Posted on

COLLISION DEFORMATIONS OF THE DNIEPER-DONETS DEPRESSION. Article 1. Tectonics of the articulation zone with the Donets folding structure

Home > Archive > No. 3 (180) 2019 > 76-89


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 76-89.

https://doi.org/10.15407/ggcm2019.03.076

Оleksiy Bartashchuk

Ukrainian Research Institute of Natural Gases, Kharkov,
e-mail: alekseybart@gmail.сom

Abstract

The article is the first part of a trilogy devoted to the study of post-rift deformations of the riftogenic structure of the Dnieper-Donets paleorift. The mechanisms of collision warping of the horizons of the sedimentary cover of the southeastern part of the Dnieper-Donets depression are considered.

According to the previous mapping data, the tectonic deformations of the sedimentary cover were controlled by systems of faults of the north, north-west, and south-east vergence. The lattices of tectonites of the Hercynian, Lamaric, and Attic generations determine the specific “cross-thrust” structure of pushing. Overthrusts and linear folding of three generations permeate the sedimentary sequence of the transition zone from east to west for hundreds of kilometers within the eastern part of Izyumsky paleorift segment.

The analytical base of the research was the materials of geological mapping of the zone of the junction of the depression with the Donets fold structure. Using field definitions of the tectonite vergency of the Hercynian, Laramide and Attic phases of tectogenesis, the original method of reconstruction of tectonic deformation fields and tectonophysics analysis of structures, collision deformations of the sedimentary cover of the south-eastern part of the Dnieper-Donets paleorift are studied.

The tectonophysical analysis of tectonites of different ages indicates that together they control the cover-thrust and folded deformations of the riftogenic structure. Overthrusts and linear reverse-folding of three generations form the West-Donetsk integumentary-folding region, within which a segment of the same name tectonic thrust is distinguished. By pushing the system of repeatedly deformed, crushed into folds of geomass sedimentary rocks on weakly deployed syneclise deposits, the riftogenic structure of the south-eastern part of the basin is completely destroyed. The structural-tectonic framework of the allochthone, pushed from the side of the Donets structure, is composed of dynamically conjugated lattices of Hercynian, Laramide, and Attic tectonites. They control the echelon backstage of linear reverse-folds, tectonic plate-covers of transverse extrusion of sedimentary geomass from axial to airborne zones and folded covers of longitudinal thrust from the south-east.

The riftogenic structure of the transition zone between the Dnieper-Donets basin and the Donets folded structure was completely destroyed by deformations of three generations of platform activation. The dynamically coupled tectonite lattice, the overlays, and the folded zones of the Hercynian, Laramide, and Attic generations jointly form the West-Donets fold-fold region within its boundaries. The main tectonic element of the area is the eponymous subregional tectonic thrust segment. The central structural zone is Veliko-Kamyshevakhskaya, Novotroitskaya, Druzhkovsko-Konstantinovskaya and Main anticlines. The central zone divides the body of the segment into two tectonic regions according to the tectonic style and intensity of deformation of the sedimentary sequence. The northern part is occupied by the Luhansk-Kamyshevakhsky region of the rocky-layered linear folding of the thrust, and the southern part is the Kalmius-Toretsky region of scaly tectonic covers.

Keywords

tectonite frame, thrust cover, uplift folded zones, tectonic wedging segment, cover-folded region.

REFERENCES

Alekseev, V. (1990). Strukturnyy paragenezis zon stress-metamorfizma [Structural paragenesis of stress-metamorphism zones]. Geotectonics, 5, 21-32. [in Russian]
 
Bartashchuk, O. (2019). Evoliutsiia napruzheno-deformovanoho stanu zemnoi kory Dniprovsko-Donetskoho paleoryftu u fanerozoi [Phanerozoic evolution model of a stressstrain state of the Earth crust at the Dnieper-Donets paleorift]. Dopov. Nac. akad. nauk Ukr., 3, 62-71. [in Ukrainian]
https://doi.org/10.15407/dopovidi2019.03.062
 
Glushko, V. (Ed.). (1978). Glubinnyye geologicheskiye srezy Dneprovsko-Donetskoy vpadiny (v svyazi s perspektivami neftegazonosnosti). Obyasnitelnaya zapiska k geologicheskim kartam DDV na srezakh -5000 i -6000 m masshtaba 1 : 500 000 [Deep geological sections of the Dnieper-Donetsk Depression (in connection with the prospects of oil and gas). Explanatory note to the geological maps of the DDV on the sections -5000 and -6000 m scale 1 : 500 000]. Kiev: UKRNIIGAZ, UKRNIGRI. [in Russian]
 
Goryaynov, S. (1999). Ob alpiyskom uslozhnenii geologicheskoy struktury v razlichnykh regionakh Ukrainy [About Alpine complication of geological structure in various regions of Ukraine]. Dopov. Nac. akad. nauk Ukr., 8, 106-111. [in Russian]
 
Goryaynov, S. (2004). O laramiyskom uslozhnenii geologicheskikh struktur Ukrainy [About the Laramide complication of geological structures of Ukraine]. Dopov. Nac. akad. nauk Ukr., 12, 114-121. [in Russian]
 
Goryaynov, S. V., Korenev, V. V., Aksenov, S. V., Altukhov, A. S., Vorobyev, S. V., & Isayeva, E. P. (2009). Metamorficheskiye i metasomaticheskiye kompleksy Priazovia i Yuzhnogo Donbassa [Metamorphic and metasomatic complexes of Priazovye and South Donbass]. Kharkov: Ecograph. [in Russian]
 
Goryaynov, S., & Sklyarenko, Y. (Heads). (2017). Prohnoz lokalizatsii ta hazonosnosti litolohichnykh pastok pivdennoho skhodu DDZ v mezhakh litsenziinykh dilianok HPU «Shebelynkahazvydobuvannia» (Ch. 1. Stvorennia strukturno-heolohichnoi osnovy) [Forecast of localization and gas-bearing capacity of lithological traps in the southeast of DDZ within the licensed sections of GPU “Shebelinkagazvydobuvannya”. (Part 1. Creating a Structural-Geological Basis)]. (Contract N 100 SHGV 2017-2017 (topic N 34.521/2017-2017)). Kharkiv: UkrNDIGaz. [in Ukrainian]
 
Kopp, M. (2017). Dugoobraznyye struktury rastyazheniya v kinematicheskom analize regionalnykh i globalnykh tektonicheskikh obstanovok [Arcuate extension structures in kinematic analysis of regional and global tectonic settings]. Geotectonics, 6, 18-36. [in Russian]
 
Kopp, M., Kolesnichenko, A., Mostryukov, A., & Vasilev, N. (2017). Rekonstruktsiya kaynozoyskikh napryazheniy/deformatsiy vostoka Russkoy plity i puti eye primeneniya dlya resheniya regionalnykh i prikladnykh zadach [Reconstruction of Cenozoic stress and deformations in the eastern East European platform with its regional and practical application]. Geodynamics, 2 (23), 46-67. [in Russian]
https://doi.org/10.23939/jgd2017.02.046
 
Kopp, M., & Korchemagin, V. (2010). Kaynozoyskiye polya napryazheniy/deformatsiy Donbassa i ikh veroyatnyye istochniki [The Cenozoic stress/deformation fields of the Donets coal basin and their probable sources]. Geodynamics, 1 (9), 37-49. [in Russian]
https://doi.org/10.23939/jgd2010.01.037
 
Korchemagin, V., & Ryaboshtan, Yu. (1987) Tektonika i polya napryazheniy Donbassa [Tectonics and stress fields of Donbass]. In Polya napryazheniy i deformatsiy v zemnoy kore [Fields of stress and strain in the Earth’s crust] (pp. 164-170). Moscow: Nauka. [in Russian]
 
Leonov, Yu. (1995). Napryazheniya v litosfere i vnutriplitnaya tektonika [Stresses in the lithosphere and intraplate tectonics]. Geotektonics, 6, 3-21. [in Russian]
 
Lukjanov, A. V. (1991). Plasticheskiye deformatsii i tektonicheskiye techeniya v litosfere [Ductile deformations and tectonic flow in the lithosphere]. Moscow: Nauka. (Transactions of Geological Institute of Academy of Sciences of USSR, 460). [in Russian]
 
Orlyuk, M., & Ishchenko, M. (2019). Sravnitelnyy analiz sovremennoy deformatsii i noveyshikh dvizheniy zemnoy poverkhnosti na territorii Ukrainy [Comparative analysis of modern deformation and the newest motions of the Earth surface in the territory of Ukraine]. Geophysical Journal, 4 (41), 161-181. [in Russian]
https://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381
 
Patalaha, E. (1979). Mekhanizm vozniknoveniya struktur techeniya v zonakh szhatiya [Forming mechanisms of flow structures in stress-zones]. Alma-Ata: Nauka. [in Russian]
 
Rebetskiy, Yu. (2002). Obzor metodov rekonstruktsii tektonicheskikh napryazheniy i prirashcheniy seysmotektonicheskikh deformatsiy [Overview of methods for reconstruction of tectonic stresses and increments of seismotectonic deformations]. In Tektonika segodnya [Tectonics today] (pp. 227-243). Moscow: OIFZ of Academy of Sciences of Russia. [in Russian]
 
