Posted on

MINING COMPLEX OF THE LVIV-VOLYN COAL BASIN AND ITS IMPACT ON THE ECOSYSTEM OF THE REGION

Home > Archive > No. 3 (180) 2019 > 52-59


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 52-59.

https://doi.org/10.15407/ggcm2019.03.052

Andriy POBEREZHSKY, Iryna BUCHYNSKA, Olena SHEVCHUK, Taras MUKAN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The influence of exploitation and abandonment of coal mines of the mining complex of Lviv-Volyn coal basin on the ecosystem of the region is considered. The main ecological problems of the territory are analyzed. It is established that the high technogenic pollution of the Chervonograd geological and industrial region is facilitated by the inflow of highly polluted drainage waters from the mine heaps and rock waste heaps of the Chervonograd Central Mining Plant into soils, surface, ground and underground waters. The negative impact of the heaps is caused by the high level of fault tectonics and fracturing of the bedrocks, the flat surface of the area. The influence of technogenic objects on the atmospheric air quality is analyzed. The main causes of the atmospheric air pollution are stationary sources of pollution.

Technogenic objects have a significant impact on the quality of the the atmospheric air. The main role in the structure of pollutants belongs to sulphur anhydrite, carbon and nitrogen oxides, dust and soot. The amount of pollutant emissions into the atmospheric air from stationary sources of pollution for Chervonograd and Sokal districts has been analyzed according to the data of the Main Statistics Office in Lviv region.

To prevent further deterioration of the ecological situation, it is recommended to form flat heaps, their reclamation and landscaping with the obligatory covering of the surface with a layer of neutral rocks, to keep measures to prevent burning of heaps. To stabilize the situation and to prevent further contamination of soil, surface and underground waters, the stable network of observations on the state of the geological environment, systematic geological and environmental monitoring should be carried out.

Keywords

Lviv-Volyn basin, mining complex, waste heaps, soils, underground waters, atmosphere.

REFERENCES

Bankovskaya, V. M., & Maksimovich, N. G. (1989). Geokhimicheskiye izmeneniya prirodnoy sredy v rayonakh razmeshcheniya otvalov ugledobyvayushchey promyshlennosti [Geochemical alteration in environment in areas of location of dumps of mining industry]. Geography and Natural Resours, 2, 42-43. [in Russian]
 
Buchatska, G. M. (2009). Hidroheolohichni umovy ta hidroheokhimichna zonalnist Lvivsko-Volynskoho vuhilnoho baseinu [Hydrogeological conditions and hydrogeochemical zones of Lviv-Volyn’ coal basin]. Visnyk Lviv Univ. Ser. Geol., 23, 175-183. [in Ukrainian]
 
Buchynska, I. V., & Shevchuk, O. M. (2013). Osnovni chynnyky ta dzherela zabrudnennia dovkillia vuhlevydobuvnym kompleksom Lvivsko-Volynskoho kamianovuhilnoho baseinu [Main factors and sources of environmental pollution by coal-mining complex of the the Lviv-Volyn Coal Basin] In Collected articles of IV All-Ukrainian Congress of Ecologists with International Participation (Ecology-2013) (pp. 75-77). Vinnytsia: Dilo. [in Ukrainian]
 
Dovkillia Lvivskoi oblasti. Statystychnyi zbirnyk. 2017 [Environment of the Lviv Region. Statistical collected articles. 2017]. (2018). Lviv: Main Statistical Office in Lviv Region. [in Ukrainian]
 
Ekolohichna informatsiia za IV kv. 2018 r. pro pidpryiemstva, yaki ye osnovnymy zabrudniuvachamy dovkillia Lvivshchyny [Ecological information for IV quarter of 2018 on enterprises that are main pollutants of the environment in the Lviv Region]. (2019). Department of Ecology and Natural Resources of the Lviv Regional State Administration. Retrieved from http://deplv.gov.ua/ekologichna-informaciya-za [in Ukrainian]
 
Ivantsiv, O. Ye., Lyzun, O. S., & Kukhar, Z. Ya. (1999). Heoloho-ekolohichnyi stan ta sotsialni problemy Lvivsko-Volynskoho kamianovuhilnoho baseinu [Geological-ecological state and social problems of the Lviv-Volyn Coal Basin]. Geology and Geochemistry of Combustible Minerals, 2, 20-28. [in Ukrainian]
 
Knysh, I. V. (2006). Perspektyvy vykorystannia vidkhodiv vuhilnoi promyslovosti Lviv-shchyny yak novoi mineralnoi syrovyny [Prospects for usage of waste of coal industry of the Lviv Region as a new mineral raw material]. Visnyk Lviv Univ. Ser. Geol., 20, 111-123. [in Ukrainian]
 
Maksimovich, N. G., & Gorbunova, K. A. (1991). Geokhimicheskiye izmeneniya geologicheskoy sredy pri razrabotke ugolnykh mestorozhdeniy [Geochemical alterations in geological environment while developing coal fields]. Proceedings of higher educational establishments. Geology and Exploration, 5, 137-140. [in Russian]
 
Man’ko, A. (2004). Deiaki problemy funktsiiuvannia depresyvnykh hirnychodobuvnykh raioniv Ukrainy (na prykladi Lvivsko-Volynskoho vuhilnoho baseinu) [Some problems of functioning of the depressed mining regions of Ukraine (on the example of Lvivs’ko-Volyns’kyi Coal Basin)]. Visnyk Lviv Univ. Ser. Geogr., 30, 184-187. [in Ukrainian]
 
Popovych, V., Pidhorodetsky, Y., & Pinder, V. (2016). Typolohiia terykoniv Lvivsko-Volynskoho baseinu [The typology of heaps of Lviv-Volyn Coal Basin]. Scientific Bulletin of UNFU, 26 (8), 238-243. [in Ukrainian]
https://doi.org/10.15421/40260837
 
Pro Kontseptsiiu polipshennia ekolohichnoho stanovyshcha hirnychodobuvnykh rehioniv Ukrainy [On conception of improving ecological state of the mining regions of Ukraine]: Resolution of the Cabinet of Ministers of Ukraine of August 31, 1999, No 1606. (1999). [in Ukrainian]
 
Reshko, M. G., Andreychuk, M. M., Kondratiuk, E. I. et. al. (2002). Rozrobka metodyky ta provedennia robit po prohnozuvanniu vplyvu vydobutku ta zbahachennia vuhillia na otochuiuche seredovyshche u Lvivsko-Volynskomu baseini (Chervonohradskyi ta Pivdenno-Zakhidnyi raiony) [Development of methodology and work execution on prediction of the influence of coal production and concentration upon the environment in the Lviv-Volyn Basin (Chervonohrad and South-Western regions)] (Vol. 1). Lviv: Funds of the State Geological Enterprise “Zakhidukrheolohia”. [in Ukrainian]
 
the State Enterprise “Lvivvuhillia”. (2020). Miner of Halychyna. Retrieved from http://www./vug.com.ua/lvivvugillya/ [in Ukrainian]
 
Tkachuk, V. G., & Kalashnikov, V. K. (1990). Karta estestvennoy zashchishchennosti podzemnykh vod Ukrainskoy SSR. Masshtab 1 : 200 000. Lvovskaya oblast [Map of natural protectability of underground water of Ukrainian Soviet Social Republic. Scale 1 : 200 000. The Lviv Region]. Kiev: Glavk KGU “Ukrgeologia” of PGO “Zapadukrgeologia”. [in Russian]
 
Zabolotnyi, A. G., & Grigoriuk, E. K. (2000). Ekologicheskiye problemy v ugolnoy otrasli Ukrainy [Ecological problems in coal branch of Ukraine]. Coal of Ukraine, 7, 12-14. [in Russian]
Posted on

TO THE QUESTION OF OUTBURST HAZARD PREDICTION OF COAL BEDS AT THE LVIV-VOLYN BASIN

Home > Archive > No. 3 (180) 2019 > 41-51


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 41-51.

https://doi.org/10.15407/ggcm2019.03.041

Viacheslav LUKINOV, Kostiantyn BEZRUCHKO, Liubov KUZNETSOVA

Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, Dnipro,
e-mail: gvrvg@meta.ua

Mykhailo MATROFAILO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

Sudden coal and gas outbursts in coal mines are one of the most harmful and at the same time, dangerous gas-dynamic phenomena faced when coal producting. The sudden coal and gas outbursts is the evanescent destruction of the bottom-hole area in the coal bed, which develops from the bottom into the depth of a massif, and the crushed coal with gas is thrown to a long distance from the bottom into the mine, destroying everything in its way, creating the conditions for explosion and fire breaking-out. Sudden outbursts lead to significant material losses for the recovery from an accident and in some cases injuries and human losses. The problem of reliable prediction, prevention, and control of sudden coal and gas outbursts at coal mines remains extremely urgent, due to the constant increase in the depth of mining operations. The analysis of the experience of predicting and preventing the outburst hazard in coal beds of Donets and Lviv-Volyn coal basins is analyzed. At Donbas mines since 1906, there have been more than 7.5 thousand sudden outbursts. Although mining had now reached considerable depths (from 300 to 600 m), the emergence of coal and gas outbursts have not been recorded. The purpose of the research is to determine the depth of the possible emergence of sudden coal and gas outbursts in the LVB, with regard to the peculiarities of the geological structure of the coal-bearing strata in the Lviv-Volyn coal basin.

