Home > Archive > No. 1–2 (183–184) 2021 > 110–129
Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 110–129.
https://doi.org/10.15407/ggcm2021.01-02.110
Аnatoliy GALAMAY, Andriy POBEREZHSKYY, Sofiya HRYNIV, Serhiy VOVNYUK, Dariya SYDOR, Iaroslava IAREMCHUK, Sofiya MAKSYMUK, Oksana OLIYOVYCH-HLADKA, Lyudmila BILYK
Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua
Abstract
Studies of evaporites provide new data to characterize the seawater chemistry in the Early Paleozoic and Middle Mesozoic. In particular, we studied the fluid inclusions in halite from Ordovician (China) and Cretaceous (Laos) evaporites. The corresponding sections on the plot of Ca/SO4 oscillations curve in the Phanerozoic seawater are updated. The calcium content in seawater concentrated to halite precipitation stage was 45.6 mol %, 485 million years ago and 24.3 mol % 112.2–93.5 million years ago.
By analyzing the previously published and new factual material, it is established that in Permian evaporites the sulfur isotopic composition is inversely correlated with the sulfate ion content in evaporite basin brines. Thus, the evolution of seawater chemistry in Permian is confirmed by the evolution of the isotopic composition of dissolved seawater sulfate.
According to the generalization of 38 Phanerozoic marine evaporite formations, it was found that the peculiarities of the clay minerals associations correlate with the change of the seawater chemical type. Clay minerals associations precipitated from the SO4-rich seawater are characterized by a larger set of minerals, among which smectite and mixed- layered minerals often occur; Mg-rich clay minerals (corensite, paligorskite, sepiolite, talc) also occur. Instead, in the associations of evaporite clay minerals formed from the Ca-rich seawater are represented by the smaller amount of minerals, and Mg-rich minerals are extremely rare. The increased content of magnesium in seawater of SO4-rich type is the main factor in the formation of Mg-rich silicates in evaporites.
The composition of clay minerals associations depends on the evaporate basin brine concentration; with its increase, unstable minerals are transformed, which theoretically leads to a decrease in the number of minerals in the associations. However, it was found that evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals – products of incomplete transformation of a significant amount of pyroclastic material from coeval volcanic activity.
The main factor determining the composition of clay minerals associations of Phanerozoic evaporites was the seawater (and basin brines) chemical type.
Geochemical studies of scattered organic matter and fluid inclusions with hydrocarbon phase in evaporites of the Upper Pechora Basin (overlying oil and gas deposits) indicate the presence of allochthonous bitumoids and allow to use this method to predict oil and gas potential of other areas. Analysis of the results of oil and gas exploration in a number of areas of the Transcarpathian Trough indicates the presence of fluid-saturated reservoirs and the prospects for the discovery of new accumulations of hydrocarbons. Geochemical studies proved the effectiveness of gas-flow survey method for oil and gas exploration, assessing the prospects for fluid saturation of seismic structures.
Keywords
fluid inclusions, halit, salt Basin, seawater.
Referenses
Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving” – a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279–288.
Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557–558. https://doi.org/10.1126/science.1140273
Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33(11), 877–880. https://doi.org/10.1130/G21945.1
Duchuk, S. V., & Maksymuk, S. V. (2019). Naftohazovyi potentsial Zakarpatskoho prohynu. In Mineralno-syrovynni bahatstva Ukrainy: shliakhy optymalnoho vykorystannia: tezy dopovidei naukovo-praktychnoi konferentsii (4 zhovtnia 2019 r., smt Khoroshiv) (pp. 55–61). Kyiv. [in Ukrainian]
Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol., 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x
D’yakonov, A. I., Tskhadaya, N. D., Ovcharova, T. A., Yudin, V. M., Ivanov, V. V., & Kuznetsov, N. I. (2002). Sovremennyi evolyutsionno-dinamicheskii metod prognoza neftegazonosnosti geologo-ekologicheskikh regionov osobo slozhnogo stroeniya (na primere yuga Verkhnepechorskoi vpadiny). Ukhta: UGTU. [in Russian]
Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]
Galamai, A. R., Shanina, S. N., & Ignatovich, O. O. (2013). Sostav mineraloobrazuyushchikh rassolov Verkhnepechorskogo solerodnogo basseina na stadii kristallizatsii galita. Zapiski Rossiiskogo mineralogicheskogo obshchestva, 142(4), 32–46. [in Russian]
Galamay, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37(2), 245–267.