Timurziev, A. (2014). Struktury gorizontalnogo sdviga osadochnykh basseynov i opyt primeneniya tektonofizicheskikh metodov dlya povysheniya effektivnosti poiskov, razvedki i osvoyeniya prisdvigovoy nefti [Structures of horizontal shift of sedimentary basins and experience of application of tectonophysical methods to increase prospecting and exploration efficiency and mastering near-shift oil]. Geophysical journal, 2 (36), 172-185. [in Russian]
https://doi.org/10.24028/gzh.0203-3100.v36i2.2014.116136
Posted on

VERTICAL THERMOBARIC ZONING OF HYDROCARBON DEPOSITS OF THE EASTERN OIL- AND GAS-BEARING REGION OF UKRAINE

Home > Archive > No. 3 (180) 2019 > 60-75


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 60-75.

https://doi.org/10.15407/ggcm2019.03.060

Oleksandr PRYKHODKO, Ihor HRYTSYK, Ihor KUROVETS, Svitlana MELNYCHUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

For the predictive appraisal of the perspective exploratory territories as well as prediction of separate producing horizons of prospecting and exploration areas for oil and gas it is necessary to establish the regularities of distribution of already explored deposits of hydrocarbons with structural-tectonic construction, lithological-stratigraphic features, hydrogeological and geothermobaric conditions of oil- and gas-bearing region taken into account.
Interconnection between geothermobaric parameters and the phase state of hydrocarbons in the vertical section should be an important factor for the solution of the posed task.
Within the limits of the Eastern oil- and gas-bearing area of Ukraine, the spatial zoning is established in the location of gas, oil and gas-condensate deposits. As a whole, the distribution of temperatures and pressures at different depths, average geothermal gradients, gradients of the lithological-stratigraphical horizons of the same name (sustained both as to the area and thickness) are closely connected with the deep geological structure of the studied region (area) and confirm the existing notions of the role of tectonic, lithological-stratigraphic and hydrogeological factors in the formation of the thermal regime of sedimentary basins.
Vertical zoning of the distribution of hydrocarbon deposits of oil- and gas-bearing horizons was developed according to geothermobaric parameters of the north-western part of the Dnieper-Donets Depression and 8 areas from 15 ones of the Eastern oil- and gas-bearing region, namely: Monastyryshche-Sofiivka and Talalaivka-Rybalske oil- and gas-bearing areas, Glynsk-Solokha gas- and oil-bearing area, Ryabukhyne-Northern Golubivka and Mashivka-Shebelynka gas-bearing areas, Rudenky-Proletarske oil- and gas-bearing region, Krasna Rika gas-bearing area and also oil- and gas-bearing area of the Northern edge.
Revealed regularities of the distribution of formation temperatures, pressures, geothermal and thermobaric coefficients with peculiarities of the tectonic structure of the Dnieper-Donets graben taken into account will make it possible to solve theoretical problems connected with hydrocarbon migration, the formation and preservation of deposits in more well-founded way that will make it possible to conduct prospecting for new fields at great depths within the studied territory more effectively,

Keywords

thermobaric parameters, initial formation temperatures, initial formation pressures, thermobaric coefficient, hydrostatic pressure, hydrostatics coefficient, producing horizon, oil- and gas-bearing complex, phase state of hydrocarbons, exploratory-prospecting works, oil, gas and gas-condensate deposits.

REFERENCES

Atlas rodovyshch nafty i hazu Ukrainy. T. 1-3. Skhidnyi naftohazonosnyi rehion [Atlas of oil and gas fields of Ukraine. Vol. 1-3. Eastern oil- and gas-bearing region]. (1998). Lviv: Tsentr Yevropy. [in Ukrainian]
 
Kolodiy, V. V. (1979). Termobaricheskiye usloviya i neftegazonosnost vodonapornykh basseynov [Thermobaric conditions and oil and gas potential of water basins]. Geology and Geochemistry of Combustible Minerals, 52, 3-8. [in Russian]
 
Kolodiy, V. V., & Prykhodko, O. A. (1989). Geotermicheskaya zonalnost i raspredeleniye zalezhey UV na severo-zapade DDV [Geothermal zoning and distribution of hydrocarbon deposits in the north-western part of the Dnieper-Donets Depression]. Oil and Gas Industry, 1, 12-14. [in Russian]
 
Kurovets, I., Prykhodko, O., Hrytsyk, I., Melnychuk, S. (2019). Heotermichni umovy Skhidnoho naftohazonosnoho rehionu Ukrainy [Geothermical conditions of the Eastern oil- and gas-bearing region of Ukraine]. Geology and Geochemistry of Combustible Minerals, 2 (179), 47-54. [in Ukrainian]
 
Lyalko, V. I., & Mytnyk, M. M. (1978). Issledovaniye protsessov perenosa tepla i veshchestva v zemnoy kore [Studies of processes of heat and substance transfer in the Earth’s crust]. Kiev: Naukova Dumka. [in Russian]
 
Osadchiy, V. G., Lurie, A. I., & Erofeev, V. F. (1976). Geotermicheskiye kriterii neftegazonosnosti nedr [Geothermal criteria of oil and gas presence in the bowels]. Kiev: Naukova Dumka. [in Russian]
 
Prykhodko, O. A., Osadchiy, V. G., & Kurovets, I. M. (2005). Termobarychni umovyny produktyvnykh horyzontiv rodovyshch vuhlevodniv pivnichno-zakhidnoi chastyny Dniprovsko-Donetskoi zapadyny [Thermobaric conditions of producing horizons of hydrocarbon deposits of the north-weistern part of the Dnieper-Donets Depression]. Geology and Geochemistry of Combustible Minerals, 3-4, 5-12. [in Ukrainian]
 
Prykhodko, O. A., Osadchiy, V. G., Kutsyaba, I. V., Vakarchuk, G. I., & Babayev, V. V. (1981). Regionalnyye geotermicheskiye issledovaniya v severo-zapadnoy chasti Dneprovsko-Donetskoy vpadiny [Regional geothermal investigations in the north-western part of the Dnieper-Donets Depression]. In Problemy gornoy teplofiziki [Problems of mining thermophysics]: Materials of the II All-Union Scientific Conference (Leningrad, November 17-19, 1981) (p. 75). Leningrad. [in Russian]
Posted on

MINING COMPLEX OF THE LVIV-VOLYN COAL BASIN AND ITS IMPACT ON THE ECOSYSTEM OF THE REGION

Home > Archive > No. 3 (180) 2019 > 52-59


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 52-59.

https://doi.org/10.15407/ggcm2019.03.052

Andriy POBEREZHSKY, Iryna BUCHYNSKA, Olena SHEVCHUK, Taras MUKAN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The influence of exploitation and abandonment of coal mines of the mining complex of Lviv-Volyn coal basin on the ecosystem of the region is considered. The main ecological problems of the territory are analyzed. It is established that the high technogenic pollution of the Chervonograd geological and industrial region is facilitated by the inflow of highly polluted drainage waters from the mine heaps and rock waste heaps of the Chervonograd Central Mining Plant into soils, surface, ground and underground waters. The negative impact of the heaps is caused by the high level of fault tectonics and fracturing of the bedrocks, the flat surface of the area. The influence of technogenic objects on the atmospheric air quality is analyzed. The main causes of the atmospheric air pollution are stationary sources of pollution.

Technogenic objects have a significant impact on the quality of the the atmospheric air. The main role in the structure of pollutants belongs to sulphur anhydrite, carbon and nitrogen oxides, dust and soot. The amount of pollutant emissions into the atmospheric air from stationary sources of pollution for Chervonograd and Sokal districts has been analyzed according to the data of the Main Statistics Office in Lviv region.

To prevent further deterioration of the ecological situation, it is recommended to form flat heaps, their reclamation and landscaping with the obligatory covering of the surface with a layer of neutral rocks, to keep measures to prevent burning of heaps. To stabilize the situation and to prevent further contamination of soil, surface and underground waters, the stable network of observations on the state of the geological environment, systematic geological and environmental monitoring should be carried out.

Keywords

Lviv-Volyn basin, mining complex, waste heaps, soils, underground waters, atmosphere.