The comparative possible depth estimation in the manifestation of the outburst hazard of the coal beds in the LVB is given. It is calculated according to the normative technique and performed according to the formulas obtained by the statistical analysis for the actual position of the minimum depth of coal and gas outbursts at the Donbas mines. The absence of sudden coal and gas outbursts at LVB mines on the coal beds, which are hazardous according to the prediction data, is performed according to the methods regulated by the normative documents and compiled by the experience of studying the outbursts in Donbas, is explained by the differences in the geological structure of the LVB, the main of which is the presence of thick mass of covering deposits and a significantly greater depth of the methane gas zone. The application of the empirical formulas prediction, which includes the methane gas zone depth index, allows us to account for these differences and it is much more reliable to determine the possible depths of sudden outbursts for LVB, which, all other things being equal, should be greater than in the Donbas. In particular, according to the performed calculations, the outburst hazard situation at the “Stepova” mine is predicted at depths of more than 700 m. As prediction indices for the calculations, values of methane gas zone depths of 450 m were adopted, and the minimum value of volatile-matter yield was 33.3%.

This approach can be proposed for predicting the coal and gas outbursts hazard in other Lviv-Volyn basin mines. To determine the predicted depth of the possible emergence of sudden coal and gas outbursts, it is advisable to take into account the depth of the methane gas zone in the prediction calculations.

Keywords

Lviv-Volyn coal basin, coal beds, sudden outburst, zone of methane gases, prediction of outburst hazard.

REFERENCES

Bulat, A. F., Lukinov, V. V., Bezruchko, K. A. et al. (2017). Heolohichni osoblyvosti formuvannia metanovosti hirnychykh vyrobok shakhty “Stepova” DP “Lvivvuhillia” [Geological peculiarities of methane formation of mine workings of the Stepova mine of SE “Lvivvuhillya”]. Coal of Ukraine, 7-8, 54-63. [in Ukrainian]
 
Kushniruk, V. A. (1978). Gazonosnost uglenosnoy tolshchi Lvovsko-Volynskogo ugolnogo basseyna [Gas content of the coal-bearing strata of the Lviv-Volyn coal basin]. Kiev: Naukova Dumka. [in Russian]
 
Lukinov, V. V., Prykhodchenko, V. F., Zhykaliak, M. V., & Prykhodchenko, O. V. (2016). Metody prohnozu hirnycho-heolohichnykh umov rozrobky vuhilnykh rodovyshch [Methods of forecasting mining and geological conditions for the development of coal deposits]. Dnipro: NHU. [in Ukrainian]
 
Pechuk, I. M. (1963). Opredelenie vybrosoopasnosti plastov [Determination of outburst hazard of layers]. Coal of Ukraine, 11, 50-52. [in Russian]
 
Pravyla vedennia hirnychykh robit na plastakh, skhylnykh do hazodynamichnykh yavyshch [Rules for mining operations on layers prone to gas-dynamic phenomena]: SOU 10.1.00174088.011-2005. (2005). Kyiv: Minvuhleprom Ukrainy. [in Ukrainian]
 
Sokorenko, S., Kostyk, I., & Matrofailo, M. (2011). Osoblyvosti suchasnoi pryrodnoi hazonosnosti vuhilnykh plastiv ta vuhlevmisnykh porid Liubelskoho rodovyshcha kamianoho vuhillia Lvivsko-Volynskoho baseinu [Characteristic properties of present day natural gas potential of coalbeds and coal-containing rocks of the Lyubelya coal field of the Lviv-Volyn basin]. Geologist of Ukraine, 2 (34), 81-89. [in Ukrainian]
 
Struev, M. I., Isakov, V. I., Shpakova, V. B. et al. (1984). Lvovsko-Volynskiy kamennougolnyy basseyn. Geologo-promyshlennyy ocherk [Lviv-Volyn coal basin. Geological and industrial essay]. Kiev: Naukova Dumka. [in Russian]
 
Vremennoe rukovodstvo po prognozu vybrosoopasnosti ugolnykh plastov Donetskogo basseyna pri geologorazvedochnykh rabotakh [Interim guidance on the forecast of outburst hazard of coal seams of the Donets basin during geological exploration]. (1980) Moscow: Skochinsky IGD. [in Russian]
 
Zabigaylo, V. E. (1973). K osnovam regionalnogo prognoza vybrosoopasnosti ugolnykh plastov, porod i gaza po geologorazvedochnym dannym [To the basis of the regional outburst hazard for coal seams, rocks and gas from exploration data]. In Modern methods of studying and forecasting of mining-geological conditions while prospecting for coal fields [Sovremennye metody izucheniya i prognozirovaniya gorno-geologicheskikh usloviy pri razvedke ugolnykh mestorozhdeniy]: Proceedings of the All-Union Scientific and Technical Seminar (Russia, Rostov-on-Don, 1973) (pp. 53-57). Rostov-on-Don. [in Russian]
 
Zabigaylo, V. E. (1978). Geologicheskie osnovy teorii prognoza vybrosoopasnosti ugolnykh plastov i gornykh porod [Geological foundations of the theory of forecasting the outburst hazard of coal seams and rocks]. Kiev: Naukova Dumka. [in Russian]
 
Zabigaylo, V. E., Lukinov, V. V., & Zrazhevskaya, N. G. (1985). O prognoznoy otsenke minimalnoy glubiny vybrosov uglya i gaza na shakhtakh [On the forecast estimate of the minimum depth of coal and gas emissions in mines]. Coal of Ukraine, 5, 41. [in Russian]
 
Zabigaylo, V. E., Shirokov, A. Z., Kratenko, L. Ya. et al. (1980). Geologicheskie usloviya vybrosoopasnosti ugolnykh plastov Donbassa [Geological conditions of the outburst hazard of Donbas coal basin]. Kiev: Naukova Dumka. [in Russian]
Posted on

THERMODYNAMICS OF TYPE II KEROGEN TRANSFORMATION

Home > Archive > No. 3 (180) 2019 > 25-40


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 25-40.

https://doi.org/10.15407/ggcm2019.03.025

Yuri Khokha, Oleksandr Lyubchak, Myroslava Yakovenko

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The article reviews the chemical structure of type II kerogen. The changes that occur with the structure of type II kerogen as it passes through the stages of catagenesis from immature to post-mature are evaluated. Structural models of type II kerogen at different stages of catagenesis are presented: both obtained empirically after studying the structure by physical and chemical methods and the results of modelling by molecular dynamics method.

Methods of equilibrium thermodynamics are used to calculate the composition of the kerogen–gas system for crust sections in the range of 1–20 km with a heat flux of 40 to 100 mW/m2. The composition of kerogen/fluid geochemical system is calculated using the E. T. Jaynes formalism. It boils down to determining the optimal distribution of 5 elements (C, H, O, N, S) among the 44 additive constituents of the solid phase (i. e., type II kerogen) and other individual components that are included in the system (CO2, H2O, H2S, NH3, CH4, C2H6, C3H8, i-C4H10, n-C4H10, i-C5H12, neo-C5H12, n-C5H12).

Comparison with the experiments showed that the results of the calculations do not contradict the experiments, with study the structure and changes in type II kerogen with increasing degree of catagenesis. In the analysis of changes in the concentrations of water, carbon dioxide and hydrogen sulfide, it is founded that kerogen could be not only a donor of atoms for gas components, but also their acceptor in contact with a high-energy fluid stream. It is shown that the determination of sulfur-containing atomic groups of kerogen by thermodynamic modelling yields gives more reliable results than molecular dynamics methods.

Established is that the concept of “methane-graphite death”, which takes place in the state of thermodynamic equilibrium in the transformation of organic matter, is erroneous. The calculation shows that the composition of the kerogen–gas system, in addition to methane and carbon, includes solid-phase heteroatom groups, various additive components of aromatic structures and gases, both organic and inorganic. The distribution of elements between the additive components of kerogen and gases in this system controls the pressure and temperature in a complex way. The nature of changes in hydrocarbon gas concentrations in equilibrium with type II kerogen indicates the presence of an “oil window” in low-warmed zones within 2–4 km depths.

Keywords

type II kerogen, catagenesis, “oil window”, equilibrium thermodynamics, Jaynes formalism.

REFERENCES

Behar, F., & Vandenbroucke, M. (1987). Chemical modelling of kerogens. Organic Geochemistry, 11, 15-24.
https://doi.org/10.1016/0146-6380(87)90047-7
 
Behar, F., Kressmann, S., Rudkiewicz, J. L., & Vandenbroucke, M. (1992). Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry, 19 (1-3), 173-189.
https://doi.org/10.1016/0146-6380(92)90035-V
 
Behar, F., Roy, S., & Jarvie, D. (2010). Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling. Organic Geochemistry, 41, 1235-1247.
https://doi.org/10.1016/j.orggeochem.2010.08.005
 
Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53 (6), 2498-2508.
https://doi.org/10.1021/ie4033999
 
Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In B. Durand (Ed.), Kerogen, Insoluble Organic Matter from Sedimentary Rocks (pp. 13-34). Paris: Editions Technip.
 
