M., Karimova, A. A., & Yakovleva, A. S. (2005). Stratigraficheskaya skhema melovykh otlozheniy Belarusi. Litosfera, 1(22), 108–113. [in Russian]

Krajewsky, M., & Olszewska, B. (2006). New data about microfacies and stratigraphy of the Late Jurassic Aj-Petri carbonate buildup (SW Crimea Mountains, S Ukraine). N. Jb. Geol. Paläont. Mh., 5, 298–312. https://doi.org/10.1127/njgpm/2006/2006/298

Makaryeva, S. F. (1979). Drobnaya stratigraficheskaya skhema verkhnego oksforda–valanzhina Severnogo Kavkaza po tintinnidam. Voprosy mikropaleontologii, 22, 50–63. [in Russian]

Makaryeva, S. F., & Matsiyeva, T. V. (1985). Stratigrafiya verkhneyurskikh otlozheniy Severnogo Kavkaza po foraminiferam. In Stratigrafiya i korrelyatsiya verkhney yury SSSR po foraminiferam (pp. 32–42). Moskva: Geologicheskiy institut AN SSSR. [in Russian]

Mekhtiyeva, Z. N. (2022). Fatsialnyy analiz i paleogeograficheskaya skhema yugo-vostochnogo Kavkaza v verkhneyurskuyu epokhu (Azerbaydzhan). Endless Light in Science. Nauka o Zemle, 288–295. [in Russian]

Mityanina, I. V. (1957). O foraminiferakh yurskikh otlozheniy yugo-zapada Belorussii. Paleontologiya i stratigrafiya BSSR, 2, 210–247. [in Russian]

Niemczycka, T., Brochwicz-Lewinski, W., & Moryc, W. (1997). Formacje skalne, ih stratygrafia i paleogeografia. Jura Gorna. In Epikontynentalny perm i mezozoik w Polsce (S. Marek & M. Pajchlowa, Red.): Prace Panstwowego Instytutu Geologicznego, 153, 300–335.

Olszewska, B. (2005). Microfossils of the Cieszyn Beds (Silesian Unit, Polish Outer Carpathians) – a thin sections study. Polish Geological Institute special papers, 19.

Olszewska, B., Matyszkiewicz, J., Krol, K., & Krajewski, M. (2012). Correlation of the Upper Jurassic–Cretaceous epicontinental sediments in Southern Poland and Southwestern Ukraine based on thin sections. Biuletyn Panstwowego Instytutu Geologicznego, 453, 29–80.

Olszewska, B., & Wieczorek, J. (2000). The Jurassic of the Andrychow Klippes (Western Outher Carpathians) – new paleontological studies and palaeogeographical remarks. Slowak Geol. Mag., 6, 2–3.

Prykhodko, M. H., Andreieva-Hryhorovych, A. S., Zhabina, N. M., & Anikeieva, O. V. (2019). Rehionalna stratyhrafichna skhema mezokainozoiskykh vidkladiv fundamentu Zakarpatskoho prohynu. Heolohichnyi zhurnal, 1(366), 88–108. https://doi.org/10.30836/igs.1025-6814.2019.1.159243 [in Ukrainian]

Sakharov, A. S. (1984). Pogranichnyye otlozheniya yury i mela severo-vostochnogo Kavkaza. In Pogranichnyye yarusy yurskoy i melovoy sistem (pp. 36–42). Moskva: Nauka. [in Russian]

Slyusar, B. S. (1971). Yurskiye otlozheniya severo-zapadnogo Prichernomoria. Kishinev: Shtiintsa. [in Russian]

Todria, V. A. (1977). Pozdneyurskiye foraminifery Rachi i Yugo-Osetii. Trudy GIN AN GSSR, 58. [in Russian]

Todria, V. A. (1985). Mikrobiostratigrafiya verkhney yury Gruzii i korrelyatsiya s odnovozrastnymi obrazovaniyami borealnykh rayonov SSSR. In Stratigrafiya i korrelyatsiya verkhney yury SSSR po foraminiferam (pp. 43–50). Moskva: Geologicheskiy institut AN SSSR. [in Russian]