REFERENCES

Bankovskaya, V. M., & Maksimovich, N. G. (1989). Geokhimicheskiye izmeneniya prirodnoy sredy v rayonakh razmeshcheniya otvalov ugledobyvayushchey promyshlennosti [Geochemical alteration in environment in areas of location of dumps of mining industry]. Geography and Natural Resours, 2, 42-43. [in Russian]
 
Buchatska, G. M. (2009). Hidroheolohichni umovy ta hidroheokhimichna zonalnist Lvivsko-Volynskoho vuhilnoho baseinu [Hydrogeological conditions and hydrogeochemical zones of Lviv-Volyn’ coal basin]. Visnyk Lviv Univ. Ser. Geol., 23, 175-183. [in Ukrainian]
 
Buchynska, I. V., & Shevchuk, O. M. (2013). Osnovni chynnyky ta dzherela zabrudnennia dovkillia vuhlevydobuvnym kompleksom Lvivsko-Volynskoho kamianovuhilnoho baseinu [Main factors and sources of environmental pollution by coal-mining complex of the the Lviv-Volyn Coal Basin] In Collected articles of IV All-Ukrainian Congress of Ecologists with International Participation (Ecology-2013) (pp. 75-77). Vinnytsia: Dilo. [in Ukrainian]
 
Dovkillia Lvivskoi oblasti. Statystychnyi zbirnyk. 2017 [Environment of the Lviv Region. Statistical collected articles. 2017]. (2018). Lviv: Main Statistical Office in Lviv Region. [in Ukrainian]
 
Ekolohichna informatsiia za IV kv. 2018 r. pro pidpryiemstva, yaki ye osnovnymy zabrudniuvachamy dovkillia Lvivshchyny [Ecological information for IV quarter of 2018 on enterprises that are main pollutants of the environment in the Lviv Region]. (2019). Department of Ecology and Natural Resources of the Lviv Regional State Administration. Retrieved from http://deplv.gov.ua/ekologichna-informaciya-za [in Ukrainian]
 
Ivantsiv, O. Ye., Lyzun, O. S., & Kukhar, Z. Ya. (1999). Heoloho-ekolohichnyi stan ta sotsialni problemy Lvivsko-Volynskoho kamianovuhilnoho baseinu [Geological-ecological state and social problems of the Lviv-Volyn Coal Basin]. Geology and Geochemistry of Combustible Minerals, 2, 20-28. [in Ukrainian]
 
Knysh, I. V. (2006). Perspektyvy vykorystannia vidkhodiv vuhilnoi promyslovosti Lviv-shchyny yak novoi mineralnoi syrovyny [Prospects for usage of waste of coal industry of the Lviv Region as a new mineral raw material]. Visnyk Lviv Univ. Ser. Geol., 20, 111-123. [in Ukrainian]
 
Maksimovich, N. G., & Gorbunova, K. A. (1991). Geokhimicheskiye izmeneniya geologicheskoy sredy pri razrabotke ugolnykh mestorozhdeniy [Geochemical alterations in geological environment while developing coal fields]. Proceedings of higher educational establishments. Geology and Exploration, 5, 137-140. [in Russian]
 
Man’ko, A. (2004). Deiaki problemy funktsiiuvannia depresyvnykh hirnychodobuvnykh raioniv Ukrainy (na prykladi Lvivsko-Volynskoho vuhilnoho baseinu) [Some problems of functioning of the depressed mining regions of Ukraine (on the example of Lvivs’ko-Volyns’kyi Coal Basin)]. Visnyk Lviv Univ. Ser. Geogr., 30, 184-187. [in Ukrainian]
 
Popovych, V., Pidhorodetsky, Y., & Pinder, V. (2016). Typolohiia terykoniv Lvivsko-Volynskoho baseinu [The typology of heaps of Lviv-Volyn Coal Basin]. Scientific Bulletin of UNFU, 26 (8), 238-243. [in Ukrainian]
https://doi.org/10.15421/40260837
 
Pro Kontseptsiiu polipshennia ekolohichnoho stanovyshcha hirnychodobuvnykh rehioniv Ukrainy [On conception of improving ecological state of the mining regions of Ukraine]: Resolution of the Cabinet of Ministers of Ukraine of August 31, 1999, No 1606. (1999). [in Ukrainian]
 
Reshko, M. G., Andreychuk, M. M., Kondratiuk, E. I. et. al. (2002). Rozrobka metodyky ta provedennia robit po prohnozuvanniu vplyvu vydobutku ta zbahachennia vuhillia na otochuiuche seredovyshche u Lvivsko-Volynskomu baseini (Chervonohradskyi ta Pivdenno-Zakhidnyi raiony) [Development of methodology and work execution on prediction of the influence of coal production and concentration upon the environment in the Lviv-Volyn Basin (Chervonohrad and South-Western regions)] (Vol. 1). Lviv: Funds of the State Geological Enterprise “Zakhidukrheolohia”. [in Ukrainian]
 
the State Enterprise “Lvivvuhillia”. (2020). Miner of Halychyna. Retrieved from http://www./vug.com.ua/lvivvugillya/ [in Ukrainian]
 
Tkachuk, V. G., & Kalashnikov, V. K. (1990). Karta estestvennoy zashchishchennosti podzemnykh vod Ukrainskoy SSR. Masshtab 1 : 200 000. Lvovskaya oblast [Map of natural protectability of underground water of Ukrainian Soviet Social Republic. Scale 1 : 200 000. The Lviv Region]. Kiev: Glavk KGU “Ukrgeologia” of PGO “Zapadukrgeologia”. [in Russian]
 
Zabolotnyi, A. G., & Grigoriuk, E. K. (2000). Ekologicheskiye problemy v ugolnoy otrasli Ukrainy [Ecological problems in coal branch of Ukraine]. Coal of Ukraine, 7, 12-14. [in Russian]
Posted on

TO THE QUESTION OF OUTBURST HAZARD PREDICTION OF COAL BEDS AT THE LVIV-VOLYN BASIN

Home > Archive > No. 3 (180) 2019 > 41-51


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 41-51.

https://doi.org/10.15407/ggcm2019.03.041

Viacheslav LUKINOV, Kostiantyn BEZRUCHKO, Liubov KUZNETSOVA

Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, Dnipro,
e-mail: gvrvg@meta.ua

Mykhailo MATROFAILO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

Sudden coal and gas outbursts in coal mines are one of the most harmful and at the same time, dangerous gas-dynamic phenomena faced when coal producting. The sudden coal and gas outbursts is the evanescent destruction of the bottom-hole area in the coal bed, which develops from the bottom into the depth of a massif, and the crushed coal with gas is thrown to a long distance from the bottom into the mine, destroying everything in its way, creating the conditions for explosion and fire breaking-out. Sudden outbursts lead to significant material losses for the recovery from an accident and in some cases injuries and human losses. The problem of reliable prediction, prevention, and control of sudden coal and gas outbursts at coal mines remains extremely urgent, due to the constant increase in the depth of mining operations. The analysis of the experience of predicting and preventing the outburst hazard in coal beds of Donets and Lviv-Volyn coal basins is analyzed. At Donbas mines since 1906, there have been more than 7.5 thousand sudden outbursts. Although mining had now reached considerable depths (from 300 to 600 m), the emergence of coal and gas outbursts have not been recorded. The purpose of the research is to determine the depth of the possible emergence of sudden coal and gas outbursts in the LVB, with regard to the peculiarities of the geological structure of the coal-bearing strata in the Lviv-Volyn coal basin.

The comparative possible depth estimation in the manifestation of the outburst hazard of the coal beds in the LVB is given. It is calculated according to the normative technique and performed according to the formulas obtained by the statistical analysis for the actual position of the minimum depth of coal and gas outbursts at the Donbas mines. The absence of sudden coal and gas outbursts at LVB mines on the coal beds, which are hazardous according to the prediction data, is performed according to the methods regulated by the normative documents and compiled by the experience of studying the outbursts in Donbas, is explained by the differences in the geological structure of the LVB, the main of which is the presence of thick mass of covering deposits and a significantly greater depth of the methane gas zone. The application of the empirical formulas prediction, which includes the methane gas zone depth index, allows us to account for these differences and it is much more reliable to determine the possible depths of sudden outbursts for LVB, which, all other things being equal, should be greater than in the Donbas. In particular, according to the performed calculations, the outburst hazard situation at the “Stepova” mine is predicted at depths of more than 700 m. As prediction indices for the calculations, values of methane gas zone depths of 450 m were adopted, and the minimum value of volatile-matter yield was 33.3%.

This approach can be proposed for predicting the coal and gas outbursts hazard in other Lviv-Volyn basin mines. To determine the predicted depth of the possible emergence of sudden coal and gas outbursts, it is advisable to take into account the depth of the methane gas zone in the prediction calculations.

Keywords

Lviv-Volyn coal basin, coal beds, sudden outburst, zone of methane gases, prediction of outburst hazard.

