Posted on

ASSESSMENT OF THE INFLUENCE OF THE BUILDING OF THE WIND-POWER INSTALLATIONS UPON HYDROGEOLOGICAL AND GEOECOLOGIC CONDITIONS OF THE BORZHAVA VALLEY (TRANSCARPATHIA)

Home > Archive > No. 3-4 (176-177) 2018 > 110-125


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 110-125.

Vasyl DYAKIV

Ivan Franko National University of Lviv

Mykhailo YAREMOVYCH

Heol-Tekh LLC, Lviv

Andriy KOVALCHUK

Individual Entrepreneur

Marianna IVANSKA

Heol-Tekh LLC, Lviv

Abstract

In the press, Internet space and other mass media of the Transcarpathian region, the question of the expediency or the inexpediency of the harmful environmental impact on the construction of wind power plants in the Borzhava Valley has been widely debated recently. First of all, it should be noted that the intention of constructing such objects follows from the highest wind power potential of the Carpathian mountain regions in Ukraine, the high specific power of wind energy at a particular time and its total amount at different times (month, season, year), in particular average speed wind and boundary characteristics of wind power plants (the minimum and maximum speed at which the generator of wind turbines can work). This is that which determines the choice of investors for the construction of wind power plants in the Borzhava Valley.

Of course, the construction of any objects leads to one or another impact on the environment in general, and on hydrogeological and geoecological conditions in particular. However, how high is this influence, or does it lead to risks of violations of groundwater formation conditions and the negative changes in the chemical composition of underground and surface waters, is the purpose of this article.

Keywords

Borzhava Valley, wind power plants, hydrogeological and geoecological conditions, environment.

Referenses

Derevska, K. I., & Burlachenko, Yu. V. (2018). Problema budivnytstva vitroelektrostantsii na Polonyni Borzhava: vplyv na vodni resursy. https://www.facebook.com/notes/врятуй-боржаву/проблема-будівництва-вітроелектростанції-на-полонині-боржава-вплив-на-водні-ресу/211691606078846/ [in Ukrainian]

Dmytrenko, L. V., & Barandich, S. L. (2007). Vitroenerhetychni resursy v Ukraini. Naukovi pratsi UkrNDHMI, 256, 166–173. [in Ukrainian]

Vodna ramkova dyrektyva YeS 2000/60/ES. Osnovni terminy ta yikh vyznachennia. (2006). Kyiv. [in Ukrainian]


Posted on

ABILITY OF DEEP-SEATED ABIOGENIC METHANE-RICH HIGH-THERMOBARIC FLUID TO FORM COAL DEPOSITS

Home > Archive > No. 3-4 (176-177) 2018 > 105-109


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 105-109.

Yosyp SVOREN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The ability of deep-seated abiogenic high-thermobaric fluid to form coal deposits is determined.

Keywords

abiogenic methane-rich high-thermobaric fluid, coal deposits, organic remains, mass spectrometric method of research.

Referenses

Svoren’, I. M. (1975). Istochniki uglerodsoderzhashchikh gazov vklyuchenii. In Uglerod i ego soedineniya v endogennykh protsessakh mineraloobrazovaniya (po dannym izucheniya flyuidnykh vklyuchenii v mineralakh): tezisy dokladov respublikanskogo soveshchaniya (L’vov, sentyabr’ 1975 g.) (s. 104–106). L’vov. [in Russian]

Svoren’, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh (ikh sposoby izvlecheniya, sostav, formy nakhozhdeniya i vliyanie na svoistva veshchestv). (Extended abstract of candidateʼs thesis). L’vov. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy: tezy dopovidei naukovoi narady (20–22 zhovtnia 1992 r.) (s. 143–145). Lviv. [in Ukrainian]

Svoren, Y. M. (2008). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: pryroda vuhilnoho metanu. Ugol’ Ukrainy, 8 (620), 42–46. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2000). Nova tekhnolohiia vyznachennia henezysu vuhlevodnevykh haziv. In Nafta i haz Ukrainy (T. 1, s. 118). Ivano-Frankivsk: UNHA. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi Natsionalnoi akademii nauk Ukrainy, 2, 111–116. [in Ukrainian]

Svoren, Y. M., Naumko, I. M., & Davydenko, M. M. (1998). Nova tekhnolohiia vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi. In Nafta i Haz Ukrainy: V Mizhnarodnoi konferentsii UNHA: tezy dopovidei (T. 1, s. 111–112). Poltava: UNHA. [in Ukrainian]


Posted on

HYDROGEN AS A SOURCE OF ENERGY AND GEODYNAMIC PROCESSES

Home > Archive > No. 3-4 (176-177) 2018 > 85-104


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 85-104.