Todria, V. A. (1999). Pozdneyursko-rannemelovyye Tintinnida i ikh rasprostraneniye v Gruzii. In Problemy paleobiologii (Vol. 1. pp. 88–108). Tbilisi: METSNIYEREBA. [in Russian]

Todria, V. A. (2008). Stratigrafiya verkhnebayossko-nizhnegoterivskikh flishoidnykh otlozheniy Severo-Zapadnoy Abkhazii po mikrofaune. Novosti paleontologii i stratigrafii. Prilozheniye k zhurnalu “Geologiya i geofizika” (Vol. 49), 10–11, 292–294. [in Russian]

Tsirekidze, L. R. (1999). Biostratigrafiya nizhnemelovykh otlozheniy Gruzii po mikrofaune. Trudy AN Gruzii, Geologicheskiy institut, novaya seriya, 109. [in Russian]

Uilson, Dzh. L. (1980). Karbonatnyye fatsii v geologicheskoy istorii. Moskva: Nedra. [in Russian]

Zesashvili, V. I., Paychadze, T. A., Todria, V. A., Topchishvili, M. V., & Rakus, M. (1978). Stratigrafiya i fatsii yury Kavkaza i Zapadnykh Karpat. Geologické Práce, Správy 69, 81–140. [in Russian]

Zhabina, N. M. (1996). Foraminifery ryfohennykh utvoren tytonu-beriasu pivdenno-skhidnoho Krymu [Candidateʼs thesis]. Institute of Geological Sciences of NAS of Ukraine. Kyiv. [in Ukrainian]

Zhabina, N. M. (1998). Do koreliatsii verkhnoiurskykh vidkladiv zakhidnoho i pivdennoho rehioniv Ukrainy. Paleontolohichnyi zbirnyk, 32, 77–83. [in Ukrainian]

Zhabina, N. M. (2008). Biostratyhrafiia ta koreliatsiia vidkladiv verkhnoi yury–nyzhnoi kreidy Tetychnoi paleoprovintsii za tyntynidamy. Heolohichnyi zhurnal, 1, 54–62. [in Ukrainian]

Zhabina, N. M. (2011). Biostratyhrafiia vidkladiv verkhnoi yury-nyzhnoi kreidy (oksford-valanzhyn) Ukrainskoho Peredkarpattia za foraminiferamy i tyntynidamy [Doctorʼs thesis]. Institute of Geological Sciences of NAS of Ukraine. Kyiv. [in Ukrainian]

Zhabina, N. M. (2021). Kompleksna skhema biostratyhrafii yurskykh vidkladiv Peninskoi zony Ukrainskykh Karpat. Heolohichnyi zhurnal, 3(376), 48–73. https://doi.org/10.30836/igs.1025-6814.2021.3.228194 [in Ukrainian]

Zhabina, N. M., & Anikeieva, O. V. (2007). Onovlena stratyhrafichna skhema verkhnoi yury–neokomu Ukrainskoho Peredkarpattia. Zbirnyk naukovykh prats UkrDHRI, 3, 46–56. [in Ukrainian]

Zhabina, N., Anikeieva, O., & Samarska, O. (2015). Novi dani pro umovy sedymentatsii karbonatnoho kompleksu verkhnoi yury na terytorii Pereddobrudzkoho prohynu. Visnyk KNU. Heolohiia, 4(71), 11–17. https://doi.org/10.17721/1728-2713.71.02 [in Ukrainian]

Zhabina, N. M., & Mintuzova, L. H. (2000). Model heolohichnoi budovy pivdenno-skhidnoho Krymu. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 25–35. [in Ukrainian]


Posted on

THE LATE CRETACEOUS OF THE PIENINY KLIPPEN BELT AND MARMAROSH KLIPPEN ZONE OF THE UKRAINIAN CARPATHIANS: PALEOCEANOGRAPHY BY FORAMINIFERA

Home > Archive > No. 1–2 (193–194) 2024 > 81–94


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 81–94

https://doi.org/10.15407/ggcm2024.193-194.081

Ksenia NAVARIVSKA1, 2, Oleh HNYLKO1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: ohnilko@yahoo.com
2 Lviv National Ivan Franko University, Lviv, Ukraine, e-mail: navarivska@gmail.com

Abstract

In presented article, on the basis of foraminiferal analysis and using the sedimentological data, the stratigraphy of the Upper Cretaceous deposits of the Pieniny Klippen Belt and the Marmarosh Klippen Zone is summarized and clarified, and the features of paleoceanography, in particular the paleobathymetry of sedimentatary basins, were reconstructed. An analysis of the taxonomic composition and morphological features of foraminifera were carried out, as well as of the planktonic/benthic ratio was calculated, on the basis of which the paleoenvironment for foraminifera were reconstructed.