REFERENCES

Bulat, A. F., Lukinov, V. V., Bezruchko, K. A. et al. (2017). Heolohichni osoblyvosti formuvannia metanovosti hirnychykh vyrobok shakhty “Stepova” DP “Lvivvuhillia” [Geological peculiarities of methane formation of mine workings of the Stepova mine of SE “Lvivvuhillya”]. Coal of Ukraine, 7-8, 54-63. [in Ukrainian]
 
Kushniruk, V. A. (1978). Gazonosnost uglenosnoy tolshchi Lvovsko-Volynskogo ugolnogo basseyna [Gas content of the coal-bearing strata of the Lviv-Volyn coal basin]. Kiev: Naukova Dumka. [in Russian]
 
Lukinov, V. V., Prykhodchenko, V. F., Zhykaliak, M. V., & Prykhodchenko, O. V. (2016). Metody prohnozu hirnycho-heolohichnykh umov rozrobky vuhilnykh rodovyshch [Methods of forecasting mining and geological conditions for the development of coal deposits]. Dnipro: NHU. [in Ukrainian]
 
Pechuk, I. M. (1963). Opredelenie vybrosoopasnosti plastov [Determination of outburst hazard of layers]. Coal of Ukraine, 11, 50-52. [in Russian]
 
Pravyla vedennia hirnychykh robit na plastakh, skhylnykh do hazodynamichnykh yavyshch [Rules for mining operations on layers prone to gas-dynamic phenomena]: SOU 10.1.00174088.011-2005. (2005). Kyiv: Minvuhleprom Ukrainy. [in Ukrainian]
 
Sokorenko, S., Kostyk, I., & Matrofailo, M. (2011). Osoblyvosti suchasnoi pryrodnoi hazonosnosti vuhilnykh plastiv ta vuhlevmisnykh porid Liubelskoho rodovyshcha kamianoho vuhillia Lvivsko-Volynskoho baseinu [Characteristic properties of present day natural gas potential of coalbeds and coal-containing rocks of the Lyubelya coal field of the Lviv-Volyn basin]. Geologist of Ukraine, 2 (34), 81-89. [in Ukrainian]
 
Struev, M. I., Isakov, V. I., Shpakova, V. B. et al. (1984). Lvovsko-Volynskiy kamennougolnyy basseyn. Geologo-promyshlennyy ocherk [Lviv-Volyn coal basin. Geological and industrial essay]. Kiev: Naukova Dumka. [in Russian]
 
Vremennoe rukovodstvo po prognozu vybrosoopasnosti ugolnykh plastov Donetskogo basseyna pri geologorazvedochnykh rabotakh [Interim guidance on the forecast of outburst hazard of coal seams of the Donets basin during geological exploration]. (1980) Moscow: Skochinsky IGD. [in Russian]
 
Zabigaylo, V. E. (1973). K osnovam regionalnogo prognoza vybrosoopasnosti ugolnykh plastov, porod i gaza po geologorazvedochnym dannym [To the basis of the regional outburst hazard for coal seams, rocks and gas from exploration data]. In Modern methods of studying and forecasting of mining-geological conditions while prospecting for coal fields [Sovremennye metody izucheniya i prognozirovaniya gorno-geologicheskikh usloviy pri razvedke ugolnykh mestorozhdeniy]: Proceedings of the All-Union Scientific and Technical Seminar (Russia, Rostov-on-Don, 1973) (pp. 53-57). Rostov-on-Don. [in Russian]
 
Zabigaylo, V. E. (1978). Geologicheskie osnovy teorii prognoza vybrosoopasnosti ugolnykh plastov i gornykh porod [Geological foundations of the theory of forecasting the outburst hazard of coal seams and rocks]. Kiev: Naukova Dumka. [in Russian]
 
Zabigaylo, V. E., Lukinov, V. V., & Zrazhevskaya, N. G. (1985). O prognoznoy otsenke minimalnoy glubiny vybrosov uglya i gaza na shakhtakh [On the forecast estimate of the minimum depth of coal and gas emissions in mines]. Coal of Ukraine, 5, 41. [in Russian]
 
Zabigaylo, V. E., Shirokov, A. Z., Kratenko, L. Ya. et al. (1980). Geologicheskie usloviya vybrosoopasnosti ugolnykh plastov Donbassa [Geological conditions of the outburst hazard of Donbas coal basin]. Kiev: Naukova Dumka. [in Russian]
Posted on

THERMODYNAMICS OF TYPE II KEROGEN TRANSFORMATION

Home > Archive > No. 3 (180) 2019 > 25-40


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 25-40.

https://doi.org/10.15407/ggcm2019.03.025

Yuri Khokha, Oleksandr Lyubchak, Myroslava Yakovenko

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The article reviews the chemical structure of type II kerogen. The changes that occur with the structure of type II kerogen as it passes through the stages of catagenesis from immature to post-mature are evaluated. Structural models of type II kerogen at different stages of catagenesis are presented: both obtained empirically after studying the structure by physical and chemical methods and the results of modelling by molecular dynamics method.

Methods of equilibrium thermodynamics are used to calculate the composition of the kerogen–gas system for crust sections in the range of 1–20 km with a heat flux of 40 to 100 mW/m2. The composition of kerogen/fluid geochemical system is calculated using the E. T. Jaynes formalism. It boils down to determining the optimal distribution of 5 elements (C, H, O, N, S) among the 44 additive constituents of the solid phase (i. e., type II kerogen) and other individual components that are included in the system (CO2, H2O, H2S, NH3, CH4, C2H6, C3H8, i-C4H10, n-C4H10, i-C5H12, neo-C5H12, n-C5H12).

Comparison with the experiments showed that the results of the calculations do not contradict the experiments, with study the structure and changes in type II kerogen with increasing degree of catagenesis. In the analysis of changes in the concentrations of water, carbon dioxide and hydrogen sulfide, it is founded that kerogen could be not only a donor of atoms for gas components, but also their acceptor in contact with a high-energy fluid stream. It is shown that the determination of sulfur-containing atomic groups of kerogen by thermodynamic modelling yields gives more reliable results than molecular dynamics methods.

Established is that the concept of “methane-graphite death”, which takes place in the state of thermodynamic equilibrium in the transformation of organic matter, is erroneous. The calculation shows that the composition of the kerogen–gas system, in addition to methane and carbon, includes solid-phase heteroatom groups, various additive components of aromatic structures and gases, both organic and inorganic. The distribution of elements between the additive components of kerogen and gases in this system controls the pressure and temperature in a complex way. The nature of changes in hydrocarbon gas concentrations in equilibrium with type II kerogen indicates the presence of an “oil window” in low-warmed zones within 2–4 km depths.

Keywords

type II kerogen, catagenesis, “oil window”, equilibrium thermodynamics, Jaynes formalism.

REFERENCES

Behar, F., & Vandenbroucke, M. (1987). Chemical modelling of kerogens. Organic Geochemistry, 11, 15-24.
https://doi.org/10.1016/0146-6380(87)90047-7
 
Behar, F., Kressmann, S., Rudkiewicz, J. L., & Vandenbroucke, M. (1992). Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry, 19 (1-3), 173-189.
https://doi.org/10.1016/0146-6380(92)90035-V
 
Behar, F., Roy, S., & Jarvie, D. (2010). Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling. Organic Geochemistry, 41, 1235-1247.
https://doi.org/10.1016/j.orggeochem.2010.08.005
 
Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53 (6), 2498-2508.
https://doi.org/10.1021/ie4033999
 
Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In B. Durand (Ed.), Kerogen, Insoluble Organic Matter from Sedimentary Rocks (pp. 13-34). Paris: Editions Technip.
 
Forsman, J. P., & Hunt, J. M. (1958). Insoluble organic matter (kerogen) in sedimentary rocks. Geochimica et Cosmochimica Acta, 15, 170-182.
https://doi.org/10.1016/0016-7037(58)90055-3
 
Helgeson, H., Richard, L., McKenzie, W., Norton, D., & Schmitt, A. (2009). A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochimica et Cosmochimica Acta, 73 (3), 594-695.
https://doi.org/10.1016/j.gca.2008.03.004
 
Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., … Behar, F. (2007). Direct Characterization of Kerogen by X-ray and SolidState 13C Nuclear Magnetic Resonance Methods. Energy Fuels, 21 (3), 1548−1561.
https://doi.org/10.1021/ef060321h
 
Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti [Thermodynamics of abyssal hydrocarbons in the forecast of oil and gas deposits]. Kyiv: Naukova dumka. [in Ukrainian]
 
Khokha, Yu., Lyubchak, O., & Yakovenko, M. (2018). Vplyv temperaturnoho rezhymu na hazoheneratsiinyi potentsial huminovykh kyslot orhanichnoi rechovyny [Effect of temperature flow on gas-generating potential of humic acids of organic matter]. Geology and Geochemistry of Combustible Minerals, 3-4 (176-177), 49-63. [in Ukrainian]
 
Khokha, Yu., Lyubchak, O., & Yakovenko, M. (2019). Enerhiia Hibbsa utvorennia komponentiv pryrodnoho hazu v osadovykh tovshchakh [Gibbs Free Energy of natural gas components formation in sedimentary strata]. Geology and Geochemistry of Combustible Minerals, 2 (179), 37-47. [in Ukrainian]
 
Lindsey, A. S., & Jeskey, H. (1957). The Kolbe-Schmitt Reaction. Chemical Reviews, 57 (4), 583-620.
https://doi.org/10.1021/cr50016a001
 
Lyubchak, O. V., Khokha, Yu. V., & Yakovenko, M. B. (2018). Spivvidnoshennia strukturnykh elementiv vuhlevodnevoi skladovoi arhilitiv skhidnykh karpat za formalizmom Dzheinsa [Correlation of the hydrocarbon components structural elements of the Eastern Carpathians argillites by the Jaynes’ formalism]. Visnyk of Karazin Kharkiv National University, series “Geology. Geography. Ecology”, 49, 83-94. [in Ukrainian]
 
Nikonov, V. N. (1961). Tyazhelyye uglevodorody i ikh sootnosheniye v gazakh neftyanykh i gazovykh zalezhey. Geologiya nefti i gaza, 8, 15-21. [in Russian]
 
