Posted on

BIOSTRATIGRAPHY OF PALEOCENE-EOCENE DEPOSITS OF THE UKRAINIAN CARPATHIANS BASED ON PLANKTONIC FORAMINIFERA

Home > Archive > No. 3–4 (185–186) 2021 > 56–64


Geology & Geochemistry of Combustible Minerals No. 3–4 (185–186) 2021, 56–64.

https://doi.org/10.15407/ggcm2021.03-04.056

Svitlana HNYLKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

Paleogene deposits are the main reservoir of hydrocarbon resources in the Carpathians and creation of the modern stratigraphic scheme of these deposits is the basis for improving the efficiency of geological search works. The reliable stratification is a necessary precondition for the preparation of geological maps. Stratification of the Paleocene–Eocene sediments is provided by foraminifera, nannoplankton, dinocysts, radiolarians, sponge spicules, palynoflora. Planktonic foraminifera is the main stratigraphic group of the Paleogene fauna.

In the predominantly non-calcareous flysch of the Paleocene–Eocene of the Carpathians, mainly agglutinated benthic foraminifera of siliceous composition are developed. Planktonic foraminifera are distributed locally – in calcareous facies. The most complete sequence of Paleocene–Eocene planktonic foraminifera is represented in the Metova Formation (the Vezhany nappe of the Inner Carpathians).

The results of own researches of natural sections of sediments distributed within the Magursky, Monastyretsky and Vezhany nappes of the Ukrainian Carpathians together with the analysis of literature sources are used.

The article presents a generalized biozonal division of the Paleocene–Eocene of the Ukrainian Carpathians by planktonic foraminifera. On the basis of certain correlation levels, a comparison with the Geological Time Scale was made.

The Parvularugoglobigerina eugubina Zone (lowermost Danian), Globoconusa daubjergensis Zone (middle Danian), Praemurica inconstans Zone (upper Danian); Morozovella angulata Zone (lower Selandian); Globanomalina pseudomenardii Zone fnd Acarinina acarinata Zone (upper Selandian–Thanetian); Morozovella subbotinae Zone (lower Ypresian), Morozovella aragonensis Zone (upper Ypresian); Acarinina bullbrooki Zone (lower Lutetian), Acarinina rotundimarginata Zone (upper Lutetian); Hantkenina alabamensis Zone (Bartonian); Globigerinatheka tropicalis Zone (lower Priabonian) and Subbotina corpulenta Zone (upper Priabonian) based on planktonic foraminifera are characterized in studied deposits.

Keywords

Ukrainian Carpathians, planktonic foraminifera, biostratigraphy, Paleocene–Eocene

Referenses

Andreeva-Grigorovich, A. S., Gruzman, A. D., Lozynyak, P. Yu., & Smirnov, S. E. (1987). Opornye razrezy pogranichnykh sloev eotsena i oligotsena Duklyanskoi i Marmaroshskoi zon. Paleontologicheskii sbornik, 24, 33–38. [in Russian]

Andreeva-Grigorovich, A. S., Vyalov, O. S., Gavura, S. P., Gruzman, A. D., Dabagyan, N. V., Danysh, V. V., Ivanik, M. M., Kul’chitskii, Ya. O., Lozynyak, P. Yu., Maslun, N. V., Petrashkevich, M. I., Ponomareva, L. D., Portnyagina, L. A., Smirnov, S. E., & Sovchik, Ya. V. (1984). Obyasnitelnaya zapiska k regionalnoi stratigraficheskoi skheme paleogenovykh otlozhenii Ukrainskikh Karpat [Preprint № 84-19]. Kiev: Institut geologicheskikh nauk AN USSR. [in Russian]

Andreyeva-Grigorovich, A. S. (1999). Biostratigraphic correlations of the paleogene deposits of the Ukrainian Carpathians and Crimea-Bakhchisarai area using nannoplankton and dinocysts. Geologica Carpathica, 50, 10–12.

Bugrova, E. M. (Ed.). (2005). Prakticheskoe rukovodstvo po mikrofaune: Vol. 8. Foraminifery kainozoya. Sankt-Peterburg: VSEGEI. [in Russian]

Dabagyan, N. V., Kruglov, S. S., & Smirnov, S. E. (1965). Litologiya i stratigrafiya melovogo i paleogenovogo chekhla zony Zakarpatskikh utesov. Trudy UkrNIIGRI, 14, 78–86. [in Russian]

Dabagyan, N. V., Kul’chitskii, Ya. O., Kuzovenko, V. V., & Shlapinskii, V. E. (1987). Opornye razrezy pogranichnykh sloev verkhov eotsena – nizov oligotsena yuzhnoi chasti Skibovoi, Krosnenskoi i Chernogorskoi zon. Paleontologicheskii sbornik, 24, 27–33. [in Russian]

Danysh, V. V., & Ponomareva, L. D. (1989). Sopostavlenie razrezov paleogena Duklyanskoi zony Vostochnykh i Zapadnykh Karpat. In Geologiya Sovetskikh Karpat (pp. 57–65). Kiev: Naukova dumka. [in Russian]

Fusan, O. (Ed.). (1983). Stratigraficky slovnik Zapadnych Karpat (T. 1). Bratislava.

Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. (Eds.). (2012). The Geologic Time Scale 2012. Boston, USA: Elsevier.

Gruzman, A. D., & Dabagyan, N. V. (1979). Zonal’naya stratigrafiya po planktonnym foraminiferam paleotsena i eotsena yuzhnogo sklona Ukrainskikh Karpat. Paleontologicheskii sbornik, 16, 30–34. [in Russian]

Hnylko, S. R. (2015). Stratyhrafiia za foraminiferamy paleotsenovo-eotsenovykh vidkladiv vnutrishnikh flishevykh pokryviv Zovnishnikh Ukrainskykh Karpat. Heolohichnyi zhurnal, 3, 87–100. https://doi.org/10.30836/igs.1025-6814.2015.3.139291 [in Ukrainian]

Hnylko, S. R. (2017). Foraminifery i stratyhrafiia paleotsen-eotsenovykh vidkladiv Ukrainskykh Karpat [Extended abstract of сandidateʼs thesis]. Instytut heolohichnykh nauk NAN Ukrainy. Kyiv. [in Ukrainian]

Hnylko, S., & Hnylko, O. (2016). Foraminiferal stratigraphy and palaeobathymetry of Paleocene-lowermost Oligocene deposits (Vezhany and Monastyrets nappes, Ukrainian Carpathians). Geological Quarterly, 60(1), 75–103. https://doi.org/10.7306/gq.1247

Hnylko, S. R., & Hnylko, O. M. (2013). Stratyhrafiia, biozonalnyi podil za foraminiferamy ta umovy nakopychennia paleotsen-eotsenovykh vidkladiv Vezhanskoho pokryvu Vnutrishnikh Karpat. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 6(1), 90–97. https://doi.org/10.30836/igs.2522-9753.2013.147156 [in Ukrainian]

Maslun, N. V., Mintuzova, L. G., & Hnylko, S. R. (2015). Detailed stratification and correlation of Foraminifera Paleogene deposits of Ukraine. Geological Journal, 4, 31–48. https://doi.org/10.30836/igs.1025-6814.2015.4.138833

Myatlyuk, E. V. (1970). Foraminifery flishevykh otlozhenii Vostochnykh Karpat (mel–paleogen). Leningrad: Nedra. [in Russian]

Olsson, R. K., Hemleben, Ch., Berggren, W. A., & Huber, B. T. (Eds.). (1999). Atlas of Paleocene Planktonic Foraminifera. Smithsonian contributions to paleobiology, 85. https://doi.org/10.5479/si.00810266.85.1

Pearson, P. N., Olsson, K. R., Huber, B. T., Hemleben, Ch., & Berggren, W. A. (Eds.). (2006). Atlas of Eocene planktonic foraminifera. Cushman Foundation Special Publication, 41.

Vashchenko, V. A., Ageev, V. A., Shlapinskii, V. E., Tsarnenko, P. N., Dabagyan, N. V., Buzyak, I. P., Khil’chenko, N. M., & Shcherbak, A. A. (1985). Otchet po gruppovoi geologicheskoi s”emke masshtaba 1 : 50 000 territorii listov M–35–133–A, B; M–35–134–A, B, V Ivano-Frankovskoi i Zakarpatskoi oblastei USSR za 1981–1985 gg. (№ 2979/1). L’vov. [in Russian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., Lemishko, O. D., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Smirnov, S. E., Smolinskaya, N. I., & Tsarnenko, P. N. (1988). Stratotipy melovykh i paleogenovykh otlozhenii Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Tsarnenko, P. N., & Tsizh, I. T. (1981). Istoriya geologicheskogo razvitiya Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., & Smirnov, S. E. (1987). Opornye pogranichnye razrezy eotsena i oligotsena severnogo sklona Ukrainskikh Karpat. Paleontologicheskii sbornik, 24, 20–27. [in Russian]

Vyalov, O. S., Gavura, S. P., & Ponomareva, L. D. (1987). Opornye razrezy pogranichnykh otlozhenii eotsena i oligotsena Vnutrennei zony Predkarpatskogo progiba. Paleontologicheskii sbornik, 24, 12–20. [in Russian]


Posted on

FACIAL FEATURES OF THE PALEOCENE-EOCENE DEPOSITS OF ADVANCED UNITS OF THE SKYBA ZONE OF UKRAINIAN CARPATHIANS

Home > Archive > No. 3–4 (185–186) 2021 > 44–55


Geology & Geochemistry of Combustible Minerals No. 3–4 (185–186) 2021, 44–55.