Three types of deep-sea foraminiferal assemblages were identified in the studied sediments based on a comparison of the foraminiferal assemblages with the Upper Cretaceous biofacies of the Western Mediterranian and adjacent areas. The assemblages (1) of agglutinated foraminifera belonging to the deep-water agglutinated foraminifera (DWAF) are indicating a bathyal–abyssal below the calcite compensation depth (CCD). These assemblages were found only in the Marmarosh Klippen Zone in low-thickness (25 m) Turonian–Santonian red argillites in the lower part of the Puchov Formation, as well as in the flysch deposits of the Jarmuta Formation. Small-sized foraminifera with a fine-grained wall texture, which belong to the genera Ammodiscus, Haplophragmoides, Labrospira, Pseudobolivina, Plectorecurvoides, Praecystammina, Uvigerinammina, Gerochammina suggesting pelagic sedimentation below CCD are common in the lower part of the Puchov Formation in the Marmarosh Klippen Zone. The assemblages (2) are characteristic for the basin slope with depths above the CCD, and represented by mixed agglutinated, calcareous benthic and planktonic foraminifera. They are characterized by the predominance of the benthic specimens, which make up 70-80% of foraminiferal remains. Assemblages (2) were also found in sediments of the Marmarosh Klippen Zone, such as the upper part of the Santonian and Campanian sediments of the Puchov Formation. They contain siliceous or calcareous-siliceous DWAF (mainly genera Kalamopsis, Caudammina, Karrerulina, Spiroplectammina, Tritaxia, Dorothia, Marssonella), calcareous benthic foraminifera (mainly genera Pleurostomella, Eponides, Globorotalites, Anomalina, Reussella). Planktonic foraminifera have mainly large keeled shells typical for deep sea areas and belong to the genera Globotruncana, Globotruncanita, and Abathomphalus. The assemblages (3) are plankton-dominated with admixture of the DWAF and calcareous benthic foraminifera. The assemblages are characteristic of marls accumulated at depths above the CCD on continental slopes in the bathyal conditions of the open ocean. They are common in the Upper Cretaceous of the Pieniny Klippen Belt, where were found in the tops of the Tyssalo Formation (Cenomanian), Puchov Formation (Turonian–Maastrichtian), and Jarmuta Formation (Maastrichtian). Planktonic foraminifera have mainly large keeled shells, high species and genera diversity and belong to the family Rotaliporidae (Cenomanian), families Globotruncanidae, Globotruncanellidae (Turonian–Maastrichtian). Benthic foraminifera belong mainly to genera Caudammina, Tritaxia, Dorothia, Marssonella Eponides, Reussella.

The Upper Cretaceous deposits of the Ukrainian segment of the Pieniny Klippen Belt correspond to the sediments of the Czorsztyn sequence of its Polish segment, and were accumulated in the Czorsztyn submerged ridge (probably on its slope) located in the Alpine Tethys Ocean. The Upper Cretaceous deposits of the Marmarosh Klippen Zone were accumulated on the foot (Turonian – Santonian) and slope (uppermost Santonian – Campanian) of the another uplift such as the edge of the ancient Tisza-Dacia microcontinent, of which the Marmarosh Crystalline Massif is a part. Maastrichnian clastic sediments of the Jarmuta Formation were formed in the orogenic environments.

Keywords

Ukrainian Carpathians, Pieniny Klippen Belt, Marmarosh Klippen Zone, Late Cretaceous, foraminifera, paleoceanography

Referenses

Birkenmajer, K. (1977). Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 45(1), 1–158.