Ihor BAGRIY, Stanislav KUZMENKO

Institute of Geological Sciences of National Academy of Sciences of Ukraine, Kyiv, e-mail: bagrid@ukr.net

Dmytro GUNYA

SS “Volodarske” PJSC “Mine named after O. F. Zasiadko”, Kharkiv, e-mail: dmytrogunia53@gmail.com

Abstract

Long-term results of research on mapping oil and gas bearing sites at traditional and non-traditional sites (mine fields, shelf zones, astroblems) have made it possible to create a database of systemic criteria for search technology of structural thermo-atmo-hydrological and geochemical research, where for the first time in the search practice hydrogen was used as the main component of the hydrocarbons. Analysis of the results of the data on the distribution of hydrogen concentrations made it possible to isolate abnormal values both in areas and in productive wells (in the absence of background) and conduct detailed large-scale area studies for the purpose of area mapping for prospecting.

Keywords

cycle; hydro-geosynergetic biogenic-mantle theory, hydrocarbons, structural thermo-atmo-hydrological and geochemical research.

Referenses

Babinets, A. E. (1961). Podzemnye vody yugo-zapada Russkoi platformy. Kiev: Izdatel’stvo AN USSR. [in Russian]
 
Babinets, A. E., & Belyavskii, G. A. (1973). Estestvennye resursy podzemnykh vod zony intensivnogo vodoobmena Ukrainy. Kiev: Naukova dumka. [in Russian]
 
Bagrii, I. D. (2016). Gidro-geosinergeticheskaya biogenno-mantiinaya gipoteza obrazovaniya uglevodorodov i ee rol’ pri obosnovanii pryamopoiskovoi tekhnologii. Geologicheskii zhurnal, 2 (355), 107-133. [in Russian]
 
Bahrii, I. D. (2003). Prohnozuvannia rozlomnykh zon pidvyshchenoi pronyknosti hirskykh porid dlia vyrishennia heoekolohichnykh ta poshukovykh zadach. Kyiv: Vydavnychyi dim Dmytra Buraho. [in Ukrainian]
 
Bahrii, I. D. (2013). Rozrobka heoloho-strukturno-termo-atmoheokhimichnoi tekhnolohii prohnozuvannia poshukiv korysnykh kopalyn ta otsinky heoekolohichnoho stanu dovkillia. Kyiv: Lohos. [in Ukrainian]
 
Bahrii, I. D., Hozhyk, P. F., Pochtarenko, V. I., Aksom, S. D., Dubosarskyi, V. R., Mamyshev, I. Ye., Kizlat, A. M., & Palii, V. M. (2011). Prohnozuvannia heodynamichnykh zon ta perspektyvnykh ploshch dlia vydobutku shakhtnoho metanu vuhilnykh rodovyshch Donbasu. Kyiv: Foliant. [in Ukrainian]
 
Belousov, V. V. (1966). Zemnaya kora i verkhnyaya mantiya materikov. Moskva: Nauka. [in Russian]
 
Chekalyuk, E. B. (1967). Neft’ verkhnei mantii Zemli. Kiev: Naukova dumka. [in Russian]
 
Dolenko, G. N. (1962). Geologiya nefti i gaza Karpat. Kiev: Izdatel’stvo AN USSR. [in Russian]
 
Grinberg, I. V. (1971). Nekotorye khimicheskie aspekty problemy genezisa teorii. In Problema proiskhozhdeniya nefti i gaza i formirovanie ikh promyshlennykh zalezhei (s. 52-67). Kiev: Naukova dumka. [in Russian]
 
Gutenberg, B. (1957). Skorosti rasprostraneniya seismicheskikh voln v zemnoi kore. In A. Poldervart (Ed.). Zemnaya kora (s. 121-138). Moskva: Izdatel’stvo inostrannoi literatury. [in Russian]
 
Krayushkin, V. A., & Kutcherov, V. G. (2010). Deep-seated abiogenic origin of petroleum: From geological assessment to physical theory. Reviews of Geophysics, 48 (1), 1-30.
https://doi.org/10.1029/2008RG000270
 
Magnitskii, V. A. (1965). Vnutrennee stroenie i fizika Zemli. Moskva: Nedra. [in Russian]
 
Markhinin, E. K. (1967). Rol’ vulkanizma v formirovanii zemnoi kory. Moskva: Nauka. [in Russian]
 
Pavliuk, M., Naumko, I., Makitra, R., & Bryk, D. (2012). Pro ymovirnu model utvorennia pryrodnykh vuhlevodniv u litosferi Zemli. Heolohiia i heokhimiia horiuchykh kopalyn, 1-2, 158-159. [in Ukrainian]
 
Porfir’ev, V. B., & Grinberg, I. V. (1966). Sovremennoe sostoyanie teorii organicheskogo proiskhozhdeniya nefti. In Problemy proiskhozhdeniya nefti (s. 5-51). Kiev: Naukova dumka. [in Russian]
 
Porfiriev, V. B. (1968). Do pytanyia pro umovy formuvannia promyslovykh skupchen. Heolohichnyi zhurnal, 28 (4), 3-31. [in Ukrainian]
 
Sokolov, V. A. (1965). Protsessy obrazovaniya i migratsii nefti i gaza. Moskva: Nedra. [in Russian]
 
Stadnikov, G. L. (1937). Proiskhozhdenie uglei i nefti. Moskva; Leningrad: Izdatel’stvo AN SSSR. [in Russian]
 