Forsman, J. P., & Hunt, J. M. (1958). Insoluble organic matter (kerogen) in sedimentary rocks. Geochimica et Cosmochimica Acta, 15, 170-182.
https://doi.org/10.1016/0016-7037(58)90055-3
 
Helgeson, H., Richard, L., McKenzie, W., Norton, D., & Schmitt, A. (2009). A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochimica et Cosmochimica Acta, 73 (3), 594-695.
https://doi.org/10.1016/j.gca.2008.03.004
 
Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., … Behar, F. (2007). Direct Characterization of Kerogen by X-ray and SolidState 13C Nuclear Magnetic Resonance Methods. Energy Fuels, 21 (3), 1548−1561.
https://doi.org/10.1021/ef060321h
 
Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti [Thermodynamics of abyssal hydrocarbons in the forecast of oil and gas deposits]. Kyiv: Naukova dumka. [in Ukrainian]
 
Khokha, Yu., Lyubchak, O., & Yakovenko, M. (2018). Vplyv temperaturnoho rezhymu na hazoheneratsiinyi potentsial huminovykh kyslot orhanichnoi rechovyny [Effect of temperature flow on gas-generating potential of humic acids of organic matter]. Geology and Geochemistry of Combustible Minerals, 3-4 (176-177), 49-63. [in Ukrainian]
 
Khokha, Yu., Lyubchak, O., & Yakovenko, M. (2019). Enerhiia Hibbsa utvorennia komponentiv pryrodnoho hazu v osadovykh tovshchakh [Gibbs Free Energy of natural gas components formation in sedimentary strata]. Geology and Geochemistry of Combustible Minerals, 2 (179), 37-47. [in Ukrainian]
 
Lindsey, A. S., & Jeskey, H. (1957). The Kolbe-Schmitt Reaction. Chemical Reviews, 57 (4), 583-620.
https://doi.org/10.1021/cr50016a001
 
Lyubchak, O. V., Khokha, Yu. V., & Yakovenko, M. B. (2018). Spivvidnoshennia strukturnykh elementiv vuhlevodnevoi skladovoi arhilitiv skhidnykh karpat za formalizmom Dzheinsa [Correlation of the hydrocarbon components structural elements of the Eastern Carpathians argillites by the Jaynes’ formalism]. Visnyk of Karazin Kharkiv National University, series “Geology. Geography. Ecology”, 49, 83-94. [in Ukrainian]
 
Nikonov, V. N. (1961). Tyazhelyye uglevodorody i ikh sootnosheniye v gazakh neftyanykh i gazovykh zalezhey. Geologiya nefti i gaza, 8, 15-21. [in Russian]
 
Planche, H. (1996). Finite time thermodynamics and the quasi-stability of closed-systems of natural hydrocarbon mixtures. Geochimica et Cosmochimica Acta, 22 (60), 4447-4465.
https://doi.org/10.1016/S0016-7037(96)00271-2
 
Stuermer, D. H., Peters, K. E., & Kaplan, I. R. (1978). Source indicators of humic substances and proto-kerogen. Stable isotope ratios, elemental compositions and electron spin resonance spectra. Geochimica et Cosmochimica Acta, 42 (7), 989-997.
https://doi.org/10.1016/0016-7037(78)90288-0
 
Tisso, B., & Velte, D. (1981). Obrazovaniye i rasprostraneniye nefti. Moskva: Mir. [in Russian]
 
Tomic, J., Behar, F., Vandenbroucke, M., & Tang, Y. (1995). Artificial maturation of Monterey kerogen (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur. Organic Geochemistry, 23 (7), 647-660.
https://doi.org/10.1016/0146-6380(95)00043-E
 
Ungerer, P., Collell, J., & Yiannourakou, M. (2015). Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity. Energy Fuels, 29 (1), 91-105.
https://doi.org/10.1021/ef502154k
 
Van Krevelen, D. W., & Chermin, H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1 (2), 66-80.
https://doi.org/10.1016/0009-2509(51)85002-4
 
Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719-833
https://doi.org/10.1016/j.orggeochem.2007.01.001
 
Zhao, T., Li, X., Zhao, H., Li, M. (2017). Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content. Fuel, 190 (15), 198-207.
https://doi.org/10.1016/j.fuel.2016.11.027
Posted on

PROBLEMATIC ASPECTS OF THE FORMATION OF THE UKRAINIAN SEGMENT OF THE CARPATHIANS

Home > Archive > No. 3 (180) 2019 > 5-24


Geology & Geochemistry of Combustible Minerals No. 3 (180) 2019, 5-24.

https://doi.org/10.15407/ggcm2019.03.005

Myroslav Palyuk, Volodymyr Shlapinsky, Albert Medvedev, Bohdan Rizun, Myroslav Ternavsky

Institute of Geology and Geochemistry of Combustible Mineralsof National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

In the paper a model of the formation of the folded-covering-block structure of the Carpathians at a time interval that envelops Late-Hercynian and Alpine events is substantiated. Moreover, this concerns the Outer Carpathians, but the whole Carpathians arch was characterized without going into details, a critical estimate is expressed for application of such terms as terrains, accretion prism, suture, subduction and Transcarpathian fault. It is shown that formation of the Carpathians occurred through several stages under the influence of different-directed, manly horizontal, movements, as a result of which was destruction of early formed  Hercynian continental crust, laying of geosynclinals troughs, formation and further transformation of the basement of the Flysch Carpathians, its collision with Eurasian continental edge, underling of the latter under flysh complex. After completion of these processes mainly vertical movements took place that lineally formed the structure of the Carpathians as folded-covering-block one. As a result of the last event (Pliocene-Pleistocene), a differential development of intensive fracturing occurred with the influx of hydrocarbons and filling traps formed up.

Keywords

formation of the Carpathians, terrains, accretion prism, Transcarpathian fault, crocodile tectonics, Other Carpathians, folded-covering-block structure.

REFERENCES

Artyushkov, E. V. (1993). Fizicheskaya tektonika. Moskva: Nauka. [in Russian]
 
Dolenko, G. N., Boychevskaya, L. T., Danilovich, L. G. et al. (1980). Glubinnoye stroyeniye, razvitiye i neftegazonosnost Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]
 
Esipovich, S. M. (1998). Istoriya razvitiya planety Zemlya – pulsiruyushcheye rasshireniye pod deystviyem kosmicheskogo pressinga. Odessa: Astroprint. [in Russian]
 
Evolution of the Northern margin of Tethys: the results of IGCP Project 198. (1990). Mem. Soc. Geol. Fr, 154, 1-200.
 
Gabinet, M. P., Kulchitskiy, Ya. O., & Matkovskiy, O. І. (1976). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat (Ch. 1, s. 79-80). Lvov: Vyshcha shkola. [in Russian]
 
Glushko, V. V., & Kruglov, S. S. (Red.). (1986). Tektonicheskaya karta Ukrainskikh Karpat. M-b 1 : 200 000. Kiev: UkrNIGRI, Mingeo USSR. [in Russian]
 
Gnilko, O. M., & Generalova, L. V. (2014). Tektono-sedimentatsionnoye razvitiye Predmarmaroshskoy akkretsionnoy prizmy Ukrainskikh flishevykh Karpat. Vestnik Sankt-Peterburgskogo universiteta, 7 (2), 5-23. [in Russian]
 
Gofshteyn, I. D. (1995). Geomorfologicheskiy ocherk Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]
 
Gordiyenko, V. V. (1998). Glubinnyye protsessy v tektonosfere Zemli. Kiev: Naukova dumka. [in Russian]
 
Halabuda, M. I. (2000). Fiksyzm, mobilizm chy tsyklichne rozshyrennia Zemli. Heodynamika, 1 (3), 28-38. [in Ukrainian]
 
Halabuda, M. I. (2002). Kosmichno-anomalistychna kontseptsiia formuvannia zemnoi kory. Heolohiia i heokhimiia horiuchykh kopalyn, 3, 100-108. [in Ukrainian]
 
Hnylko, O. M. (2011). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Chastyna 1. Osnovni elementy Karpatskoi sporudy. Heodynamika, 1 (10), 47-57. [in Ukrainian]
https://doi.org/10.23939/jgd2011.01.047
 
Hnylko, O. M. (2012). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Chastyna 2. Flishovi Karpaty – davnia akretsiina pryzma. Heodynamika, 1 (12), 67-78. [in Ukrainian]
 
Hnylko, O. M. (2014). Tektonika ta protsesy stanovlennia pokryvno-skladchastoi sporudy Ukrainskykh Karpat. In Suchasna heodynamika ta heofizychni polia Karpat i sumizhnykh terytorii (s. 24-71). Lviv. [in Ukrainian]
 
Hnylko, O. M. (2016). Heolohichna budova ta evoliutsiia Ukrainskykh Karpat. (Extended abstract of Doctorʼs thesis). Lviv. [in Ukrainian]
 
Hofshtein, I. D. (1971). Shcho rozumity pid suchasnoiu strukturoiu Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 22, 34-36. [in Ukrainian]
 
Khain, V. E., Beer, M. A., Byzova, S. L. et al. (1977). Osnovnyye cherty tektonicheskoy istorii Karpat (v svete novykh idey v uchenii o geosinklinalyakh). Vestnik Moskovskogo universiteta. Ser. Geologiya, 3, 3-20. [in Russian]
 
Khain, V. E., & Lobkovskiy, L. I. (1990). Ob osobennostyakh formirovaniya kollizionnykh orogenov. Geotektonika, 6, 20-31. [in Russian]
 
Khain, V. E., & Lomize, M. G. (1995). Geotektonika s osnovami geodinamiki. Moskva: Nauka. [in Russian]
 
Khain, V. E. (2001). Tektonika kontinentov i okeanov. Moskva: Nauchyy mir. [in Russian]
 
Klitochenko, I., Antsupov, P., & Vul, M. (1964). O vremeni skladkoobrazovaniya vo Vnutrennoy zone Predkarpatskogo krayevogo progiba. In Neftyanaya i gazovaya geologiya (s. 8-11). Moskva: TsNIITEN Neftegaz. [in Russian]
 
Kruglov, S. S. (2000). O korrelyatsii mezozoyskikh i kaynozoyskikh formatsiy Ukrainskikh, Slovatskikh i Polskikh Karpat. Heodynamika, 1 (3), 58-65. [in Russian]
 
Kruglov, S. S. (2001). Problemy tektoniki i paleogeodinamiki zapada Ukrainy (kriticheskiy obzor novykh publikatsiy). Lvov. [in Russian]
 
Kruglov, S. S., Smirnov, S. E., Spitkovskaya, S. M. et al. (1985). Geodinamika Karpat. Kiev: Naukova dumka. [in Russian]
 