Bohdanova, M. I., & Hnylko, O. M. (2022). Ofiolitoklastovi brekchii v rozrizi soimulskoi olistostromovoi tovshchi. Naukovi pratsi DonNTU. Seriia hirnycho-heolohichna, 1(27), 116–121. https://doi.org/10.31474/2073-9575-2022-1(27)-2(28)-116-121 [in Ukrainian]

BouDagher-Fadel, M. K. (2015). Biostratigraphic and geological significance of planktonic foraminifera. London: UCL Press. https://doi.org/10.14324/111.9781910634257

Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56. https://doi.org/10.1016/j.palaeo.2004.02.033

Dabagian, N. V. (1969). Foraminifera from the transition beds between Lower and Upper Cretaceous in the Ukrainian Carpathians. Rocznik Polskiego Towarzystwa Geologicznego, 39(Zeszyt 1‒3), 213‒223.

Golonka, J., & Krobicki, M. (2023). Field trip – Outer Flysch Carpathians and Pieniny Klippen Belt (PKB). Geotourism, 20(3‒4(74‒75), 5–17.

Golonka, J., Krobicki, M., & Waśkowska, A. (2018). The Pieniny Klippen Belt in Poland. Geology, Geophysics and Environment, 44(1), 111–125. https://doi.org/10.7494/geol.2018.44.1.111

Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.). (2020). Geologic Time Scale. Elsevier.

Hnylko, O. M. (2012). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Stattia 2. Flishovi Karpaty – davnia akretsiina pryzma. Heodynamika, 1(12), 67–78. https://doi.org/10.23939/jgd2012.01.067 [in Ukrainian]

Hnylko, O. (2022). Heolohiia Subsilezkoho pokryvu v baseini r. Rika (Ukrainski Zovnishni Karpaty, Holiatynska struktura). Visnyk Lvivskoho universytetu. Seriia heolohichna, 36, 25–43. https://doi.org/10.30970/vgl.36.03 [in Ukrainian]

Hnylko, S., & Hnylko, O. (2016). Foraminiferal stratigraphy and palaeobathymetry of Paleocene-lowermost Oligocene deposits (Vezhany and Monastyrets nappes, Ukrainian Carpathians). Geological Quarterly, 60(1), 77–105. https://doi.org/10.7306/gq.1247

Hnylko, S. R., Hnylko, O. M., Suprun, I. S., Navarivska, K. O., & Heneralova, L. V. (2023). Stratyhrafiia verkhnokreidovykh vidkladiv z okeanichnymy chervonokolirnymy verstvamy (CORBs), Ukrainski Karpaty. Heolohichnyi zhurnal, 3(384), 79–107. https://doi.org/10.30836/igs.1025-6814.2023.3.281067 [in Ukrainian]

Hozhyk, P. F. (Ed.). (2013). Stratyhrafiia verkhnoho proterozoiu ta fanerozoiu Ukrainy: Vol. 1. Stratyhrafiia verkhnoho proterozoiu, paleozoiu ta mezozoiu Ukrainy. Kyiv: IHN NAN Ukrainy; Lohos. [in Ukrainian]

Hu, X. M., Wang, C. S., Scott, R. W., Wagreich, M., & Jansa, L. (Eds.). (2009). Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance. SEPM, Special Publication, 91. https://doi.org/10.2110/sepmsp.091

Hurskyi, D. S., & Kruhlov, S. S. (Eds.). (2007). Tektonichna karta Ukrainy. Masshtab 1 :1 000 000. Poiasniuvalna zapyska. Kyiv: UkrDHRI. [in Ukrainian]

Krasheninnikov, V. A. (1974). Upper Cretaceous benthonic agglutinated foraminifera, Leg 27 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, 27, 631–661. https://doi.org/10.2973/dsdp.proc.27.132.1974

Krobicki, M., Kruglov, S. S., Matyja, B. A., Wierzbowski, A., Albrecht, R., Bubniak, A., & Bubniak, I. (2003). Relation between Jurassic klippen successions in the Polish and Ukrainian parts of the Pieniny Klippen Belt. Mineralia Slovaca, 35, 56–58.