Subbotin, O. I., Naumchik, G. L., & Rakhimova, N. T. (1964). Protsessy v verkhnei mantii Zemli i svyaz’ s nimi stroeniya zemnoi kory. Kiev: Naukova dumka. [in Russian]
 
Vassoevich, N. B. (1986). Izbrannye trudy. Geokhimiya organicheskogo veshchestva i proiskhozhdenie nefti (s. 324-339). Moskva: Nauka. [in Russian]
 
Vernadskii, V. I. (2001). Khimicheskoe stroenie biosfery Zemli i ee okruzheniya. Moskva: Nauka. [in Russian]

Posted on

PALEOHYDROGEOLOGICAL CHARACTERISTICS OF THE MIOCENE SERIES OF THE NORTH-WESTERN PART OF THE OUTER ZONE OF THE CARPATHIAN FOREDEEP

Home > Archive > No. 3-4 (176-177) 2018 > 73-84


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 73-84.

Halyna MEDVID

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The paleohydrogeological conditions of accumulation and lithification of the Miocene strata of the north-western part of the Outer zone of the Precarpathian deep are studied and the intensity of the hydrodynamic processes taking place in this case is estimated.

Seven hydrogeological cycles have been identified in the paleohydrogeological development of the north-western part of the Outer zone. The total duration of infiltration stages in the north-west and central part of the Outer zone of the six hydrogeological cycles from Cambrian to Carpathian is 347.4 million years. The duration of the exfiltration stages of the same period is 184.2 million years. The ratio of the duration of the infiltration stages to the elimination is 1.89. Such signs indicate a significant “wash-off” of the geological structures of the region. The subject of our detailed study was the last, seventh hydrogeological cycle, which began with Carpathian and continues up to the present.

Using the method of paleohydrodynamic reconstructions, the calculation of water exchange intensity indices at the exfiltration and infiltration stages of the Baden-Sarmatian hydrogeological cycle was carried out. The predominance of the intensity of the exfiltration water exchange over the infiltration is established, which is considered favourable conditions for the preservation of hydrocarbon deposits.

The water balance of the Baden-Sarmatian hydrogeological cycle is calculated. Using the calculations carried out earlier for paleohydrodynamic reconstruction, the water exchange indices for the exfiltration phase of the Baden-Sarmatian hydrogeological cycle were calculated, and for the deposits of the Kosiv suite, the Lower and Upper Dashava undersuite.

On the basis of the analysis of the values of water exchange indices, it was concluded that with the immersion of sedimentary layers at a depth, the water pressure system of the Miocene deposits of the north-western part of the Outer zone of the Precarpathian deep passes from the zone of intensive water exchange to the zones of difficult and very difficult one. This indicates the difficulty of the hydrodynamic connection of surface and shallow circulating groundwater with the deep waters of water pressure oil and gas bearing systems and, as a consequence, the insignificant influence of the modern infiltration water pressure system on the processes of destruction of hydrocarbon deposits. The existence of the difficult and very difficult water exchange zones at the large depths of the water pressure system of the north-western part of the Outer zone of the Precarpathian deep with the presence of reservoir layers and structural and tectonic traps together creates the necessary conditions for the formation and conservation of hydrocarbon deposits.

Keywords

paleohydrogeology, hydrogeological cycle, value of water exchange, water exchange intensity, sedimentary layers, groundwater.

Referenses

Burshtar, M. S., & Mashkov, I. V. (1963). Usloviya formirovaniya i zakonomernosti razmeshcheniya zalezhei nefti i gaza. Moskva: Gostoptekhizdat. [in Russian]
 
Chirvinskii, P. N. (1933). Paleogidrogeologiya. Problemy sovetskoi geologii, 8, 16-32. [in Russian]
 
Harasymchuk, V. Yu., Kolodii, V. V., & Kulynych, O. V. (2004). Geneza vysokokontsentrovanykh solianok pidnasuvnykh vidkladiv pivdenno-skhidnoi chastyny Zovnishnoi zony Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 105-119. [in Ukrainian]
 
Kartsev, A. A. (1960). Printsipy i puti paleogidrogeologicheskikh issledovanii. In Problemy gidrogeologii (c. 78-83). Moskva: Gostoptekhizdat. [in Russian]
 
Kartsev, A. A. (1972). Gidrogeologiya neftyanykh i gazovykh mestorozhdenii. Moskva: Nedra. [in Russian]
 
Kartsev, A. A., & Vagin, S. B. (1962). Paleogidrogeologicheskie issledovaniya pri izuchenii formirovaniya i razrusheniya neftegazovykh skoplenii (na primere mezozoiskikh otlozhenii Predkavkaz’ya). Sovetskaya geologiya, 8, 104-121. [in Russian]
 
Kartsev, A. A., Vagin, S. B., & Matusevich, V. M. (1986). Gidrogeologiya neftegazonosnykh basseinov. Moskva: Nedra. [in Russian]
 
Kartsev, A. A., Vagin, S. B., Shugrin, V. P., & Bragin, Yu. I. (2001). Neftegazovaya gidrogeologiya. Moskva: Neft’ i gaz. [in Russian]
 