Kruhlov, S. S. (1998). Tektonika i heodynamika Ukrainskykh Karpat. Heodynamika, 1, 86-89. [in Ukrainian]
 
Kuzovenko, V., & Shlapinskyi, V. (2007). Do pryrody i umov rozmishchennia “skel” neokomskykh diiabaziv u Burkutskomu pokrovi Ukrainskykh Karpat. Pratsi Naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 19, 40-49. [in Ukrainian]
 
Lazko, E. M., & Rezvoy, D. P. (1962). O tektonicheskoy prirode zony Karpatskikh utesov. Visnyk Lvivskoho universytetu im. I. Franka. Seriia heolohichna, 1, 60-65. [in Russian]
 
Leshchukh, R. Y. (1982). Nyzhnokreidovi amonity Ukrainskykh Karpat. Kyiv: Naukova dumka. [in Ukrainian]
 
Liashkevych, Z. (2014). Evoliutsiia ta henezys kainozoiskoho vulkanizmu Pankardii. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiia, 3 (66), 21-26. [in Ukrainian]
https://doi.org/10.17721/1728-2713.66.03
 
Lyashkevich, Z. M., Medvedev, A. P., Krupskiy, Yu. Z. et al. (1995). Tektono-magmaticheskaya evolyutsiya Karpat. Kiev: Naukova dumka. [in Russian]
 
Maksimov, A. A., & Nemkov, T. I. (1949). Obyasnitelnaya zapiska k listam geologicheskoy karty M-35-XXXI (Nadvornaya) i L-35-I (Chivchiny). (T. 14. Ch. 1. Otchet o rabotakh Karpatskoy geologicheskoy ekspeditsii MGRI). Moskva: Fondy DP “Zakhidukrheolohiia”. [in Russian]
 
Marshalko, R. (1980). Paleotektonicheskiye rekonstruktsii pyeninskikh i primykayushchikh flishevykh zhelobov i ikh substrata v Vostochnoy Slovakii. In Materialy XІ kongressa KBGA. Litologiya (s. 140-148). Kiev: Naukova dumka. [in Russian]
 
Medvediev, A. P., & Varychev, O. S. (2000). Pra-Karpaty (konstruktsiia i destruktsiia). Lviv. [in Ukrainian]
 
Meissner, R., & Reston, T. (1989). The three-dimensional structure of the oberpfalz – an alternative interpretation of the DEKORP-KTB data. Tectonophysics, 157 (1-3), 1-11.
https://doi.org/10.1016/0040-1951(89)90336-3
 
Monin, A. S., & Zonenshayn, L. P. (Red.). (1987). Istoriya okeana Tetis. Moskva: Institut okeanologii AN SSSR. [in Russian]
 
Ney, R. (1976). The Carpathians and plate tectonics. Prz. geol., 24 (6), 309-316.
 
Nikolayev, V. G. (1986). Pannonskiy basseyn (stroyeniye osadochnogo chekhla i razvitiye). Trudy GIN AN SSSR, 406. [in Russian]
 
Oszczypko, N., Uchman, A., & Malata, E. (Red.). (2006). Rozwój paleotektoniczny basenów Karpat zewnętrznych i pienińskiego pasa skałkowego. Kraków: Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego.
 
Patalakha, E. I., Lukiyenko, A. I., & Gonchar, V. V. (1995). Tektonicheskiye potoki kak osnova ponimaniya geologicheskikh struktur. Kiev. [in Russian]
 
Pavliuk, M. I., & Medvediev, A. P. (2004). Pankardiia: problemy evoliutsii. Lviv: Liha-Pres. [in Ukrainian]
 
Pavliuk, M., Liashkevych, Z., & Medvediev, A. (2013). Ukrainski Karpaty v strukturi Pankardii (mahmatyzm i heodynamika). Heodynamika, 1 (14), 45-60. [in Ukrainian]
 
Rădulesku, D. P., & Săndulesku, M. (1973). The plate-tectonics concept and the geological structure of the Carpathians. Tectonophysics, 16 (3-4), 155-161.
https://doi.org/10.1016/0040-1951(73)90010-3
 
Saleebe, J. B. (1983). According tectonics of the North American Cordillera. Annual Reviews of the Earth and Planetary Science, 15, 45-73.
https://doi.org/10.1146/annurev.ea.11.050183.000401
 
Shlapinskyi, V. Ye. (2009). Mikrofauna v olistostromovykh utvorenniakh verkhnoi kreidy Hoverlianskoho subpokrovu v raioni Yasini. In P. F. Hozhyk (vidp. red.). Vykopna fauna i flora Ukrainy: paleoekolohichnyi ta stratyhrafichnyi aspekty (s. 179-183). Kyiv. [in Ukrainian]
 
Shlapinskyi, V. (2012). Deiaki pytannia tektoniky Ukrainskykh Karpat. Pratsi Naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 30, 48-68. [in Ukrainian]
 
Shlapinskyi, V. Ye., & Kuzovenko, V. V. (1998). Vyvchennia heoloho-heofizychnykh materialiv po pivdenno-skhidnii chastyni vnutrishnikh flishovykh pokroviv Ukrainskykh Karpat z metoiu vyiavlennia perspektyvnykh na naftu ta haz obiektiv (1995-1998 rr.). T. 1. Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]
 
Shlapinskyi, V. Ye., Machalskyi, D. V., & Khomiak, L. M. (2013). Utochneni dani shchodo paleohenovykh vidkladiv Peninskoho pokryvu Ukrainskykh Karpat. Tektonika i stratyhrafiia, 40, 125-133. [in Ukrainian]
 
Shlapinskyi, V. Ye., Zhabina, N. M., Machalskyi, D. V., & Ternavskyi, M. M. (2017). Heolohichna budova Peninskoho pokryvu Ukrainskykh Karpat. Heodynamika, 1 (22), 55-73. [in Ukrainian]
 
Tretiak, K. R., Maksymchuk, V. Yu., & Kutas, R. I. (Red.). (2014). Suchasna heodynamika ta heofizychni polia Karpat i sumizhnykh terytorii. Lviv. [in Ukrainian]
 
Utrobin, V. N., & Linetskaya, L. V. (1975). O vzaimootnosheniyakh Karpatskoy i Dinarskoy geosinklinalnykh skladchatykh sistem. Byulleten Moskovskogo obshchestva ispytateley prirody. Otdel geologicheskiy, 50 (3), 145-146. [in Russian]
 
Vasylenko, A. Yu. (2016). Neohenovyi mahmatyzm v systemi Zakarpatskoho hlybynnoho rozlomu. (Extended abstract of candidateʼs thesis). Kyivskyi natsionalnyi universytet im. Tarasa Shevchenka. Kyiv. [in Ukrainian]
 
Voloshin, A. A. (1971). Geologicheskoye stroyeniye i poleznyye iskopayemyye basseyna verkhnego techeniya reki Tisa (otchet o rezultatakh geologosyemochnykh rabot massshtaba 1 : 50 000 i 1 : 25 000. Rakhovskiy rayon) (T. 1). Beregovo: Fondy DP “Zakhidukrheolohiia”. [in Russian]
 
Yesypovych, S. M. (2000). Deiaki aspekty rozvytku planety Zemlia. Heodynamika, 1 (3), 28-38. [in Ukrainian]
 
Zeylik, B. S. (1978). O proiskhozhdenii dugoobraznykh i koltsevykh struktur na Zemle i drugikh planetakh (udarno-vzryvnaya tektonika). Moskva: VIEMS. [in Russian]
 
Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1968). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Perechin Zakarpatskoy oblasti USSR v 1966-1967 gg. (T. 1-2). Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]
 
Zhigunova, Z. F., Petrov, V. G., & Koval, Zh. S. (1969). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Turia Polyana Zakarpatskoy oblasti USSR v 1968 g. (T. 1-2). Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]
Posted on

GEOTHERMAL CONDITIONS OF THE EASTERN OIL- AND GAS-BEARING REGION of ukraine

Home > Archive > No. 2 (179) 2019 > 47-54


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 47-54.

https://doi.org/10.15407/ggcm2019.02.047

Ihor KUROVETS, Oleksandr PRYKHODKO, Ihor HRYTSYK, Svitlana MELNYCHUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The formation of the temperature regime of the Dnieper-Donets depression is determined by the magnitude of the deep heat flux, the structural and tectonic features of the region, the lithology of the sedimentary complex, the occurrence of a thick complex of chemogenic and volcanic rocks in the region, as well as hydrogeological conditions.
Based on the analysis of factual geothermal material on wells, obtained during geophysical studies, measurements of temperatures and geothermal gradients, measurements of temperatures during testing of productive horizons, as well as from literary sources, the interpolation of factual geothermal material is carried out. The geothermal parameters characterizing the temperature state of rocks and fluids of different tectonic zones of the Eastern oil- and gas-bearing region have been determined. Schemes of temperature distribution at depths of 2000, 8000 m, average geothermal gradient, depths of isotherms 150 °C, 180 °C are given and regularities of distribution of geothermal parameters are analyzed. The lateral zoning of the geothermal parameters distribution of the region is established, the zones of their maximum, middle and low values are distinguished. Taking into account the peculiarities of the tectonic structure of the Dnieper-Donets graben, as the sedimentary complex is submerged, a gradual replacement of oil by oil and gas fields and then by the gas ones occurs from the northwest to the southeast. Geothermal parameters characterize the geothermal activity of the subsurface and allow to determine its zonation, as well as to predict the phase state of hydrocarbon systems at great depths.

Keywords

geothermal parameters, thermobaric conditions, average geothermal gradient, “background” regional temperatures, isothermal surface, hydrocarbon phase state, Eastern oil- and gas-bearing region.