Planche, H. (1996). Finite time thermodynamics and the quasi-stability of closed-systems of natural hydrocarbon mixtures. Geochimica et Cosmochimica Acta, 22 (60), 4447-4465.
https://doi.org/10.1016/S0016-7037(96)00271-2
 
Stuermer, D. H., Peters, K. E., & Kaplan, I. R. (1978). Source indicators of humic substances and proto-kerogen. Stable isotope ratios, elemental compositions and electron spin resonance spectra. Geochimica et Cosmochimica Acta, 42 (7), 989-997.
https://doi.org/10.1016/0016-7037(78)90288-0
 
Tisso, B., & Velte, D. (1981). Obrazovaniye i rasprostraneniye nefti. Moskva: Mir. [in Russian]
 
Tomic, J., Behar, F., Vandenbroucke, M., & Tang, Y. (1995). Artificial maturation of Monterey kerogen (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur. Organic Geochemistry, 23 (7), 647-660.
https://doi.org/10.1016/0146-6380(95)00043-E
 
Ungerer, P., Collell, J., & Yiannourakou, M. (2015). Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity. Energy Fuels, 29 (1), 91-105.
https://doi.org/10.1021/ef502154k
 
Van Krevelen, D. W., & Chermin, H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1 (2), 66-80.
https://doi.org/10.1016/0009-2509(51)85002-4
 
Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719-833
https://doi.org/10.1016/j.orggeochem.2007.01.001
 
Zhao, T., Li, X., Zhao, H., Li, M. (2017). Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content. Fuel, 190 (15), 198-207.
https://doi.org/10.1016/j.fuel.2016.11.027
Posted on

PROBLEMATIC ASPECTS OF THE FORMATION OF THE UKRAINIAN SEGMENT OF THE CARPATHIANS

Home > Archive > No. 3 (180) 2019 > 5-24


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 5-24.

https://doi.org/10.15407/ggcm2019.03.005

Myroslav Palyuk, Volodymyr Shlapinsky, Albert Medvedev, Bohdan Rizun, Myroslav Ternavsky

Institute of Geology and Geochemistry of Combustible Mineralsof National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

In the paper a model of the formation of the folded-covering-block structure of the Carpathians at a time interval that envelops Late-Hercynian and Alpine events is substantiated. Moreover, this concerns the Outer Carpathians, but the whole Carpathians arch was characterized without going into details, a critical estimate is expressed for application of such terms as terrains, accretion prism, suture, subduction and Transcarpathian fault. It is shown that formation of the Carpathians occurred through several stages under the influence of different-directed, manly horizontal, movements, as a result of which was destruction of early formed  Hercynian continental crust, laying of geosynclinals troughs, formation and further transformation of the basement of the Flysch Carpathians, its collision with Eurasian continental edge, underling of the latter under flysh complex. After completion of these processes mainly vertical movements took place that lineally formed the structure of the Carpathians as folded-covering-block one. As a result of the last event (Pliocene-Pleistocene), a differential development of intensive fracturing occurred with the influx of hydrocarbons and filling traps formed up.

Keywords

formation of the Carpathians, terrains, accretion prism, Transcarpathian fault, crocodile tectonics, Other Carpathians, folded-covering-block structure.

REFERENCES

Artyushkov, E. V. (1993). Fizicheskaya tektonika. Moskva: Nauka. [in Russian]
 
Dolenko, G. N., Boychevskaya, L. T., Danilovich, L. G. et al. (1980). Glubinnoye stroyeniye, razvitiye i neftegazonosnost Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]
 
Esipovich, S. M. (1998). Istoriya razvitiya planety Zemlya – pulsiruyushcheye rasshireniye pod deystviyem kosmicheskogo pressinga. Odessa: Astroprint. [in Russian]
 
Evolution of the Northern margin of Tethys: the results of IGCP Project 198. (1990). Mem. Soc. Geol. Fr, 154, 1-200.
 
Gabinet, M. P., Kulchitskiy, Ya. O., & Matkovskiy, O. І. (1976). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat (Ch. 1, s. 79-80). Lvov: Vyshcha shkola. [in Russian]
 
Glushko, V. V., & Kruglov, S. S. (Red.). (1986). Tektonicheskaya karta Ukrainskikh Karpat. M-b 1 : 200 000. Kiev: UkrNIGRI, Mingeo USSR. [in Russian]
 
Gnilko, O. M., & Generalova, L. V. (2014). Tektono-sedimentatsionnoye razvitiye Predmarmaroshskoy akkretsionnoy prizmy Ukrainskikh flishevykh Karpat. Vestnik Sankt-Peterburgskogo universiteta, 7 (2), 5-23. [in Russian]
 
Gofshteyn, I. D. (1995). Geomorfologicheskiy ocherk Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]
 
Gordiyenko, V. V. (1998). Glubinnyye protsessy v tektonosfere Zemli. Kiev: Naukova dumka. [in Russian]
 
Halabuda, M. I. (2000). Fiksyzm, mobilizm chy tsyklichne rozshyrennia Zemli. Heodynamika, 1 (3), 28-38. [in Ukrainian]
 
Halabuda, M. I. (2002). Kosmichno-anomalistychna kontseptsiia formuvannia zemnoi kory. Heolohiia i heokhimiia horiuchykh kopalyn, 3, 100-108. [in Ukrainian]
 
Hnylko, O. M. (2011). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Chastyna 1. Osnovni elementy Karpatskoi sporudy. Heodynamika, 1 (10), 47-57. [in Ukrainian]
https://doi.org/10.23939/jgd2011.01.047
 
Hnylko, O. M. (2012). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Chastyna 2. Flishovi Karpaty – davnia akretsiina pryzma. Heodynamika, 1 (12), 67-78. [in Ukrainian]
 
Hnylko, O. M. (2014). Tektonika ta protsesy stanovlennia pokryvno-skladchastoi sporudy Ukrainskykh Karpat. In Suchasna heodynamika ta heofizychni polia Karpat i sumizhnykh terytorii (s. 24-71). Lviv. [in Ukrainian]
 
Hnylko, O. M. (2016). Heolohichna budova ta evoliutsiia Ukrainskykh Karpat. (Extended abstract of Doctorʼs thesis). Lviv. [in Ukrainian]
 
Hofshtein, I. D. (1971). Shcho rozumity pid suchasnoiu strukturoiu Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 22, 34-36. [in Ukrainian]
 
Khain, V. E., Beer, M. A., Byzova, S. L. et al. (1977). Osnovnyye cherty tektonicheskoy istorii Karpat (v svete novykh idey v uchenii o geosinklinalyakh). Vestnik Moskovskogo universiteta. Ser. Geologiya, 3, 3-20. [in Russian]
 
Khain, V. E., & Lobkovskiy, L. I. (1990). Ob osobennostyakh formirovaniya kollizionnykh orogenov. Geotektonika, 6, 20-31. [in Russian]
 
Khain, V. E., & Lomize, M. G. (1995). Geotektonika s osnovami geodinamiki. Moskva: Nauka. [in Russian]
 
Khain, V. E. (2001). Tektonika kontinentov i okeanov. Moskva: Nauchyy mir. [in Russian]
 
Klitochenko, I., Antsupov, P., & Vul, M. (1964). O vremeni skladkoobrazovaniya vo Vnutrennoy zone Predkarpatskogo krayevogo progiba. In Neftyanaya i gazovaya geologiya (s. 8-11). Moskva: TsNIITEN Neftegaz. [in Russian]
 
Kruglov, S. S. (2000). O korrelyatsii mezozoyskikh i kaynozoyskikh formatsiy Ukrainskikh, Slovatskikh i Polskikh Karpat. Heodynamika, 1 (3), 58-65. [in Russian]
 
Kruglov, S. S. (2001). Problemy tektoniki i paleogeodinamiki zapada Ukrainy (kriticheskiy obzor novykh publikatsiy). Lvov. [in Russian]
 
Kruglov, S. S., Smirnov, S. E., Spitkovskaya, S. M. et al. (1985). Geodinamika Karpat. Kiev: Naukova dumka. [in Russian]
 
Kruhlov, S. S. (1998). Tektonika i heodynamika Ukrainskykh Karpat. Heodynamika, 1, 86-89. [in Ukrainian]
 
Kuzovenko, V., & Shlapinskyi, V. (2007). Do pryrody i umov rozmishchennia “skel” neokomskykh diiabaziv u Burkutskomu pokrovi Ukrainskykh Karpat. Pratsi Naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 19, 40-49. [in Ukrainian]
 
Lazko, E. M., & Rezvoy, D. P. (1962). O tektonicheskoy prirode zony Karpatskikh utesov. Visnyk Lvivskoho universytetu im. I. Franka. Seriia heolohichna, 1, 60-65. [in Russian]
 
Leshchukh, R. Y. (1982). Nyzhnokreidovi amonity Ukrainskykh Karpat. Kyiv: Naukova dumka. [in Ukrainian]
 
Liashkevych, Z. (2014). Evoliutsiia ta henezys kainozoiskoho vulkanizmu Pankardii. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiia, 3 (66), 21-26. [in Ukrainian]
https://doi.org/10.17721/1728-2713.66.03
 