Kolodii, V. V. (1969). Gidrogeologiya pliotsenovykh otlozhenii Zapadno-Turkmenskoi neftegazonosnoi oblasti. Moskva: Nedra. [in Russian]
 
Kolodii, V. V. (1972). Paleohidroheolohichna kharakterystyka Dniprovsko-Donetskoi zapadyny v zviazku z yii naftohazonosnistiu. Heolohiia i heokhimiia horiuchykh kopalyn, 30, 9-16. [in Ukrainian]
 
Kolodii V. V., Boiko H. Yu., Boichevska L. T. et al. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]
 
Kolodii, V. V., & Kudel’skii, A. V. (1972). Gidrogeologiya gornykh stran, smezhnykh progibov i vpadin. Kiev: Naukova dumka. [in Russian]
 
Kolodii, V. V., & Likhomanova, I. N. (1978). Termobaricheskie aspekty neftegazonosnosti vodonapornykh sistem Predkarpatskogo progiba. Geologiya i geokhimiya goryuchikh iskopaemykh, 51, 6-12. [in Russian]
 
Krupskyi, Yu. Z. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]
 
Makov, K. I. (1939). K voprosu o gidrogeologicheskoi istorii podzemnykh vod Prichernomor’ya. Izvestiya Akademii nauk SSSR. Ser. geol., 6, 88-93. [in Russian]
 
Medvid, H. B. (2011). Paleohidrodynamichnyi chynnyk u protsesi formuvannia pokladiv vuhlevodniv u mezhakh pivnichno-zakhidnoi chastyny Zovnishnoi zony Peredkarpatskoho prohynu. Heodynamika, 2 (11), 199-201. [in Ukrainian]
https://doi.org/10.23939/jgd2011.02.199
 
Medvid, H. B., Sprynskyi, M. I., Kolodii, V. V. et al. (2006). Paleohidrodynamichni rekonstruktsii pivnichno-zakhidnoi chastyny Zovnishnoi zony Peredkarpatskoho prohynu v konteksti problemy naftohazonosnosti. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 20-32. [in Ukrainian]
 
Medvid, H., Sprynskyy, M., Kolodiy, V. et al. (2006). Paleohydrodynamic reconstruction of north-western part of the outer zone of the Carpathian foredeep in connection with oil and gas presence. In Proceedings of XVIIIth Congress of the Carpathian-Balkan Geological Association (September 3-6, 2006) (p. 356-359). Belgrade, Serbia.
 
Ovchinnikov, A. M. (1961). Vodonosnye sistemy zemnoi kory. Izvestiya VUZ. Ser. Geologiya i razvedka, 8, 86. [in Russian]
 
Semikhatov, A. N. (1947). O gidrogeologicheskikh tsiklakh. Doklady Aademii nauk SSSR, 56 (6), 629-630. [in Russian]
 
Shagoyants, S. A. (1949). Paleogidrogeologicheskaya skhema formirovaniya podzemnykh vod Tsentral’noi i Vostochnoi chastei Severnogo Kavkaza. Trudy laboratorii gidrogeologicheskikh problem, 6, 33-45. [in Russian]
 
Vagin, S. B. (1988). Paleogidrogeologicheskie rekonstruktsii pri poiskakh zalezhei uglevodorodov. (Extended abstract of Doctorʼs thesis). Moskva. [in Russian]
 
Vagin, S. B., Kartsev, A. A., & Khodzhakuliev, Ya. A. (1964). Paleogidrogeologicheskie usloviya neftegazonakopleniya v mezozoiskikh otlozheniyakh epigertsinskoi platformy Zapada Srednei Azii. Neftyanaya i gazovaya promyshlennost’ Srednei Azii, 6, 68-75. [in Russian]

Posted on

ESTIMATION OF PROSPECTS FOR OIL AND GAS PRESENCE IN THE LAZESHCHINA AREA OF THE KROSNO ZONE OF THE CARPATHIANS BASED ON DATA OF COMPLEX GEOLOGICAL-GEOPHYSICAL STUDIES

Home > Archive > No. 3-4 (176-177) 2018 > 63-72


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 63-72.

Sofia MAKSYMUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Petro BODLAK

West Ukrainian Geophysical Prospecting Expedition, Lviv, e-mail: zugre@lviv.farlep.net

Taras YOSYPENKO

West Ukrainian Geophysical Prospecting Expedition, Lviv, e-mail: zugre@lviv.farlep.net

Abstract

A complex of geophysical and geochemical studies was conducted in the Krosno zone on Lazeshchina area. Three layers of the anticlinal structures of the Carpathian Stretch – Yasinia, Lazeshchina and Stebnyk were traced in the structural plane. According to the seismic horizon P3c they have the form of brachiaticlinal folds, limited from the south and the north by the deep thrusts of the amplitude from 200 to 220 m. The presence of a significant number of tectonic elements resulted in a strong fracturing of the allochton, making it fluid-permeable for gaseous migrants.

According to the results of electrical survey the boundaries of Dovzhynets, Vyhoda, Bystrytsia and Manyava suites are clearly traced. The zones of increased resistance in Dovzhynets, Vyhoda suites (profile 1285904) and in the Golovetsko suite (profile 1295904) may be associated with oil and gas saturation of rocks.