REFERENCES

Atlas rodovyshch nafty i hazu Ukrainy (T. 1. Skhidnyi naftohazonosnyi rehion) [Atlas of oil and gas fields of Ukraine (Vol. 1. Eastern oil-gas region)]. (1998). Lviv: UOHA. [in Ukrainian]

Hrytsyk, I. I., Kolodiy, V. V., Osadchyi, V. G., Prykhodko, O. A., & Putsylo, V. I. (1999). Heotermichnyi rezhym Dniprovsko-Donetskoi zapadyny na hlybyni ponad 5 km [Geothermal regime of the Dnieper-Donets Depression at a depth over 5 km]. Sbornik nauchnykh trudov NGA Ukrainy [Scientific collected articles of National Mining Academy], 6 (T. 1. Geologiya poleznykh iskopaemykh [Vol. 1. Geology of useful minerals]), 36–39. [in Ukrainian]

Hrytsyk, I. I., Osadchyi, V. G., & Prykhodko, O. A. (1998). Karta rozpodilu rehionalnykh fonovykh temperatur Dniprovsko-Donetskoi zapadyny na hlybyni 2000 m [Map of distribution of background temperatures at a depth of 2000 m]. In Materialy V Mizhnarodnoi konferentsii “Nafta–haz Ukrainy–98” (Poltava, 15–17 veresnia 1998 r.) [Proceedings of the International conference “Oil-gas of Ukraine–98” (Poltava, September 15–17, 1998)] (Vol. 1, p. 153). Poltava. [in Ukrainian]

Kolodiy, V. V., & Prykhodko, A. A. (1989). Geotermicheskaya zonal’nost’ i raspredelenie zalezhei UV na severo-zapade DDV [Geothermal zonality and distribution of hydrocarbon deposits in the north-west of the Dnieper-Donets Depression]. Neftyanaya i gazovaya promyshlennost‘ [Oil and Gas Industry], 1, 12–14. [in Russian]

Prykhodko, A., & Lourie, A. (1998). Geothermic field, oil and gas content of the Dnieper-Donets cavity. In Proceedings of the International conference: The Earth’s thermal field and related research methods (Moscow, Russia, May 19–21, 1998) (pp. 220–221). Moscow.

Prykhodko, O. A., Osadchyi, V. G., & Kurovets, I. M. (2005). Termobarychni umovyny produktyvnykh horyzontiv rodovyshch vuhlevodniv pivnichno-zakhidnoi chastyny Dniprovsko-Donetskoi zapadyny [Thermobaric conditions of productive horizons of hydrocarbon fields of the north-western part of the Dnieper-Donets Depression]. Heolohiia i heokhimiia horiuchykh kopalyn [Geology and Geochemistry of Combustible Minerals], 3–4, 5–12. [in Ukrainian]

Posted on

GIBBS FREE ENERGY OF NATURAL GAS COMPONENTS FORMATION IN SEDIMENTARY STRATA

Home > Archive > No. 2 (179) 2019 > 37-46


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 37-46.

https://doi.org/10.15407/ggcm2019.02.037

Yuri KHOKHA, Oleksandr LYUBCHAK, Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The main methods of calculating the composition of geochemical systems in the thermodynamic equilibrium state were considered in the article. It was shown that the basis for such calculations was the determination of the Gibbs Free Energy of each system components at given temperatures and pressures. The methods of Gibbs Free Energy calculation at standard pressure and under conditions that are realized within the sedimentary strata were analyzed. The equations of state for natural gas individual components were selected and their Gibbs Free Energies for heat fluxes ranging from 40 to 100 mW/m2 and depths of 0–20 km were calculated. The results showed that the pressure significantly affects the value of Gibbs Free Energies formation of natural gas components within the sedimentary strata. Changes of the Gibbs Free Energies of natural gas components formation, as a function of depth, subordinated to the same laws for each compound. This regularity was better expressed in more heated areas.
It was shown that with depth increasing the Gibbs Free Energy of natural gas components formation first rapidly decreases and reaches its minimum ranging from 2 to 6 km. Moreover, as the value of the heat flux increases, the maximum value of the Gibbs Free Energy of formation of natural gas components, expressed in kilometers, decreases. With further immersion/deepening to depths greater than 6 km, the Gibbs Free Energy of the formation of natural gas components gradually increases, and in areas with greater heat flux, a sharp increase was characteristic, and with less, it was slow and weakly expressed. There is a stability area for hydrocarbon and non-hydrocarbon components of natural gas ranging from 2 to 6 km. With the increase of Carbon number in the hydrocarbon chain, the value of Gibbs Free Energy of the natural gas hydrocarbon components formation decreases, which indicates the presence of a stability zone for heavy natural gas components (it should be expected that oil also) within the depths of 2–6 km.

Keywords

Gibbs Free Energy, heat flow, natural gas, sedimentary strata.

REFERENCES

Bell I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498-2508.
https://doi.org/10.1021/ie4033999
 
Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A code for calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225 (1). doi:10.3847/0067-0049/225/1/4.
https://doi.org/10.3847/0067-0049/225/1/4
 
Buecker, D., & Wagner, W. (2006). Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. J. Phys. Chem. Ref. Data, 35 (2), 929-1019.
https://doi.org/10.1063/1.1901687
 
Chekalyuk, E. B. (1967). Neft verhney mantii Zemli [Oil of the Earth’s upper mantle]. Kiev: Naukova dumka. [in Russian]
 
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 (4), 297-356.
https://doi.org/10.1016/0031-9201(81)90046-7
 
Hasterok, D., & Chapman, D. S. (2011). Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307, 59-70.
https://doi.org/10.1016/j.epsl.2011.04.034
 
Glushko, V. P. (1979). Termodinamicheskiye svoystva individualnykh veshchestv. T. 1 (1) [Thermodynamic properties of individual substances. Vol. 1 (1)]. Moskva: Nauka. [in Russian]
 
Koukkari, P. (2014). Introduction to constrained Gibbs energy methods in process and materials research. Espoo: VTT Technical Research Centre of Finland. VTT Technology, N 160.
 
Lemmon, E. W., McLinden, & M. O., Wagner, W. (2009). Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. J. Chem. Eng. Data, 54, 3141-3180.
https://doi.org/10.1021/je900217v
 
Lemmon, E. W., & Span, R. (2006). Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data, 51, 785-850.
https://doi.org/10.1021/je050186n
 
Lyubchak, O. V. (2009). Termobarychni umovy utvorennia pryrodnogo gazu v nadrakh Zemli [Thermobaric conditions of natural gas formation in the subsoils of the Earth]. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 18-24. [in Ukrainian]
 
Sanford, G., & McBride, B. J. (1994). Computer program for Calculation of Complex Chemical Equilibrium Composition and Application. NASA Reference Publication 1311, 58.
 
Setzmann, U., & Wagner W. (1991). A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20 (6), 1061-1151.
https://doi.org/10.1063/1.555898
 
Sokolov, V. A. (1971). Geokhimiya prirodnykh gazov [The geochemistry of natural gases]. Moskva: Nedra. [in Russian]
 
Span, R., (2000). Multiparameter Equations of State – An Accurate Source of Thermodynamic Property Data. Berlin: Springer.
https://doi.org/10.1007/978-3-662-04092-8
 
Span, R., & Wagner, W. (1996). A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25, 1509-1596.
https://doi.org/10.1063/1.555991
 
Stull, D. R., Westrum Jr., E. F., & Sinke, G.C. (1969). The chemical thermodynamics of organic compounds. New York: John Wiley and Sons, Inc.
 
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin; Heildelberg; New York; Tokyo: Springer-Verlag.
https://doi.org/10.1007/978-3-642-87813-8
 
Wagner, W., & Buecker, D. (2006). A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data, 35 (1), 205-266.
https://doi.org/10.1063/1.1859286
 
Wagner, W., & Pruß, A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data, 31, 387-535.
https://doi.org/10.1063/1.1461829
Posted on

ON THE LITHOFLUID AHD THERMODYNAMIC SYSTEM IN GEOLOGY AND GEOCHEMISTRY

Home > Archive > No. 2 (179) 2019 > 28-36


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 28-36.

https://doi.org/10.15407/ggcm2019.02.028

Іhor NAUMKO

ІInstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

The researcher’s approaches to the term “fluid systems” as a prototype of the fluid medium of crystallization of minerals, naturally preserved relics – inclusions of fluids reflect the features of the fluid regime of mineralogenesis of rock-ore complexes are analyzed. It is emphasized that the term “fluid” characterizes the main property of the substance of the medium of mineralogenesis, the most important substance of the Earth’s crust, its highest mobility, the maximum disorder of structure, fluidity, and covers the liquid or gas state of the lightweight components (gas, aqueous solution), as well as the melt of magmatic (silicate, salt, carbonate) substance. Under the fluid regime, the author understands the physical and chemical nature, the spatial-temporal sequence of manifestation and the variability of the parametric characteristics of the fluids, that is, the entire set of physico-chemical and geological phenomena and processes that determine the regular (discrete, periodic, evolutionary) changes in aggregate state, PT-parameters and the composition of the fluid medium of crystallization of minerals and their identified (certain, specific) parageneses. Our long-term studies show that the physico-chemical system of the fluid medium of mineral-ore-narhtidgenesis should cover lithoid (rocky), fluid (genetic) and thermodynamic (temperature, pressure, concentration) components that determine the mass, heat and the energy exchange between the fluid and of its host rock. In view of this, we define this physico-chemical system as a “lithofluid and thermodynamic system” and we believe that this definition takes into account all known phenomena of generation, migration, differentiation and accumulation of fluids, in particular hydrocarbons (hydrocarbon-containing), in the lithosphere of the Earth. An example of such a lithofluid and thermodynamic system in the Earth’s bowels – the natural high-energy physicochemical reactor is the hydrocarbon-generating and mineral-ore-forming system of the deep abiogenic high-termobaric fluid.