Lyashkevich, Z. M., Medvedev, A. P., Krupskiy, Yu. Z. et al. (1995). Tektono-magmaticheskaya evolyutsiya Karpat. Kiev: Naukova dumka. [in Russian]
 
Maksimov, A. A., & Nemkov, T. I. (1949). Obyasnitelnaya zapiska k listam geologicheskoy karty M-35-XXXI (Nadvornaya) i L-35-I (Chivchiny). (T. 14. Ch. 1. Otchet o rabotakh Karpatskoy geologicheskoy ekspeditsii MGRI). Moskva: Fondy DP “Zakhidukrheolohiia”. [in Russian]
 
Marshalko, R. (1980). Paleotektonicheskiye rekonstruktsii pyeninskikh i primykayushchikh flishevykh zhelobov i ikh substrata v Vostochnoy Slovakii. In Materialy XІ kongressa KBGA. Litologiya (s. 140-148). Kiev: Naukova dumka. [in Russian]
 
Medvediev, A. P., & Varychev, O. S. (2000). Pra-Karpaty (konstruktsiia i destruktsiia). Lviv. [in Ukrainian]
 
Meissner, R., & Reston, T. (1989). The three-dimensional structure of the oberpfalz – an alternative interpretation of the DEKORP-KTB data. Tectonophysics, 157 (1-3), 1-11.
https://doi.org/10.1016/0040-1951(89)90336-3
 
Monin, A. S., & Zonenshayn, L. P. (Red.). (1987). Istoriya okeana Tetis. Moskva: Institut okeanologii AN SSSR. [in Russian]
 
Ney, R. (1976). The Carpathians and plate tectonics. Prz. geol., 24 (6), 309-316.
 
Nikolayev, V. G. (1986). Pannonskiy basseyn (stroyeniye osadochnogo chekhla i razvitiye). Trudy GIN AN SSSR, 406. [in Russian]
 
Oszczypko, N., Uchman, A., & Malata, E. (Red.). (2006). Rozwój paleotektoniczny basenów Karpat zewnętrznych i pienińskiego pasa skałkowego. Kraków: Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego.
 
Patalakha, E. I., Lukiyenko, A. I., & Gonchar, V. V. (1995). Tektonicheskiye potoki kak osnova ponimaniya geologicheskikh struktur. Kiev. [in Russian]
 
Pavliuk, M. I., & Medvediev, A. P. (2004). Pankardiia: problemy evoliutsii. Lviv: Liha-Pres. [in Ukrainian]
 
Pavliuk, M., Liashkevych, Z., & Medvediev, A. (2013). Ukrainski Karpaty v strukturi Pankardii (mahmatyzm i heodynamika). Heodynamika, 1 (14), 45-60. [in Ukrainian]
 
Rădulesku, D. P., & Săndulesku, M. (1973). The plate-tectonics concept and the geological structure of the Carpathians. Tectonophysics, 16 (3-4), 155-161.
https://doi.org/10.1016/0040-1951(73)90010-3
 
Saleebe, J. B. (1983). According tectonics of the North American Cordillera. Annual Reviews of the Earth and Planetary Science, 15, 45-73.
https://doi.org/10.1146/annurev.ea.11.050183.000401
 
Shlapinskyi, V. Ye. (2009). Mikrofauna v olistostromovykh utvorenniakh verkhnoi kreidy Hoverlianskoho subpokrovu v raioni Yasini. In P. F. Hozhyk (vidp. red.). Vykopna fauna i flora Ukrainy: paleoekolohichnyi ta stratyhrafichnyi aspekty (s. 179-183). Kyiv. [in Ukrainian]
 
Shlapinskyi, V. (2012). Deiaki pytannia tektoniky Ukrainskykh Karpat. Pratsi Naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 30, 48-68. [in Ukrainian]
 
Shlapinskyi, V. Ye., & Kuzovenko, V. V. (1998). Vyvchennia heoloho-heofizychnykh materialiv po pivdenno-skhidnii chastyni vnutrishnikh flishovykh pokroviv Ukrainskykh Karpat z metoiu vyiavlennia perspektyvnykh na naftu ta haz obiektiv (1995-1998 rr.). T. 1. Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]
 
Shlapinskyi, V. Ye., Machalskyi, D. V., & Khomiak, L. M. (2013). Utochneni dani shchodo paleohenovykh vidkladiv Peninskoho pokryvu Ukrainskykh Karpat. Tektonika i stratyhrafiia, 40, 125-133. [in Ukrainian]
 
Shlapinskyi, V. Ye., Zhabina, N. M., Machalskyi, D. V., & Ternavskyi, M. M. (2017). Heolohichna budova Peninskoho pokryvu Ukrainskykh Karpat. Heodynamika, 1 (22), 55-73. [in Ukrainian]
 
Tretiak, K. R., Maksymchuk, V. Yu., & Kutas, R. I. (Red.). (2014). Suchasna heodynamika ta heofizychni polia Karpat i sumizhnykh terytorii. Lviv. [in Ukrainian]
 
Utrobin, V. N., & Linetskaya, L. V. (1975). O vzaimootnosheniyakh Karpatskoy i Dinarskoy geosinklinalnykh skladchatykh sistem. Byulleten Moskovskogo obshchestva ispytateley prirody. Otdel geologicheskiy, 50 (3), 145-146. [in Russian]
 
Vasylenko, A. Yu. (2016). Neohenovyi mahmatyzm v systemi Zakarpatskoho hlybynnoho rozlomu. (Extended abstract of candidateʼs thesis). Kyivskyi natsionalnyi universytet im. Tarasa Shevchenka. Kyiv. [in Ukrainian]
 
Voloshin, A. A. (1971). Geologicheskoye stroyeniye i poleznyye iskopayemyye basseyna verkhnego techeniya reki Tisa (otchet o rezultatakh geologosyemochnykh rabot massshtaba 1 : 50 000 i 1 : 25 000. Rakhovskiy rayon) (T. 1). Beregovo: Fondy DP “Zakhidukrheolohiia”. [in Russian]
 
Yesypovych, S. M. (2000). Deiaki aspekty rozvytku planety Zemlia. Heodynamika, 1 (3), 28-38. [in Ukrainian]
 
Zeylik, B. S. (1978). O proiskhozhdenii dugoobraznykh i koltsevykh struktur na Zemle i drugikh planetakh (udarno-vzryvnaya tektonika). Moskva: VIEMS. [in Russian]
 
Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1968). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Perechin Zakarpatskoy oblasti USSR v 1966-1967 gg. (T. 1-2). Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]
 
Zhigunova, Z. F., Petrov, V. G., & Koval, Zh. S. (1969). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Turia Polyana Zakarpatskoy oblasti USSR v 1968 g. (T. 1-2). Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]
Posted on

ON NEW APPROACH TO DETERMINING HEAT-PRODUCING OF NATURAL GAS SUPPLIED TO CONSUMERS AND ITS CUBIC METROBAROMETRY

Home > Archive > No. 2 (179) 2019 > 84-89


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 84-89.

https://doi.org/10.15407/ggcm2019.02.084

Yosyp SVOREN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

It is shown that with the change in pressure and temperature of natural gases in storages gas-holders, different installations one can separate water in necessary concentration from hydrates of hydrocarbon gases in their composition that forms its increased admixture in pipes and in the long run it influences the final heat-producing of the fuel. New approach was proposed as to the determing of heat-producing of natural gas supplied to consumers by the way of substantiation of the necessity to introduce such a unit as cubic metrobar (m3 bar). This would be conductive to determination of the correlation between heat-producing of produced natural gas and gas supplied to consumers, that is to say, determination of quality of consumed gas.

Keywords

cubic metrobarometry, natural gas, gas hydrates, water steam, process of burning.

REFERENCES

Konstytutsiia Ukrainy. Iz zminamy, vnesenymy zghidno z Zakonom № 2222-IV vid 8 hrudnia 2004 roku. (2006). Kyiv: Veles, 13. [in Ukrainian]

Rudko, H. I., Bondar, O. I., Lovyniukov, V. I., Bakarzhiiev, A. Kh., Hryhil, V. H., Khomyn, V. R. … Lahoda, O. A. (2014). Enerhetychni resursy heolohichnoho seredovyshcha Ukrainy (stan ta perspektyvy) (T. 1–2). Chernivtsi: Bukrek. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopov. Nac. akad. nauk Ukr., 2, 111–116. [in Ukrainian]

Posted on

PALEO- AND EXISTENT HYDROGEOLOGICAL CONDITIONS OF THE BILCHE-VOLYTSA ZONE OF THE CARPATHIAN OIL- AND GAS-BEARING PROVINCE

Home > Archive > No. 2 (179) 2019 > 68-83


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 68-83.

https://doi.org/10.15407/ggcm2019.02.068

Vasyl HARASYMCHUK, Halyna MEDVID, Maria KOST, Olha TELEGUZ

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

On the basis of paleo- and modern hydrogeological sings it was possible to establish a space-time mechanism of formation and reservation of gas and oil deposits in the Bilche-Volytsa zone of the Carpathian oil- and gas-bearing province.