Geochemical studies have established the composition of hydrocarbon mixtures of near-surface sediments, maps of the distribution of geochemical parameters with the allocation of zones of manifestation of their abnormal concentrations have been constructed.

Geochemical anomalies are well connected with structural buildups in the Yasinia, and Stebnyk folds. In addition, in the eastern and southeastern parts of the area, two more fields of abnormal concentrations of hydrocarbon components not covered by seismic exploration are identified. An important argument of its possible fluid saturation is the complexity of the geochemical anomaly, so this part of the area may have an important search value in the future.

Priority for conducting exploration works should be Yasynia fold, with localization of which are coincided with geochemical anomalies and increased resistance in geoelectrical profiles. The obtained results testify to oil and gas prospects of this area and the possibility of discovering new hydrocarbon deposits in the Krosno zone.

Keywords

structure, geoelectrical profile, geochemical anomaly, hydrocarbons, флюїдонасиченість, exploration works, Lazeshchina area.

Referenses

Bilichenko, V. Ya. (1999). Strukturno-tektonichni osoblyvosti paraavtokhtonu Ukrainskykh Karpat ta prylehlykh terytorii za materialamy detalnoi hravimetrii. Heolohiia i heokhimiia horiuchykh kopalyn, 3, 131-138. [in Ukrainian]
 
Devid, Dzh. (1990). Statisticheskii analiz dannykh v geologii (T. 1-2). Moskva: Nedra. [in Russian]
 
Glushko, V. V., & Kruglov, S. S. (Red.). (1986). Tektonicheskaya karta Ukrainskikh Karpat. Masshtab 1 : 200 000. – L’vov: UkrNIGRI. [in Russian]
 
Kolodii, V. V., Boiko, H. Yu., & Boichevska, L. E. ta in. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]
 
Krupskyi, Yu. Z. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]
 
Krupskyi, Yu. Z. (Head). (2002). Utochnennia heolohichnoi budovy Bitlianskoho i Turkivskoho subpokryviv Karpat (zona Krosno) za danymy heolohichnykh ziomok i tematychnykh robit z metoiu vyiavlennia naftohazoperspektyvnykh obiektiv (№ D8/02). Lviv. [in Ukrainian]
 
Krupskyi, Yu. Z., & Krupska, O. Yu. (2008). Vydilennia perspektyvnykh terytorii dlia poshuku rodovyshch zi znachnymy zapasamy vuhlevodniv u Zakhidnomu naftohazonosnomu rehioni. Heolohiia i heokhimiia horiuchykh kopalyn, 1 (142), 5-11. [in Ukrainian]
 
Krupskyi, Yu. Z., Kurovets, I. M., & Senkovskyi, Yu. M. ta in. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy. Kn. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]
 
Kudla, P. Y. (2004). Zvit pro rezultaty poshukovykh seismorozviduvalnykh robit MSHT na Lazeshchynskii ploshchi Krosnenskoi zony (№ 2052). Lviv: ZUHRE. [in Ukrainian]
 
Kurovets, I. M., Krupskyi, Yu. Z., & Naumko, I. M. ta in. (2011). Perspektyvy poshukiv pokladiv vuhlevodniv u vidkladakh olihotsenu zony Krosno (Ukrainski Karpaty). Heodynamika, 2 (11), 144-146. [in Ukrainian]
https://doi.org/10.23939/jgd2011.02.144
 
Makitra, R. H., & Semeniuk, M. V. (2014). Do istorii doslidzhen i vykorystannia nafty Prykarpattia. In Aktual’nye problemy poiskovoi i ekologicheskoi geokhimii: tezisy dokladov Mezhdunarodnoi nauchnoi konferentsii (s. 74-77). Kiev. [in Ukrainian]
 
Maksymuk, S. V. (2012). Osoblyvosti vidobrazhennia fliuidonasychenosti horyzontiv Vyshnianskoi ploshchi Zovnishnoi zony Peredkarpatskoho prohynu v heokhimichnykh poliakh prypoverkhnevykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3-4 (160-161), 109-117. [in Ukrainian]
 
Orlov, O. O., & Kalynii, Yu. A. (2011). Perspektyvy poshukiv i rozvidky pokladiv vuhlevodnevykh enerhonosiiv v Krosnenskii zoni Skladchastykh Karpat. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu, 4, 5-10. [in Ukrainian]
 
Polivtsev, A. V., Pomortsev, G. P., & Borkovskii, A. A. (1990). Gazogeokhimicheskie poiski poleznykh iskopaemykh v Karpatskom regione. Kiev: Naukova dumka. [in Russian]
 
Zor’kin, L. M., Starobinets, I. S., & Stadnik, E. V. (1984). Geokhimiya prirodnykh gazov neftegazonosnykh basseinov. Moskva: Nedra. [in Russian]

Posted on

EFFECT OF TEMPERATURE FLOW ON GAS-GENERATING POTENTIAL OF HUMIC ACIDS OF ORGANIC MATTER

Home > Archive > No. 3-4 (176-177) 2018 > 49-62


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 49-62.