Keywords

inclusion in minerals, fluid systems, fluids, fluid regime, lithofluid and thermodynamic system, lithosphere of the Earth.

REFERENCES

Bagdasarova, M. V., & Sidorov, V. A. (2002). Gidrotermalnaya priroda mestorozhdeniy uglevodorodov i novyye geodinamicheskiye kriterii ikh poiskov. In Novyye idei v geologii i geokhimii nefti i gaza. K sozdaniyu obshchey teorii neftegazonosnosti nedr: materialy VI Mezhdunarodnoy konferentsii (Moskva, 28-31 maya 2002 g.) (Kn. 1.) (s. 54-57). Moskva: GEOS. [in Russian]
 
Chekalyuk, E. B. (1971). Termodinamicheskiye osnovy teorii mineralnogo proiskhozhdeniya nefti. Kiev: Naukova dumka. [in Russian]
 
Dmitriyevskiy, A. N., Valyayev, B. M., & Smirnova, M. N. (2003). Mekhanizmy, masshtaby i tempy vospolneniya neftegazovykh zalezhey v protsesse ikh razrabotki. In Genezis nefti i gaza (s. 106-109). Moskva: GEOS. [in Russian]
 
Ermakov, N. P. (1972). Geokhimicheskiye sistemy vklyucheniy v mineralakh (vklyucheniya mineraloobrazuyushchikh sred – istochnik geneticheskoy informatsii). Moskva: Nedra. [in Russian]
 
Hryhorchuk, K. H. (2010). Osoblyvosti litofliuidodynamiky eksfiltratsiinoho katahenezu. Heolohiia i heokhimiia horiuchykh kopalyn, 1 (150), 60-68. [in Ukrainian]
 
Hryhorchuk, К., Hnidets, V., & Balandyuk, L. (2018). Litogenetic aspects of oil and systems formation in the Volyno-Podolia Sylurian deposits. Geogynamics, 2 (25), 37-48.
https://doi.org/10.23939/jgd2018.02.037
 
Kabyshev, B. P., & Kabyshev, Yu. B. (2001). Osadochno-flyuidodinamicheskaya kontseptsiya naftidogeneza. In Henezys nafty i hazu ta formuvannia yikh rodovyshch v Ukraini yak naukova osnova prohnozu ta poshukiv novykh skupchen: tezy dopovidei Mizhnarodnoi naukovo-praktychnoi konferentsii (Chernihiv, liutyi 2001 r.) (s. 12-15). Chernihiv. [in Russian]
 
Kalyuzhnyy, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. [in Russian]
 
Kudelskiy, A. V., Garetskiy, R. G., & Aysberg, R. E. (1997). Geoflyuidodinamika i neftegazoobrazovaniye. Minsk: Izdatelstvo IGN NAN Belarusi. [in Russian]
 
Kurdyukov, A. A. (1991). Flyuidy i flyuidnyye sistemy v protsessakh rudoobrazovaniya. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 120 (1), 123-128. [in Russian]
 
Lemmleyn, G. G. (1959). Klassifikatsiya zhidkikh vklyucheniy v mineralakh. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 88 (2), 137-143. [in Russian]
 
Lukin, A. E. (1999). O proiskhozhdenii nefti i gaza (geosinergeticheskaya kontseptsiya prirodnykh uglevodorodno-generiruyushchikh sistem). Geologicheskiy zhurnal, 1, 30-42. [in Russian]
 
Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv). (Extended abstract of Doctorʼs thesis). Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy, Lviv. [in Ukrainian]
 
Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi NAN Ukrainy, 8, 117-120. [in Ukrainian]
 
Naumko, І. М., Кurovets’, І. М., Zubyk, М. І., Batsevych, N. V., Sakhno, B. Е., & Chepusenko, P. S. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv Paleozoic depression. Geodynamics, 1 (22), 21-41.
 
Naumko, I. M., Pavliuk, M. I., Svoren, Y. M., & Zubyk, M. I. (2015). Metan hazovuhilnykh rodovyshch – potuzhne dodatkove dzherelo vuhlevodniv v Ukraini. Visnyk NAN Ukrainy, 6, 43-54. [in Ukrainian]
 
Naumko, I. M., & Svoren, I. M. (2003). O vazhnosti glubinnogo vysokotemperaturnogo flyuida v sozdanii usloviy dlya formirovaniya mestorozhdeniy prirodnykh uglevodorodov v zemnoy kore. In Novyye idei v naukakh o Zemle: materialy VI Mezhdunarodnoy konferentsii (Moskva, 8-12 aprelya 2003 g.) (T. 1) (s. 249). Moskva. [in Russian]
 
Naumko, I. M., & Svoren, Y. M. (2005). O litoflyuidotermodinamicheskoy sisteme v geologii i geokhimii. In Novyye idei v geologii i geokhimii nefti i gaza. Neftegazonosnyye sistemy osadochnykh basseynov: materialy VIII Mezhdunarodnoy konferentsii k 60-letiyu kafedry geologii i geokhimii goryuchikh iskopayemykh MGU (Moskva, 31 maya- 2 iyunya 2005 g.) (s. 341-343). Moskva: GEOS. [in Russian]
 
Popivniak, I. V. (2002). Fizyko-khimichne modeliuvannia fliuidodynamichnykh rudoheneruiuchykh paleosystem ta prohnozuvannia poviazanoho z nymy zrudeninnia (na prykladi rodovyshch zolota). (Extended abstract of Doctorʼs thesis). Lvivskyi natsionalnyi universytet imeni Ivana Franka, Lviv. [in Ukrainian]
 
Roedder, E. (1984). Fluid inclusions. In Reviews in Mineralogy (Vol. 12). Virginia: Mine-ralogical Society of America. (perevod rus.: Redder, E. (1987). Flyuidnyye vklyucheniya v mineralakh (T. 1-2). Moskva: Nedra.). [in Russian]
 
Smit, F. G. (1968). Fizicheskaya geokhimiya. Moskva: Nedra. [in Russian]
 
Sokolov, B. A. (2002). K sozdaniyu obshchey teorii neftegazonosnosti nedr. In Novyye idei v geologii i geokhimii nefti i gaza. K sozdaniyu obshchey teorii neftegazonosnosti nedr: materialy VI Mezhdunarodnoy konferentsii (Moskva, 28-31 maya 2002 g.) (Kn. 1) (s. 6-8). Moskva: GEOS. [in Russian]
 
Sokolov, V. A., & Guseva, A. N. (1993). O vozmozhnoy bystroy sovremennoy generatsii nefti i gaza. Vestnik MGU. Seriya 4. Geologiya, 3, 39-46. [in Russian]
 
Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh (ikh sposoby izvlecheniya, sostav, formy nakhozhdeniya i vliyaniye na svoystva veshchestv). (Avtoreferat dissertatsii … kandidata tekhnicheskikh nauk). Institut geologii i geokhimii goryuchikh iskopayemykh NAN Ukrainy. Lvov. [in Russian]
 
Svoren, Y. M. (2017). Yavyshche utvorennia pryrodnykh vuhlemetaniv pid diieiu abiohennoho vysokotermobarnoho hlybynnoho fliuidu. In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy II Mizhnarodnoi naukovoi konferentsii (Kyiv, 6-8 veresnia 2017 r.) (s. 225-229). Kyiv: IHN NAN Ukrainy. [in Ukrainian]
 
Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111-116. [in Ukrainian]
 
Svoren, Y. M., & Naumko, I. M. (2009). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor. Dopovidi NAN Ukrainy, 9, 138-143. [in Ukrainian]
 
Teplov, V. P., & Leiie, Yu. A. (1974). Pro prostorovyi i henetychnyi zviazok endohennykh rudnykh i naftohazovykh proiaviv Zakarpattia. Dopovidi AN URSR. Seriia B, 5, 433-436. [in Ukrainian]
Posted on

PROSPECTS OF THE POTENTIAL FOR OIL AND GAS PRESENCE IN THE NORTH-WESTERN PART OF INNER FLYSH COVERS OF THE UKRAINIAN CARPATHIANS

Home > Archive > No. 2 (179) 2019 > 5-27


Geology & Geochemistry of Combustible Minerals No. 2 (179) 2019, 5-27.

https://doi.org/10.15407/ggcm2019.02.005

Myroslav PAVLYUK, Volodymyr SHLAPINSKY, Olesya SAVCHAK, Myroslav TERNAVSKY

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Here the Cretaceous and Paleogene flysh of the Duklya-Chornohora, Burkut, Magura, Marmarosh and Pieniny covers was studied that in the north-western sector of the Ukrainian Carpathians near the border of Poland and Slovakia (Lemkivsky segment) distinguish themselves by very inclined thrusts. Spatially the given tectonic units are within the limits of so called hydrothermal field unfavourable as a whole, as to the presence of hydrocarbons on a large scale here. But there were distinguished small plots with prevalence of hydrocarbons in the gas composition. Prospects of the potential for gas presence in the region should be connected with the areas that spatially gravitate towards Transcarpathian deep. Studied area consists of several tectonic units of the first order. These are covers located farther south-west of Krosno cover: Duklya-Chornohora, Burkut (Porkulets), Magura, Marmarosh and Pieniny covers, in the south-west the studied terrane is limited by the Transcarpathian deep, and farther west – by the state border of Ukraine and Slovakia, in the south-east – by the Rika Rriver, in the north-east – by the zone of joining of Duklya-Chornohora and Krosno covers. Prospects of the potential for oil end gas presence in the given area, as in the Folded Carpathians on the whole, should be determined by the complex of all accompanying parameters: structural, collecting and covering, hadrochemical and geochemical. For the given area of the Carpathians the geochemical factor is the most important.