Kuhnt, W., & Kaminski, M. (1989). Upper Cretaceous deep-water agglutinated benthic foraminiferal assemblages from the western Mediterranean and adjacent areas. Cretaceous of the western Tethys. In J. Wiedmann (Ed.), Proceedings 3rd International Cretaceous Symposium, Tubingen 1987 (pp. 91–120). Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

Matskiv, B. V., Kovalov, Yu. V., & Pukach, B. D. (2003). Derzhavna heolohichna karta Ukrainy masshtabu 1 : 200 000. Karpatska seriia. Uzhhorodska hrupa arkushiv: M-34-XXIX (Snina); M-34-XXV (Uzhhorod), L-34-V (Satu-Mare). Poiasniuvalna zapyska. Kyiv: Ministerstvo ekolohii i pryrodnykh resursiv Ukrainy; Derzhavne pidpryiemstvo “Zakhidukrheolohiia”. [in Ukrainian]

Matskiv, B. V., Pukach, B. D., Vorobkanych, V. M., Pastukhanova, S. V., & Hnylko, O. M. (2009). Derzhavna heolohichna karta Ukrainy masshtabu 1 : 200 000, arkushi M-34-XXXVI (Khust), L-34-VI (Baia-Mare), M-35-XXXI (Nadvirna), L-35-I (Visheu-De-Sus). Karpatska seriia. Poiasniuvalna zapyska. Kyiv: UkrDHRI. [in Ukrainian]

Murray, J. W. (1976). A method of determining proximity of marginal seas to an ocean. Marine Geology, 22(2), 103–119. https://doi.org/10.1016/0025-3227(76)90033-5

Navarivska, K. O. (2022). Biostratyhrafiia ta umovy nakopychennia pohranychnykh vidkladiv nyzhnoi i verkhnoi kreidy za dribnymy foraminiferamy (Peninska zona, Ukrainski Karpaty). Heolohichnyi zhurnal, 2(379), 86–99. https://doi.org/10.30836/igs.1025-6814.2022.2.253854 [in Ukrainian]

Navarivska, K. O. (2023). Kharakterystyka vidslonenykh rozriziv turonu–maastrykhtu Peninskoi zony Ukrainskykh Karpat za dribnymy foraminiferamy. Naukovi pratsi DonNTU. Seriia hirnycho-heolohichna, 2(30), 80–89. https://doi.org/10.31474/2073-9575-2023-2-30-80-89 [in Ukrainian]

Navarivska, K., Hnylko, S., & Heneralova, L. (2023). Turonian to Santonian Foraminiferal Biostratigraphy and Paleobathymetry of Non-calcareous Red Beds of the Vezhany Nappe (Ukrainian Inner Carpathians). In S. Bębenek, A. Waśkowska & M. A. Kaminski (Eds.), Eleventh International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 26, 61–62.

Olszewska, B. (1997). Foraminiferal biostratigraphy of the Polish Outher Carpathians: a record of basin geohistory. Annales Societatis Geologorum Poloniae, 67, 325–337.

Oszczypko, N., Oszczypko-Cloves, M., Golonka, J., & Krobicki, M. (2005). Position of the Marmarosh Flysch (Eastern Carpathians) and its relation to the Magura Nappe (Western Carpathians). Acta Geologica Hungarica, 48(3), 259–282. https://doi.org/10.1556/ageol.48.2005.3.2

Plašienka, D., & Soták, J. (2015). Evolution of Late Cretaceous-Palaeogene synorogenic basins in the Pieniny Klippen Belt and adjacent zones (Western Carpathians, Slovakia): Tectonic controls over a growing orogenic wedge. Annales Societatis Geologorum Poloniae, 85(1), 43–76. https://doi.org/10.14241/asgp.2015.005

Ponomarova, L. D. (2007). Foraminifery kreidovykh vidkladiv Holiatynskoi struktury. In Paleontolohichni doslidzhennia v Ukraini: istoriia, suchasnyi stan ta perspektyvy: zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy (pp. 192–194). Kyiv. [in Ukrainian]

Schmid, S., Bernoull, D., Fugenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaric orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183. https://doi.org/10.1007/s00015-008-1247-3