Yuri KHOKHA, Oleksandr LYUBCHAK, Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Experiments on artificial “maturation” of humic acids, kerogen, model compounds of organic compounds and individual hydrocarbons up to 4000 hours carried out in a wide range of pressures and temperatures were considered. An analysis of trends in the change in the composition of gases over time, which was formed during experiments, was carried out. It is concluded that in the considered experiments the state of thermodynamic equilibrium is not achieved; they only show tendencies in the changes of the solid, liquid and gas phase. A method for simulating artificial maturation of organic compounds in the process of catagenesis, based on the Jaynes formalism, was developed. An equilibrium concentration of gases in contact with a humic substance depending on temperature is calculated. The results of the calculation are in good correspondence with the trends shown by experimental studies.

Keywords

gas-generation, humic acids, catagenesis, Jaynes formalism, equilibrium thermodynamics.

Referenses

Behar, F., Roy, S., & Jarvie, D. (2010). Artificial maturation of a Type I kerogen in closed system: Mass balance and modeling. Organic Geochemistry, 41, 1235-1247.
https://doi.org/10.1016/j.orggeochem.2010.08.005
 
Behar, F., Vandenbroucke, M., & Teermann, S. C. et al. (1995). Experimental simulation of gas generation from coals and a marine kerogen. Chemical Geology, 126, 247-260.
https://doi.org/10.1016/0009-2541(95)00121-2
 
Carrl, A. D., Snape, C. E., & Meredith, W. et al. (2009). The effect of water pressure on hydrocarbon generation reactions: some inferences from laboratory experiments.Petroleum Geoscience, 15, 17-26.
https://doi.org/10.1144/1354-079309-797
 
Domini, F. (1991). High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and l-phenyl-butane. Is pressure an important geochemical parameter? Organic Geochemistry, 5 (17), 619-634.
https://doi.org/10.1016/0146-6380(91)90005-5
 
Hasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307, 59-70.
https://doi.org/10.1016/j.epsl.2011.04.034
 
Helgeson, H., Richard, L., & McKenzie, W. et al. (2009). A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochimica et Cosmochimica Acta, 73 (3), 594-695.
https://doi.org/10.1016/j.gca.2008.03.004
 
Khokha, Yu., Liubchak, O., & Khramov, V. (2013). Termodynamichna model budovy orhanichnoi rechovyny vuhillia za yoho elementnym skladom. Heolohiia i heokhimiia horiuchykh kopalyn, 1-2 (162-163), 71-78. [in Ukrainian]
 
Landais, P., Michels, R., & Elie, M. (1994). Are time and temperature the only constraints to the simulation of organic matter maturation? Organic Geochemistry, 22, 617-630.
https://doi.org/10.1016/0146-6380(94)90128-7
 
Lazarov, L., & Angelova, G. (1990). Struktura i reaktsii uglei. Sofiya: Izdatel’stvo Bolgarskoi akademii nauk. [in Russian]
 
Li, W., Tang, Y., Zhao, Q., & Wei, Q. (2015). Sulfur and nitrogen in the high-sulfur coals of the Late Paleozoic from China. Fuel, 155, 115-121.
https://doi.org/10.1016/j.fuel.2015.04.002
 
Lin, X., Wang, C., & Ideta, K. et al. (2014). Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments. Fuel, 118, 257-264.
https://doi.org/10.1016/j.fuel.2013.10.081
 
Liubchak, O. V., Khokha, Yu. V., & Yakovenko, M. B. (2018). Spivvidnoshennia strukturnykh elementiv vuhlevodnevoi skladovoi arhilitiv skhidnykh Karpat za formalizmom Dzheinsa. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriia. Heolohiia. Heohrafiia. Ekolohiia, 49, 15-23. [in Ukrainian]
 
Michels, R., Landais, P., Philp, R. P., & Torkelson, B. E. (1995). Influence of Pressure and the Presence of Water on the Evolution of the Residual Kerogen during Confined, Hydrous, and High-pressure Hydrous Pyrolysis of Woodford Shale.Energy & Fuels, 9, 204-215.
https://doi.org/10.1021/ef00050a002
 
Monthioux, M., Landais, P., & Monin J.-C. (1985). Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Organic Geochemistry, 4 (8), 275-292.
https://doi.org/10.1016/0146-6380(85)90006-3
 
Pearson, D. B., III. (1981). Experimental simulation of thermal maturation in sedimentary organic matter (Vol. 1 and 2). (Diss., Rice University). Houston. https://scholarship.rice.edu/handle/1911/15638
 
Planche, H. (1996). Finite time thermodynamics and the quasi-stability of closed-systems of natural hydrocarbon mixtures. Geochimica et Cosmochimica Acta, 22 (60), 4447-4465.
 