Keywords

inner flysh covers, hydrothermal fluid, composition of free gases, oil and gas presence, perspective areas, Transcarpathian deep.

REFERENCES

Baranov, I. G. (1954). Geologicheskoye stroyeniye severo-zapadnoy chasti Vostochnykh flishevykh Karpat i perspektivy neftegazonosnosti. Lvov: VNIGRI, Zap. Ukr. eksped. [in Russian]

Deneha, B. I., Vyshniakov, I. B., Hodyna, Yu. M. et al. (1993). Rozrobyty novi ta vidkorektuvaty tradytsiini napriamky poshukiv vuhlevodniv na sumizhnykh terytoriiakh Ukrainy, Polshchi ta Slovachchyny na osnovi dosvidu storin, analizu naftohazonosnosti ta rozrobky modeli budovy pidnasuvu Karpat (Kn. 1–2). Lviv: UkrDHRI, Fondy DP  “Zakhidukrheolohiia”. [in Ukrainian]

Filimonchuk, S. R., & Frolov, M. V. (1962). Mineralnyye i termalnyye vody Zakarpatia: otchet Zakarpatskoy geologicheskoy ekspeditsii za 1959–1962 gg. o rezultatakh poiskovykh rabot na mineralnyye i termalnyye vody. Beregovo: Zakarpatskaya GRE, Fondy GP “Zapukrgeologiya”. [in Russian]

Gabinet, M. P., Kulchitskiy, Ya. O., Matkovskiy, O. I., Yasinskaya, A. A. (1977). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat (Ch. 2). Lvov: Vyshcha shkola. [in Russian]

Hlushko, V. V., Kuzovenko, V. V., & Shlapinskyi, V. Ye. (1998). Novi pohliady na heolohichnu budovu pivnichno-zakhidnoi chastyny Duklianskoho pokrovu Ukrainskykh Karpat. Visnyk Lviviskoho universytetu. Seriia heolohichna, 13, 94–101. [in Ukrainian]

Hlushko, V. V., Kuzovenko, V. V., & Shlapinskyi, V. Ye. (2007). Heolohichna karta Ukrainskykh Karpat, Zakarpatska, Ivano-Frankivska, Lvivska, Chernivetska oblasti Ukrainy (masshtab 1 : 100 000, Yu. Z. Krupskyi (Red.)). Kyiv: Fond ZAT “Kontsern Nadra”. [in Ukrainian]

Kantolinskiy, S. I., & Ponomareva, S. V. (1962). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Polyana, Zakarpatskoy oblasti v 1961 g. Lvov. [in Russian]

Kantolinskiy, S. I., Koval, Zh. S., & Alekseyev, V. L. (1963). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Bereznik, Zakarpatskoy oblasti v 1962 g. (T. 1–2). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Kantolinskiy, S. I., Koval, Zh. S., & Alekseyev, V. L. (1964). Otchet o geologicheskikh issledovaniyakh, provedennykh na ploshchadi Kushnitsa, Zakarpatskoy oblasti v 1963 g. Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. E. et al. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Kolodii, V. V. (2010). Hidroheolohiia. Lviv: Vydavnychyi tsentr LNU im. I. Franka. [in Ukrainian]

Kuzovenko, V. V., Shlapinskyi, V. Ye., & Machalskyi, D. V. (2001). Detalizatsiia heolohichnoi budovy pivnichno-zakhidnoi chastyny Vnutrishnikh flishovykh pokroviv Ukrainskykh Karpat z metoiu vyiavlennia obiektiv, perspektyvnykh na naftu i haz (1998–2001 rr.). Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]

Kulchitskiy, Ya. O., Lozynyak, P. Yu., & Markhel, M. D. (1966). Tektonika i perspektivy neftegazonosnosti yuzhnogo sklona Ukrainskikh Karpat (T. 1. Tema 804). Lvov: UkrNIGRI, Fondy GP “Zapukrgeologiya”. [in Ukrainian]

Lazarenko, E. A., Gnilko, M. I., & Zaytseva, V. N. (1968). Metallogeniya Zakarpatia. Lvov. [in Russian]

Leye, Yu. A., Naumenko, V. V., Teplov, V. P., & Rogachenko, V. V. (1976). Regmaticheskiye razlomy, morfostruktury i mineralogeniya Ukrainskikh Karpat i Zakarpatia. Kiev. (Preprint AN USSR. Institut geokhimii i fiziki mineralov). [in Russian]

Matskiv, B. V., Kovalov, Yu. V., Pukach, B. D., & Vorobkanych, V. M. (2003). Derzhavna heolohichna karta Ukrainy (masshtab 1 : 200 000. Karpatska seriia. X (Snina), M-34-XXXV (Uzhhorod), L-34-V (Satu Mare), V. V. Kuzovenko (Red.), H. D. Dosyn (ekspert NRR), Lvivske viddilennia UkrDHRI. Kyiv. [in Ukrainian]

Molchanov, V. I. (1981). Generatsiya vodoroda v litogeneze. Novosibirsk: Nauka. [in Russian]

Muravinskiy, E. S., Kuzovenko, V. V., Spas, E. G. et al. (1964). Raschleneniye razrezov ploshchadey glubokogo bureniya, razburennykh v 1963 godu, obrabotka i obobshcheniye materialov po profilnomu bureniyu v Karpatskom regione (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Muravinskiy, E. S., Kuzovenko, V. V., Spas, E. G. et al. (1965). Raschleneniye razrezov ploshchadey glubokogo bureniya i izucheniye glubinnogo stroyeniya Karpatskoy neftegazonosnoy oblasti po rezultatam obrabotki materialov parametricheskogo bureniya (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Nekrasova, L. P., Danysh, V. V., & Baranovskiy, V. I. (1966). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Velikiy Bereznyy Zakarpatskoy oblasti USSR v 1964–1965 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Ozerova, N. A. (1980). O degazatsii rtuti iz glubin Zemli. In Geokhimiya protsessov migratsii rudnykh elementov (s. 43–53). Moskva: Nauka. [in Russian]

Ozerova, N. A., & Pikovskiy, Yu. I. (1982). Rtut v uglevodorodnykh gazakh. In Geokhimiya protsessov rudoobrazovaniya (s. 102–136). Moskva: Nauka. [in Russian]

Petrik, V. P. (1974). Otchet o rezultatakh poiskovykh rabot na mineralnyye vody, vypolnennykh na uchastkakh Velikiy Bereznyy i Simerki v 1973–1974 gg. Kiev: Zakarpatskaya GRE, Fondy GP “Zapukrgeologiya”. [in Russian]

Shcherba, V. M. (1965). Geologicheskiye rezultaty glubokogo razvedochnogo bureniya za 1964 god na ploshchadyakh Khodnovichi, Sadkovichi, Nizhankovichi, Volya-Blazhevskaya, Lomna, Svalyava, Tereblya. Sambor: Fondy GP “Zapukrgeologiya”. [in Russian]

Shlapinskiy, V. E. (1989). Geokhimicheskiye anomalii Skladchatykh Karpat i ikh svyaz s neftegazonosnostyu. In Problemy geologii i geokhimii goryuchikh iskopayemykh zapada Ukrainskoy SSR: tezisy dokladov respublikanskoy konferentsii (Lvov, 2–6 oktyabrya 1989 g.) (T. 3, s. 77–78). Lvov. [in Russian]

Shlapinskyi, V. Ye., Hlushko, V. V., & Kuzovenko, V. V. (1994). Vyvchennia heolohichnoi budovy i perspektyv naftohazonosnosti zony zchlenuvannia Duklianskoho, Chornohorskoho i Krosnenskoho pokroviv Ukrainskykh Karpat v 1991–1994 rr. (T. 1). Lviv: Fondy DP “Zakhidukrheolohiia”. [in Ukrainian]

Shlapinskiy, V. E. (2003). Pryamyye i nepryamyye priznaki neftegazonosnosti Ukrainskikh Karpat kak novyye kriterii eye otsenki. In Novyye idei v naukakh o Zemle: VI Mezhdunarodnoy konferentsii (T. 1, s. 277). Moskva. [in Russian]

Shlapinskyi, V. (2012). Deiaki pytannia tektoniky Ukrainskykh Karpat. Pratsi Naukovoho tovarystva imeni Shevchenka. Heolohichnyi zbirnyk, 30, 48–68. [in Ukrainian]

Shlapinskyi, V. Ye. (2015). Kompleksna otsinka perspektyv naftohazonosnosti peredovoi chastyny Skladchastykh Ukrainskykh Karpat. In Heolohiia horiuchykh kopalyn: dosiahnennia i perspektyvy: Mizhnarodna naukova konferentsiia (Kyiv, 2–4 veresnia 2015 r.) (s. 248–251). Kyiv. [in Ukrainian]

Slavin, V. I. (1947). Novyye dannyye po stratigrafii i tektonike yurskikh otlozheniy tak nazyvayemoy «klippenovoy zony» Karpat. In Materialy po geologii i gidrogeologii Ukrainskogo geologicheskogo upravleniya za 1946 g. (Sb. 4, s. 135–139). Kiev. [in Russian]

Zatsikha, B. V. (1989). Kristallogenezis i tipomorfnyye osobennosti mineralov rtutnogo i flyuoritovogo orudeneniya Ukrainy. Kiev: Naukova dumka. [in Russian]

Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1966). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Lyuta Zakarpatskoy oblasti USSR v 1964–1965 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhigunova, Z. F., Koval, Zh. S., & Petrov, V. G. (1968). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Perechin Zakarpatskoy oblasti USSR v 1966–1967 gg. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhigunova, Z. F., Petrov, V. G., & Koval, Zh. S. (1969). Otchet o poiskovo-syemochnykh rabotakh masshtaba 1 : 25 000, provedennykh na ploshchadi Turia Polyana Zakarpatskoy oblasti USSR v 1969 g. (T. 1). Lvov: Fondy GP “Zapukrgeologiya”. [in Russian]

Zhilovskiy, N. I., Dabagyan, N. V., & Smirnov, S. E. (1961). Geologicheskoye stroyeniye i perspektivy neftegazonosnosti ploshchadi Svalyava–Nelipino (Zakarpatskaya oblast) (T. 1). Lvov: Fondy UkrGGRI. [in Russian]

Posted on

PETROPHYSICAL MODELS OF TERRIGENOUS RESERVOIRS OF THE CARBONIFEROUS DEPOSITS OF THE CENTRAL PART OF THE DNIEPER-DONETS DEPRESSION

Home > Archive > No. 1 (178) 2019 > 63-73


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 63-73.

https://doi.org/10.15407/ggcm2019.01.063

Yulia LYSAK, Yuriy SHPOT, Andriy SHYRA, Zoriana KUCHER, Ihor KUROVETS

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: y.shufliak@gmail.com

Abstract

The purpose of the work was to construct petrophysical models of reservoir rocks of different rank: typical and unified. Typical models describe connections between the parameters of individual rocks lithotypes occurring in definite geological conditions and serving as the basis for the development of petrophysical classification of reservoir rocks in the oil geology. The principle of unification provides for creation of the models structure for different reservoir lithotypes both in the geological section and in the area.