Galamay, A. R., Meng, F., Bukowski, K., Ni, P., Shanina, S. N., & Ignatovich, O. O. (2016). The sulphur and oxygen isotopic composition of anhydrite from the Upper Pechora Basin (Russia): new data in the context of the evolution of the sulphur isotopic record of Permian evaporites. Geological Quarterly, 60(4), 990–999. https://doi.org/10.7306/gq.1309
Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Extended abstract of сandidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]
Halamai, A. R., & Baranenko, O. B. (2004). Proiavy vuhlevodniv u badenskykh soliakh Peredkarpattia i Zakarpattia. Mineralohichnyi zbirnyk, 54(1), 132–136. [in Ukrainian]
Halamai, A. R., & Meng, F. (2020). Khimichnyi sklad pivdenno-skhidnoi chastyny kreidovoho Sakon Nakhon solerodnoho baseinu Laosu u konteksti evoliutsii skladu okeanichnoi vody. In Vid mineralohii i heohnozii do heokhimii, petrolohii, heolohii ta heofizyky: fundamentalni i prykladni trendy XXI stolittia (MinGeoIntegration XXI): tezy dopovidei Vseukrainskoi konferentsii (Kyiv, 23–25 veresnia 2020 r.) (pp. 20–24). Kyiv. [in Ukrainian]
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279–283. https://doi.org/10.1016/S0016-7037(01)00884-5
Iaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138–146. https://doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]
Iaremchuk, I., Tariq, M., Hryniv, S., Vovnyuk, S., & Meng, F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan). Carbonates Evaporites, 32(1), 63–74. https://doi.org/10.1007/s13146-016-0294-5
Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (pp. 60–69). Moskva: Nauka. [in Russian]
Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoe. Kiev: Naukova dumka. [in Russian]
Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695–712. https://doi.org/10.1086/516054
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseinov i vod mirovogo okeana. Litologiya, 4, 95–109. [in Russian]
Kovalevych, V. M., Peryt, T. M., Carmona, V., Sydor, D. V., Vovnyuk, S. V., & Halas, S. (2002). Evolution of Permian seawater: evidence from fluid inclusions in halite. N. Jb. Miner. Abh., 178(1), 27–62. https://doi.org/10.1127/0077-7757/2002/0178-0027
Kovalevych, V. M., Peryt, T. M., Shanina, S. N., Wieclaw, D., & Lytvyniuk, S. F. (2008). Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in rock salt. Journal of Petrolium Geology, 31(3), 245–262. https://doi.org/10.1111/j.1747-5457.2008.00419.x
Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real microdroplets of ancient sea water? Geological Quarterly, 54(4), 401–410.
Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485–506. https://doi.org/10.1007/s00126-019-00873-9
Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci Rev., 178, 1–28. https://doi.org/10.1016/j.earscirev.2017.12.004
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., Demicco, R. V. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086–1088. https://doi.org/10.1126/science.1064280
Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69(7), 1701–1719. https://doi.org/10.1016/j.gca.2004.09.015
Lytvyniuk, S. V. (2007). Heokhimichni oreoly u soliakh nad pokladamy vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 95–111. [in Ukrainian]
Maksymuk, S. V. (2012). Osoblyvosti vidobrazhennia fliuidonasychenosti horyzontiv Vyshnianskoi ploshchi Zovnishnoi zony Peredkarpatskoho prohynu v heokhimichnykh poliakh prypoverkhnevykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(160–161), 109–117. [in Ukrainian]
Maksymuk, S. V., & Bodlak, P. M. (2015). Dosvid zastosuvannia heokhimichnykh metodiv u kompleksnykh poshukovykh robotakh na naftu i haz u Karpatskomu rehioni. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu im. Ivana Franka (Lviv, 7–8 zhovtnia 2015 r.) (pp. 151–152). Lviv. [in Ukrainian]
McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D
Moskovskii, G. A. (1983). Issledovaniya fiziko-khimicheskikh uslovii sedimentatsii kungurskikh galogennykh otlozhenii zapadnoi chasti Prikaspiiskoi sineklizy po vklyucheniyam v mineralakh [Extended abstract of сandidateʼs thesis]. Moskovskii gossudarstvennyi universitet. Moskva. [in Russian]
Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]
Pozo, M., & Calvo, J. P. (2018). An Overview of Authigenic Magnesian Clays. Minerals, 8(11), 520. https://doi.org/10.3390/min8110520
Raevskii, V. I., Fiveg, M. P., & Gerasimova, V. V. (1973). Mestorozhdeniya kaliinykh solei SSSR. Leningrad: Nedra. [in Russian]
Robinson, D., Schmidt, Th., & Santana de Zambora, A. (2002). Reaction pathways and reaction progress for the smectite-to chlorite transformation: evidence from hydrothermally altered metabasites. J. Metamorph. Geol., 20, 167–174. https://doi.org/10.1046/j.0263-4929.2001.00361.x
Schiffman, P., & Staudigel, H. (1995). The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487–498. https://doi.org/10.1111/j.1525-1314.1995.tb00236.x
Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]
Sone, M., & Metcalfe, I. (2008). Parallel Tethyan sutures in mainland South-East Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340, 166–179. https://doi.org/10.1016/j.crte.2007.09.008
Więcław, D., Lytvyniuk, S. F., Kovalevych, V. M., & Peryt, T. M. (2008). Incluzje w halicie oraz bituminy w solach ewaporatόw mioceńskich ukraińskiego Przedkarpacia jako wskaźnik występowania nagromadzeń węglowodorόw w niżey leżących utworach. Przegląd Geologiczny, 56(9), 837–841.
Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020a). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974
Yaremchuk, Ya., Vovniuk, S., Hryniv, S., Tarik, M., Menh, F., Bilyk, L., & Kochubei, V. (2017). Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh, Pakystan. Mineralohichnyi zbirnyk, 67(2), 72–90. [in Ukrainian]
Yaremchuk, Ya. V., Vovniuk, S. V., & Tariq, M. (2020b). Hlynysti mineraly eotsenovoi kamianoi soli formatsii Bakhadar Khel, Pakystan. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 87–99. https://doi.org/10.15407/ggcm2020.01.087 [in Ukrainian]
Yaremchuk, Ya. V., Vovnyuk, S. V., & Hryniv, S. P. (2020c). The peculiarities of high-magnesium clay minerals occurrence in Phanerozoic evaporite formation. Geodynamics, 1(28), 52–61. https://doi.org/10.23939/jgd2020.01.052