Price, L. C., & Wenger, L. M. (1992). The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Organic Geochemistry, 19, 141-159.
https://doi.org/10.1016/0146-6380(92)90033-T
 
Qin, Z., Zhang, H., & Dai, D. et al. (2014). Study on occurrence of sulfur in different group components of Xinyu clean coking coal. Journal of Fuel Chemistry and Technology, 42 (11), 1286-1294.
https://doi.org/10.1016/S1872-5813(14)60050-5
 
Rice, J., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 5 (17), 635-648.
https://doi.org/10.1016/0146-6380(91)90006-6
 
Stalker, L., Farrimond, P., & Larter, S. (1994). Water as an oxygen source for the production of oxygenated compounds (including CO2 precursors) during kerogen maturation. Organic Geochemistry, 3-5 (22), 477-486.
https://doi.org/10.1016/0146-6380(94)90120-1
 
Stall, D., Vestram, E., & Zinke, G. (1971). Khimicheskaya termodinamika organicheskikh soedinenii. Moskva: Mir. [in Russian]
 
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Springer-Verlag.
https://doi.org/10.1007/978-3-642-87813-8
 
Traibus, M. (1970). Termostatika i termodinamika. Moskva: Energiya. [in Russian]
 
Tsutsuki, K., & Kuwatsuka, S. (1978). Chemical studies on soil humic acids. Soil Science and Plant Nutrition, 24 (4), 547-560.
https://doi.org/10.1080/00380768.1978.10433134
 
Van Krevelen, D., Chermin, H. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1 (2), 66-80.
https://doi.org/10.1016/0009-2509(51)85002-4
 
Wuu-Liang, H. (1996). Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. Organic Geochemistry, 2 (24), 233-241.
https://doi.org/10.1016/0146-6380(96)00032-0
 
Xin H., Wang D., & Qi X. et al. (2014). Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Processing Technology, 118, 287-295.
https://doi.org/10.1016/j.fuproc.2013.09.011
 
Yonebayashi, K., & Hattori, T. (1988). Chemical and biological studies on environmental humic acids. Soil Science and Plant Nutrition, 34 (4), 571-584.
https://doi.org/10.1080/00380768.1988.10416472
 
Zixiang, W., Yongli, W., & Baoxiang, W. et al. (2017). Hydrocarbon gas generation from pyrolysis of extracts and residues of low maturity solid bitumens from the Sichuan Basin, China. Organic Geochemistry, 103, 51-62.
https://doi.org/10.1016/j.orggeochem.2016.10.011

Posted on

ANATOMICAL STRUCTURE OF TISSUES OF THE PLANT STEMS OF CARBONIFEROUS OF UKRAINE AND THEIR ROLE IN PEAT AND COAL FORMATION

Home > Archive > No. 3-4 (176-177) 2018 > 21-48


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 21-48.

Vasyl UZIYUK

Ivan Franko National University of Lviv, е-mail: coalgeol@franco.Lviv.ua

Abstract

Here the results of the determination of the intensity of compression of coaly rocks and coal-forming phytomass based on macroscopic geological comparative methods for different conditions of occurrence of remnants of organs of coal-forming plants as well as based on studies of the thin sections of different coal-forming tissues of phytoleims and petrifications by macropaleobotanic comparative and micropaleobotanic anatomical-morphological methods are described. The influence of the mineral composition of inorganic rocks, that compose the cores of the plant fragments or fill the hollowness of the cells of the plant tissues, and the intensity of their decomposition while peat- and coal-forming upon the intensity of phytomass compression is revealed.

Keywords

Carboniferous, plant, peat, coal, vitrain, phytomass, anatomy, peat and coal formation, compression, decomposition.

Referenses

Egorov, A. I. (1969). Mekhanizm nakopleniya biomassy i formirovaniya ugol’nogo plasta. In Geologiya ugol’nykh mestorozhdenii (T. 1, s. 66–75). Moskva: Nauka. [in Russian]

Esau, K. (1969). Anatomiya rastenii. (A. E. Vasil’ev, M. F. Danilova, N. V. Pervukhina & N. S. Snigirvskaya, Trans.). Moskva. [in Russian]

Inosova, K. I. (1964). Iskhodnyi material uglei. In Atlas uglei nizhnego karbona Donetskogo basseina (s. 26–31). Moskva: Nauka. [in Russian]

Ivanov, G. A., & Sarbeeva, L. I. (1940). Klivazh (otdel’nosti) v uglyakh i vmeshchayushchikh porodakh i puti ego prakticheskogo ispol’zovaniya (Ch. 2). GONTI. [in Russian]

Krishtofovich, A. N. (1957). Paleobotanika. Leningrad: Gosnauchtekhizdat. [in Russian]

Levenshtein, M. L., & Spirina, O. I. (1991). Komplekt kart metamorfizma uglei Donetskogo basseina (poverkhnosti paleozoya, srezov –400 m, –1000 m, –1600 m i strukturnykh planov ugol’nykh plastov c61 i k8), masshtab 1 : 500 000. Kiev: TsTE. [in Russian]

Novik, E. O. (1952). Kamennougol’naya flora Evropeiskoi chasti SSSR. Moskva: AN SSSR. [in Russian]

Popov, E. I. (1959). K otsenke tochnosti izobrazheniya zalezhi poleznogo iskopaemogo po dannym razvedki. Zapiski LGI, 36 (2), 178–189. [in Russian]

Prikhod’ko, Yu. I. (1963). Nablyudeniya nad usadkoi uglei i peschano-glinistykh porod na Intinskom kamennougol’nom mestorozhdenii. Izvestiya Akademii nauk SSSR. Seriya geologicheskaya, 2, 99–105. [in Russian]

Prokopchenko, A. S. (1967). K voprosu o sokrashchenii moshchnosti ugol’nykh plastov Donbassa v ryadu uglefikatsii. Doklady Akademii nauk SSSR, 173 (2) 425–427. [in Russian]

Stutzer, O. (1940). Geology of coal. Chicago, Illinois.