We have studied petrophysical properties of reservoir rocks of Carboniferous deposits in the central part of the Dnieper-Donets depression. Petrophysical properties of rocks in conditions close to the formational ones and relations between them were studied on a number of samples formed by the core samples of different age. Main geological factors that have an influence on reservoir properties of rocks were taken into consideration.

While constructing and analysing of petrophysical models we have used a probable-statistic approach with the use of the correlative-regressive analysis.

Result of the work is contained in typical petrophysical models for individual areas and in unified models obtained on consolidated samples for Lower Carboniferous deposits of this region. Characteristic features in variations of petrophysical properties of reservoir rocks of Carboniferous deposits and their models have been ascertained.

A conclusion has been made that multidimensional models, in which the depth of occurrence of deposits is one of the parameters that are necessary to consider while constructing petrophysical models, are the most informative for determination of petrophysical properties of the studied deposits, and the models obtained by us are known to be a petrophysical basis for quantitative interpretation of data from geophysical studies in the boreholes of the given region.

Keywords

petrophysical models, Dnieper-Donets depression, catagenetic processes.

REFERENCES

Atlas rodovyshch nafty i hazu Ukrainy. T. 1. Skhidnyi naftohazonosnyi rehion. (1998). Lviv: UHNA. [in Ukrainian]

Ellanskiy, M. M. (1978). Petrofizicheskiye svyazi i kompleksnaya interpretatsiya dannykh promyslovoy geofiziki. Moskva: Nedra. [in Russian]

Gurzhiy, D. V. et al. (1989). Litologiya i porody kollektory na bolshikh glubinakh v neftegazonosnykh provintsiyakh Ukrainy. Kiev: Naukova dumka. [in Russian]

Kabyshev, B. P. et al. (1989). Geologiya i neftegazonosnost Dneprovsko-Donetskoy vpadiny. Kiev: Naukova dumka. [in Russian]

Kurovets, I. M. (2001). Stan i problemy vyvchennia petrofizychnykh vlastyvostei porid-kolektoriv nafty i hazu. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 136–147. [in Ukrainian]

Kurovets, I. M., & Prytulka, H. Y. (2001). Otsinka vplyvu heolohichnykh faktoriv na petrofizychni vlastyvosti teryhennykh kolektoriv. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 81–92. [in Ukrainian]

Kurovets, I. M., Prytulka, H. Y., Zubko, O. S., & Sheremeta, O. V. (1999). Petrofizychna parametrychna osnova dlia pidrakhunku zapasiv hazu v sarmatskykh vidkladakh Bilche-Volytskoi zony Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 15–24. [in Ukrainian]

Petkevich, G. I., Sheremeta, O. V., & Pritulka, G. I. (1979). Metodika petrofizicheskogo izucheniya kollektorov nefti i gaza v usloviyakh. modeliruyushchikh plastovyye. Kiev: Naukova dumka. [in Russian]

Posted on

DETERMINATION OF GAS GENERATION CAPACITY OF THE UKRAINIAN CARPATHIANS BITUMINOUS ARGILLITES BY JAYNES’ FORMALISM

Home > Archive > No. 1 (178) 2019 > 47-62


Geology & Geochemistry of Combustible Minerals No. 1 (178) 2019, 47-62.

https://doi.org/10.15407/ggcm2019.01.047

Yuri KHOKHA, Oleksandr LYUBCHAK, Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv,
e-mail: igggk@mail.lviv.ua

Abstract

The analysis of literature was carried out and the main criteria for determining the gas generating potential of rocks were determined. These criteria are divided into two groups: the first one is geochemical, which includes the content of organic carbon and the thermal maturity of the rocks. The second group combines the geological and economic criteria that determine the suitability of rocks for the removal of hydrocarbon gases from them. In our opinion, the most important group of criteria should be considered a geochemical group.
Traditionally, to determine the ability of organic matter to form hydrocarbons, the Rock-Eval analysis was used. As a result, determined are the total organic carbon (TOC) and other parameters, such as hydrogen index (HI) or production index (PI).
In this paper, we are trying to expand the range of parameters that can be used to determine the gas generation potential of the rocks. The elemental composition of the organic matter dissipated in the rocks, in general terms, should affect on the composition and amount of hydrocarbons that they synthesize. To determine the influence of elemental composition on the gas-generating potential, equilibrium thermodynamics is used in conjunction with the Jaynes’ formalism.
Samples for investigation – bituminous argillites from Menilite suite of Oligocene, were taken from two fields of the Ukrainian Carpathians. For samples, the elemental composition of the organic matter and the mineral composition of the inorganic part (by X-ray crystallography) are determined. The data on the elemental composition came into the calculation, the result of which is the distribution of the additive components in the organic matter and the composition of gases.
The results of the calculations were compared with the results obtained by the Rock-Eval method. It was found that the calculation by the thermodynamic method gives understated results. On the other hand, it allows the establishment of a change in the chemical structure of organic matter of rocks. We are outlined ways to further improvement of the method.

Keywords

gas-generating potential, Jaynes’ formalism, equilibrium thermodynamic, dissipated organic matter.

REFERENCES

Behar, F., Roy, S., & Jarvie, D. (2010). Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling. Organic Geochemistry, 41, 1235-1247
https://doi.org/10.1016/j.orggeochem.2010.08.005
 
Diakonchuk, S. A., & Kuzmenko, T. M. (2015). Heolohichna kharakterystyka pokladiv netradytsiinykh typiv vuhlevodniv na osnovi 3D-modeliuvannia. Heodynamika, 2 (19), 26-33. [in Ukrainian]
https://doi.org/10.23939/jgd2015.02.026
 
Gabinet, M. P., Kulchitskiy, Ya. O., & Matkovskiy, O. I. (1976). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat. (Ch. 1). Lvov: Vyshcha shkola. [in Russian]
 
Khokha, Yu. V. (2014). Termodynamika hlybynnykh vuhlevodniv u prohnozuvanni rehionalnoi naftohazonosnosti. Kyiv: Naukova dumka. [in Ukrainian]
 
Khokha, Yu., Liubchak, O., & Yakovenko, M. (2018). Vplyv temperaturnoho rezhymu na hazoheneratsiinyi potentsial huminovykh kyslot orhanichnoi rechovyny. Heolohiia i heokhimiia horiuchykh kopalyn, 3-4 (176-177), 49-63. [in Ukrainian]
 
Koltun, Y., Espitalié, J., Kotarba, M., Roure, F., Ellouz, N., & Kosakowski, P. (1998). Petroleum generation in the Ukrainian external Carpathians and the adjacent foreland. Journal of Petroleum Geology, 21 (3), 265-288.
https://doi.org/10.1111/j.1747-5457.1998.tb00782.x
 
Van Krevelen D. W., & Chermin H. A. G. (1951). Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chemical Engineering Science, 1 (2), 66-80.
https://doi.org/10.1016/0009-2509(51)85002-4
 
Krupskyi, Yu. Z. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]
 
Krupskyi, Yu. Z., Kurovets, I. M., & Senkovskyi, Yu. M. (2014). Zakhidnyi naftohazonosnyi rehion. In Netradytsiini dzherela vuhlevodniv Ukrainy (Kn. 2). Kyiv: Nika-Tsentr. [in Ukrainian]
 
Lebeha, O. V. (2017). Faktory ta heoloho-ekonomichni pokaznyky, shcho vyznachaiut tsinnist hazoslantsevykh rodovyshch. Ekonomichnyi analiz, 2 (27), 162-171. [in Ukrainian]
 
Liubchak, O. V., Khokha, Yu. V., & Yakovenko, M. B. (2018). Spivvidnoshennia strukturnykh elementiv vuhlevodnevoi skladovoi arhilitiv skhidnykh Karpat za formalizmom Dzheinsa. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, seriia “Heolohiia. Heohrafiia. Ekolohiia”, 49, 15-23. [in Ukrainian]
 
Novak, J., Kozler, J., Janos, P., Cezıkova, J., Tokarova, V., & Madronova, L. (2001). Humic acids from coals of the North-Bohemian coal field: I. Preparation and characterisation. Reactive & Functional Polymers, 47, 101-109.
https://doi.org/10.1016/S1381-5148(00)00076-6
 
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin; Heildelberg; New York; Tokyo: Springer-Verlag.
https://doi.org/10.1007/978-3-642-87813-8