The time interval of their forming applies on the last cycle of the hydrogeological time. Geodynamic and secondary geostatic loadings, that manifested themselves during the dynamo-elision stage (Late Badenian – up to the present) the development of which was caused by thrust motions of the covers, turned out to be the factors of migration of aqueo-hydrocarbon mixtures deep underthrust structures of the Inner zone. Time calculations for reservation of deposits of gas fields have determined their age which does not exceed 6 million years.

The south-western trend of motion of paleo- and modern infiltration waters in combination with reversed dynamo-elision have caused here the existence hydrodynamically balanced system squeezed between them which differs by favourable conditions for the formation and reservation of hydrocarbon deposits.

We have ascertained the connection between piezomaxima and areas of tectonic dislocation, mainly transverse, that points out the ways of transsference of hydrocvarbon mixtures from deep-seated horisons. Discharge areas (perspective on a plane of searching for new deposits) are limited by local piezomaxima on the background of regional fields. Areas of paleopiezominima in the near-fault part of the Ugerske-Kosiv blocks at the boundary with the East European Platform are favourable for localization of hydrocarbon deposits.

Results of the baroosmotic analysis of hydrogeological conditions of gas and oil fields have revealed baroosmotic flows of waters molecules in the thickness of clay rocks, their intensity and directions of motion and connections with deposits.

Keywords

Bilche-Volytsya oil- and gas-bearing zone, paleohydrodynamics, hydrogeochemistry, elision, infiltration, baroosmose.

REFERENCES

Atlas rodovyshch nafty i hazu [Atlas of oil and gas fields of Ukraine] (Vol. 4). (1998). – Lviv: UOGA. [in Ukrainian]

Babinets, A. E., & Malskaya, R. V. (1975). Geokhimiya mineralizovannykh vod Predkarpat’ya [Geochemistry of mineralized waters of the Precarpathian region]. Kiev: Naukova dumka. [in Russian]

Harasymchuk, V. Yu., Kolodii, V. V., & Kulynych, O. V. (2004). Heneza vysokokontsentrovanykh solianok pidnasuvnykh vidkladiv pivdenno-skhidnoi chastyny Zovnishnoi zony Peredkarpatskoho prohynu [Genesis of highly concentrated brines of sub-cumulative sediments of the southeastern part of the Outer Zone of the Precarpathian Foredeep]. Геологія і геохімія горючих копалин [Geology and Geochemistry of Combustible Minerals], 4, 105–119. [in Ukrainian]

Harasymchuk, V. Yu., & Medvid, H. B. (2010). Gidrogeologicheskie usloviya razrusheniya gazovykh mestorozhdenii Vneshnei zony Predkarpatskogo progiba: Fundamental’nye problemy neftegazovoi gidrogeologii [Hydrogeological conditions of destruction of gas fields of the Outer Zone of the Precarpathian Foredeep: Fundamental problems of oil and gas hydrogeology]. In Materialy Vserossiiskoi nauchnoi konferentsii, posvyashchennoi 85-letiyu A. A. Kartseva (Rossiya, Moskva, 21–23 sentyabrya 2010 g.) [Proceedings of the Russian Scientific Conference dedicated to the 85th Anniversary of A. A. Kartsev (Russia, Moscow, September 21–23, 2010)] (pp. 83–87). Moscow. [in Russian]

Kartsev, A. A. (1963). Gidrogeologiya neftyanykh i gazovykh mestorozhdenii [Hydrogeology of oil and gas fields]. Moscow: Gostoptehizdat. [in Russian]

Kolodii, V. V., Boyko, G. Yu., Boychevskaya, L. T. et al. (2004). Karpatska naftohazonosna provintsiia [Carpathian oil and gas province]. Lviv; Kyiv: Ukrainian Publishing Centre. [in Ukrainian]

Kolodii, V. V., & Koynov I. M. (1984). Izotopnyi sostav vodoroda i kisloroda podzemnykh vod Karpatskogo regiona i voprosy ikh proiskhozhdeniya [Isotopic composition of hydrogen and oxygen of groundwater in the Carpathian region and issues of their origin]. Geokhimiya [Geochemistry], 5, 721–733. [in Russian]

Kushnir, S. V. (2009). Baroosmotychnyi analiz yak novyi metod hidroheolohichnykh doslidzhen [Baroosmotic analysis as a new method of hydrogeological research]. Dopov. Nac. akad. nauk Ukr., 11, 104–110. [in Ukrainian]

Kushnir, S., Kost’, M., Dudok, I., & Pankiv, R. (2012). Baroosmotychnyi analiz hidroheolohichnykh umov Khidnovytskoho hazovoho rodovyshcha (Ukrainske Peredkarpattia) [Baroosmotic analysis of hydrogeological conditions of Khidnovychi gas field (Ukrainian Precarpathian)]. Heolohiia i heokhimiia horiuchykh kopalyn [Geology and Geochemistry of Combustible Minerals], 1–2 (158–159), 68–82. [in Ukrainian]

Kushnir, S., Kost’, M., Dudok, I., Pankiv, R., & Palchykova, O. (2012). Baroosmotic analysis of processes in ground waters of the Kokhanivka–Svydnytsia area (Ukrainian Carpathian Foredeep). Bulletin of the Polish Geological Institute, 449, 195–202.

Lazaruk, Y. G. (2019). Perspektyvy vidkryttia rodovyshch zi znachnymy zapasamy vuhlevodniv na terytorii Ukrainy [Prospects for the discovery of deposits with significant hydrocarbon reserves in Ukraine]. In VI Mizhnarodna naukovo-praktychna konfereniia : Nadrokorystuvannia v Ukraini. Perspektyvy investuvannia [VI International Scientific-Practical Conference: Intelligent use in Ukraine. Investment prospects] (pp. 302–306). Truskavets. [in Ukrainian]

Medvid, H. (2018). Paleohidroheolohichna kharakterystyka miotsenu pivnichno-zakhidnoi chastyny Zovnishnoi zony Peredkarpatskoho prohynu [Paleohydrogeological characteristics of the Miocene of the north-western part of the Outer Zone of the Precarpathian Foredeep]. Heolohiia i heokhimiia horiuchykh kopalyn [Geology and Geochemistry of Combustible Minerals], 3–4, 73–84. [in Ukrainian]

Medvid, H. B., Sprynskyi, M. I., Kolodii, V. V. et al. (2006). Paleohidrodynamichni rekonstruktsii pivnichno-zakhidnoi chastyny Zovnishnoi zony Peredkarpaskoho prohynu v konteksti problemy naftohazonosnosti [Paleohydrodynamic reconstructions of the northwestern part of the Outer Zone of the Carpathian Foredeep in the context of the oil and gas problem]. Heolohiia i heokhimiia horiuchykh kopalyn [Geology and Geochemistry of Combustible Minerals], 2, 20–32. [in Ukrainian]

Shchepak, V. M. (1965). Gidrogeologicheskie usloviya Vneshnei zony Predkarpatskogo progiba v svyazi s gazoneftenosnost’yu [Hydrogeological conditions of the Outer Zone of the Precarpathian foredeep in connection with oil-and-gas-bearing]. (Candidateʼs thesis). Institute of Geology and Geochemistry of Combustible Minerals of Academy of Sciences of the Ukrainian SSR, Lviv. [in Russian]

Vishnyakov, I. B., Vul, M. Ya., Gonyk, I. O., Zurian, O. V., & Starinsky, V. O. (2014). Suchasnyi stan vuhlevodnevoi syrovynnoi bazy zakhidnoho naftohazonosnoho rehionu Ukrainy ta osnovni napriamy heolohorozviduvalnykh robit shchodo yii osvoiennia [The current state of the hydrocarbon direction material base of the western oil and gas region of Ukraine and the main directions of prospecting for its development]. Mineralni resursy Ukrainy [Mineral Resources of Ukraine], 4, 33–38. [in Ukrainian]

Posted on

MARMAROSH KLIPPEN BELT IN STRUCTURE OF UKRAINIAN CARPATHIANS Article 2. Tectonic-magmatic position and views of the zone structure

Home > Archive > No. 2 (179) 2019 > 55-67


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 55-67.

https://doi.org/10.15407/ggcm2019.02.055

Mykhaylo YAREMOVYCH

ТзОВ «Геол-тех», Львів, e-mail: mishayaremovich@gmail.com

Abstract

The paper describes the tectonic position of Marmarosh zone of rocks and determine its place in the structure of the Ukrainian Carpathians. Shown is the history of the study of igneous rocks. The comparative analysis of the views on the structure and position of the Marmarosh klippen belt in the structure of the Carpathians processed by the literature was carried out. At the end of the article the researchers compared views on the structure of Foreign Affairs, highlighted the main features of the geological structure and tectonic zoning area.

Some similar features of  rocks composed of Marmarosh klippen belt, namely formational, to a lesser extent, the morphology of the folded and dislocations with a break of continuity history of even-aged species of complexes the Marmarosh zone of rocks is considered as NW continuation of Marmarosh massif that was torn from its substratum in the tectonic evolution of the region. These tectonic elements of different times and different phases of folding, but the final phase of tectonogenesis was manifested are almost simultaneously during the Miocene. MKB is a special category of tectonic structures associated with faults, of considerable length and long stage of development, is so-called near-fracture or suture structures and delineates two different areas with sharply different geological development history, geodynamic conditions of formation, stratified formations, independent tectonic regime. The structure is characteristed by the set of formations – sedimentary, igneous, metamorphic.