Uziiuk, V. I. (1998). Rol riznykh roslyn karbonu Ukrainy, yikh orhaniv i tkanyn v utvorenni vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 1 (102), 64–76. [in Ukrainian]

Uziyuk, V. I. (1970). Iskhodnyi material uglei i fiziko-khimicheskie osobennosti vitrenov Donbassa. In Geologiya i razvedka ugol’nykh mestorozhdenii (s. 220–238). Tula: Tul’skii politekhnicheskii institut. [in Russian]

Uziyuk, V. I. (1990). Fiteral’nyi analiz ugol’nykh plastov srednego karbona Yugo-Zapadnogo Donbassa i ego prikladnoe znachenie. Geologiya i geokhimiya goryuchikh iskopaemykh, 75, 24–30. [in Russian]

Uziyuk, V. I., & Ignatchenko, N. A. (1985). Mikrostruktury vitrinizirovannykh tkanei rastenii (srednii karbon Donbassa). Kiev: Naukova dumka. [in Russian]

Volkov, V. N. (1973). Geneticheskie osnovy morfologii ugol’nykh plastov. Moskva: Nedra. [in Russian]

Volkova, I. B. (1965). Litologiya i stratigrafiya moshchnogo ugol’nogo plasta Berezovskogo mestorozhdeniya (Kansko-Achinskii bassein). Sovetskaya geologiya, 6, 90–103. [in Russian]

Zabigailo, V. E. (1974). Geologicheskie usloviya vybrosoopasnosti ugol’nykh plastov Donbassa. Kiev: Naukova dumka. [in Russian]

Zaritskii, P. V. (1965). O vozmozhnosti ispol’zovaniya konkretsii dlya opredeleniya sokrashcheniya moshchnosti iskhodnogo veshchestva kamennogo uglya. Doklady Akademii nauk SSSR, 164 (3), 666–669. [in Russian]

Zhizn’ rastenii. T. 4. Mkhi, plauny, khvoshchi, paporotniki, golosemennye rasteniya. (1978). Moskva: Prosveshchenie. [in Russian]


Posted on

GEODYNAMIC AND GEOCHEMICAL ASPECTS OF OIL AND GAS ACCUMULATION OF THE WESTERN OIL AND GAS REGION OF UKRAINE

Home > Archive > No. 3-4 (176-177) 2018 > 5-20


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 5-20.

Olesya SAVCHAK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The Western oil-gas region of Ukraine is the most important oil- and gas-producing region of Ukraine and is the oldest one as to the time of discovery of commercial deposits of hydrocarbons. In all 94 fields were discovered in the region. Six of them belong to great, eight – to middle and eighty – to small. The greatest amount of fields is in the Bilche-Volytsa (47) and the Boryslav-Pokuttya (39) oil-gas regions. In the Transcarpathian gas-bearing region five gas fields are known, in the Carpathian – two oil fields and within the limits of the Volyn-Podillya area – two gas fields. We have analysed the geochemical composition of oil and condensate for 3 structural-tectonic elements of the region: outer, inner zone of the Carpathian Foredeep and Folded Carpathians and the comparative analysis of the composition of natural hydrocarbons within the limits of the region was carried out. The analysis of peculiarities of the geological structure and oil and gas presence in the totality with available geochemical data has allowed us to come to a conclusion that formation of oil and gas deposits in the Western oil- and gas-bearing region is caused both lateral and vertical migration of hydrocarbons.

Keywords

geochemical features, migration, hydrocarbons, Western oil and gas region of Ukraine.

Referenses

Dolenko, G. N. (1990). Geologiya i geokhimiya nefti i gaza. Kiev: Naukova dumka. [in Russian]

Ivaniuta, M. M. (Ed.). (1998). Atlas rodovyshch nafty i hazu. T. 4–5. Zakhidnyi naftohazonosnyi rehion. Lviv. [in Ukrainian]

Pavliuk, M., Halabuda, M., Rizun, B. et al. (2008). Heodynamichni umovy formuvannia naftohazonosnykh provintsii Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 3 (144), 16–25. [in Ukrainian]

Savchak, O. Z. (2015). Heodynamichni aspekty roztashuvannia rodovyshch nafty i hazu naftohazonosnykh provintsii Ukrainy. In Heolohiia horiuchykh kopalyn: materialy Mizhnarodnoi naukovoi konferentsii (Kyiv, 2–4 veresnia 2015 r.) (s. 96–98). Kyiv. [in Ukrainian]

Savchak, O. Z. (2017). Heokhimichni aspekty protsesiv naftohazonahromadzhennia naftohazonosnykh rehioniv Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2 (170–171), 154–156. [in Ukrainian]