As a result of structural and tectonic studies the Marmarosh klippen belt is a consequence of Albian movements where appeared blocky dislocation and Post-Oligocene folding and formation of small intrusive bodies. Modern look of the band was formed in Oligocene time at neotectonic stage of development of the Carpathians. MKB is not correlated with any of the Carpathians area, although it has similarities with some elements, such as Marmarosh massif, but it different by a character of section and especially by peculiarity of the section of the Lower Cretaceous.

One of the conditions for further study of Marmarosh klippen belt is integrated research, including the study of facies changes of the nature of the thickness, more mapping of folded and discontinuous structures, further development of stratigraphic scheme of the area, the analogy of even-aged sediments and similar genesis formations of adjorning the territories both on the – territory and abroad of Ukraine. In this comprehensive analysis the Marmarosh klippen belt may get a proper understanding of its nature and place in the structure of folded Carpathians.

Keywords

Marmarosh klippen belt, tectonics, overthrust, landslide, nappe, olistostrome, horst-anticlinorium, magmatism, ophiolite complexes.

REFERENCES

Byzova, S. L. (1972). K tektonike zony Marmaroshskikh utesov. Vestnik Moskovskogo universiteta, 2, 36–44. [in Russian]

Chernov, V. G. (1972a). K probleme struktury i proiskhozhdeniya zony Marmaroshskikh utesov Sovetskikh Karpat. Vestnik Moskovskogo universiteta, 2. [in Russian]

Chernov, V. G. (1972b). Stratigrafiya Marmaroshskoy zony utesov Sovetskikh Karpat. Byulleten MOIP. Otdel geologicheskiy, 6. [in Russian]

Chernov, V. G. (1972c). Tektonika Marmaroshskoy zony utesov Sovetskikh Karpat. Vestnik Moskovskogo universiteta, 2. [in Russian]

Danylovych, V. H. (1977). Petrohenezys mahmatychnykh utvoren Karpat za danymy vyvchennia izotopnoho skladu strontsiiu. Heolohichnyi zhurnal, 37 (4), 49–61. [in Ukrainian]

Kruglov, S. S. (1965). O prirode Marmaroshskikh utesov Sovetskikh Karpat. Geologicheskiy sbornik Lvovskogo geologicheskogo obshchestva, 9, 41–54. [in Russian]

Lomize, M. G., & Maslakova, N. I. (1967). O verkhnemelovom vozraste vulkanicheskikh obrazovaniy rayona Gorinchevo-Polyanskoye (Vostochnyye Karpaty). Vestnik Moskovskogo universiteta. Seriya 4. Geologiya, 1, 115–118. [in Russian]

Lomize, M. G., & Ploshko, V. V. (1969). O giperbazitakh Glavnogo Marmaroshskogo razloma (Vostochnyye Karpaty). Geotektonika, 2, 91–106. [in Russian]

Săndulescu, M., Kräutner, H. G., Balintoni, I., Russo-Săndulescu, D., & Micu, M. (1981). The Structure of the East Carpathians (Moldavia – Maramureş area): Guide to Excursion B1: Carpathian-Balkan Geological Association, XII Congres. Bucharest.

Slavin, V. I., Khain, V. E., & Rudakov, S. G. (1972). O tektonicheskoy prirode zony Marmaroshskikh utesov i eye polozhenii v strukture sovetskikh Karpat. Vestnik Moskovskogo universiteta, 2, 44–55. [in Russian]

Sobolev, V. S., Belyakova, S. M. (1947). Ob ultraosnovnoy porode v Zakarpatskoy oblasti. Trudy Lvovskogo geologicheskogo obshchestva, petrograficheskaya seriya, 1, 72–78. [in Russian]

Stupka, O. O. (2013). Ofiolity Ukrainskykh Karpat: heokhimiia i mineralohiia. (Candidateʼs thesis). Lviv. [in Ukrainian]

Varychev, A. S. (1993). Petrologiya mezozoyskikh vulkanitov Ukrainskikh Karpat. (Candidateʼs thesis). Lvov. [in Russian]

Zvit viddilu problem tektoniky Karpat (2010). (O. Hnylko. Hl. 6. Tektonichne raionuvannia ta terenova tektonika Karpat). Lviv. [in Ukrainian]

Posted on

GEOTHERMAL CONDITIONS OF THE EASTERN OIL- AND GAS-BEARING REGION of ukraine

Home > Archive > No. 2 (179) 2019 > 47-54


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 47-54.

https://doi.org/10.15407/ggcm2019.02.047

Ihor KUROVETS, Oleksandr PRYKHODKO, Ihor HRYTSYK, Svitlana MELNYCHUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The formation of the temperature regime of the Dnieper-Donets depression is determined by the magnitude of the deep heat flux, the structural and tectonic features of the region, the lithology of the sedimentary complex, the occurrence of a thick complex of chemogenic and volcanic rocks in the region, as well as hydrogeological conditions.
Based on the analysis of factual geothermal material on wells, obtained during geophysical studies, measurements of temperatures and geothermal gradients, measurements of temperatures during testing of productive horizons, as well as from literary sources, the interpolation of factual geothermal material is carried out. The geothermal parameters characterizing the temperature state of rocks and fluids of different tectonic zones of the Eastern oil- and gas-bearing region have been determined. Schemes of temperature distribution at depths of 2000, 8000 m, average geothermal gradient, depths of isotherms 150 °C, 180 °C are given and regularities of distribution of geothermal parameters are analyzed. The lateral zoning of the geothermal parameters distribution of the region is established, the zones of their maximum, middle and low values are distinguished. Taking into account the peculiarities of the tectonic structure of the Dnieper-Donets graben, as the sedimentary complex is submerged, a gradual replacement of oil by oil and gas fields and then by the gas ones occurs from the northwest to the southeast. Geothermal parameters characterize the geothermal activity of the subsurface and allow to determine its zonation, as well as to predict the phase state of hydrocarbon systems at great depths.

Keywords

geothermal parameters, thermobaric conditions, average geothermal gradient, “background” regional temperatures, isothermal surface, hydrocarbon phase state, Eastern oil- and gas-bearing region.

REFERENCES

Atlas rodovyshch nafty i hazu Ukrainy (T. 1. Skhidnyi naftohazonosnyi rehion) [Atlas of oil and gas fields of Ukraine (Vol. 1. Eastern oil-gas region)]. (1998). Lviv: UOHA. [in Ukrainian]

Hrytsyk, I. I., Kolodiy, V. V., Osadchyi, V. G., Prykhodko, O. A., & Putsylo, V. I. (1999). Heotermichnyi rezhym Dniprovsko-Donetskoi zapadyny na hlybyni ponad 5 km [Geothermal regime of the Dnieper-Donets Depression at a depth over 5 km]. Sbornik nauchnykh trudov NGA Ukrainy [Scientific collected articles of National Mining Academy], 6 (T. 1. Geologiya poleznykh iskopaemykh [Vol. 1. Geology of useful minerals]), 36–39. [in Ukrainian]

Hrytsyk, I. I., Osadchyi, V. G., & Prykhodko, O. A. (1998). Karta rozpodilu rehionalnykh fonovykh temperatur Dniprovsko-Donetskoi zapadyny na hlybyni 2000 m [Map of distribution of background temperatures at a depth of 2000 m]. In Materialy V Mizhnarodnoi konferentsii “Nafta–haz Ukrainy–98” (Poltava, 15–17 veresnia 1998 r.) [Proceedings of the International conference “Oil-gas of Ukraine–98” (Poltava, September 15–17, 1998)] (Vol. 1, p. 153). Poltava. [in Ukrainian]

Kolodiy, V. V., & Prykhodko, A. A. (1989). Geotermicheskaya zonal’nost’ i raspredelenie zalezhei UV na severo-zapade DDV [Geothermal zonality and distribution of hydrocarbon deposits in the north-west of the Dnieper-Donets Depression]. Neftyanaya i gazovaya promyshlennost‘ [Oil and Gas Industry], 1, 12–14. [in Russian]

Prykhodko, A., & Lourie, A. (1998). Geothermic field, oil and gas content of the Dnieper-Donets cavity. In Proceedings of the International conference: The Earth’s thermal field and related research methods (Moscow, Russia, May 19–21, 1998) (pp. 220–221). Moscow.

Prykhodko, O. A., Osadchyi, V. G., & Kurovets, I. M. (2005). Termobarychni umovyny produktyvnykh horyzontiv rodovyshch vuhlevodniv pivnichno-zakhidnoi chastyny Dniprovsko-Donetskoi zapadyny [Thermobaric conditions of productive horizons of hydrocarbon fields of the north-western part of the Dnieper-Donets Depression]. Heolohiia i heokhimiia horiuchykh kopalyn [Geology and Geochemistry of Combustible Minerals], 3–4, 5–12. [in Ukrainian]