https://doi.org/10.15407/ggcm2021.03-04.044

Halyna HAVRYSHKIV1, Yuliya HAIEVSKA2

1, 2 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1galinah2404@gmail.com; 2yuhaievska@ukr.net

Abstract

There three main types of facies of Paleocene-Eocene complexes: sandy, siltstone and argillite distinguished within the study area by the nature of the distribution of the strata of the forming components were highlighted. Тhey accumulated avalanche at the foot of the continental slope and formed various facial parts of the foehn (Upper, Middle and Lower foehn). In the upper part of the Foehn was accumulated coarse-grained sediments (clusters of deep boulders and other psephyto-psammitic material containing edaphogenic rocks). Under the action of geostrophic and bottom currents, silt streams of pelitic and psammitic material moved in the direction to the south and south-east of the Carpathian sedimentation basin, forming sandy-clay and clay facies (Middle and Lower foehn). During the turbidite movement of a large amount of sediment from the first (shelf) to the second (foot of the continental slope) level of avalanche sedimentation, sorting and distribution of sediments on the continental slope took place. Based on the analysis of the material composition of Paleocene-Eocene sediments of the study area by such criteria as the size of the fragment, sedimentary textures and the ratio of different rocks, 7 facies were identified, which were deposited as gravitational flows down on the continental slope. Reconstructions of Paleocene-Eocene age flysch deposits showed that terrigene material in the studied sedimentation basin came from two sources – one of which was northwest of the study area and was characterized by a predominance of coarse-grained sandy sediments, while the source wear, which was in the central part of the studied basin was characterized by a predominance of clay silt and fine-grained psammitic material. This nature of the distribution of terrigenous material had a decisive influence on the further formation of Paleocene end Eocene sedimentary strata in the process of sedimentogenesis and post-sedimentary transformations of sediments, and on the formation of reservoir rocks and rocks with potential reservoir properties for hydrocarbon exploration. It has been established that the composition of the Psamitolites of the flysch formation of the Paleocene and Eocene ages of the Carpathians was formed on the passive continental margin or in the inland and boundary seas, and their genesis mostly corresponds only to the platform source of material wear.

Keywords

Paleocene, Eocene, facies, sandstone, flysch, continental slope, sedimentation

Referenses

Afanas’eva, I. M. (1983). Litogenez i geokhimiya flishevoi formatsii severnogo sklona Sovetskikh Karpat. Kiev: Naukova dumka. [in Russian]

Haievska, Yu. P., & Popp, I. T. (2008). Litoloho-fatsialna minlyvist serednoeotsenovykh vidkladiv Ukrainskykh Karpat. In P. F. Hozhyk (Ed.), Suchasni problemy litolohii ta minerahenii osadovykh baseiniv Ukrainy ta sumizhnykh terytorii (pp. 70–74). Kyiv: LOHOS. [in Ukrainian]

Havryshkiv, H. Ya. (2019). Mineraloho-petrohrafichni osoblyvosti paleotsenovykh vidkladiv Berehovoi i Orivskoi skyb Ukrainskykh Karpat v aspekti yikh naftohazonosnosti [Extended abstract of sandidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Ivanik, M. M., & Maslun, N. V. (1977). Kremnistye mikroorganizmy i ikh ispol’zovanie dlya raschleneniya paleogenovykh otlozhenii Predkarpat’ya. Kiev: Naukova dumka. [in Russian]

Kaz’min, V. G. (1989). Kollizii i riftogenez v istorii okeana Tetis. Geotektonika, 5, 14–23. [in Russian]

Khain, V. E. (2000). Krupnomasshtabnaya tsiklichnost’ v tektonicheskoi istorii Zemli i ee vozmozhnye prichiny. Geotektonika, 6, 3–14. [in Russian]

Lisitsyn, A. P. (1988). Lavinnaya sedimentatsiya i pereryvy v osadkonakoplenii v moryakh i okeanakh. Moskva: Nauka. [in Russian]

Pilipchuk, A. S., & Reifman, L. M. (1984). Otlozheniya pastoobraznykh potokov v Karpatskom flishe (popel’skaya svita). Osadochnye porody i rudy. Kiev: Naukova dumka. [in Russian]

Pilipchuk, A. S., & Vul’, M. A. (1981). Paleotsen-eotsenovyi flish Severnogo sklona Ukrainskikh Karpat – otlozheniya drevnikh morskikh glubokovodnykh konusov vynosa. In Geologiya neftegazonosnykh plastovykh rezervuarov (pp. 33–42). Moskva. [in Russian]

Senkovskyi, Yu. M., Hryhorchuk, K. H., Koltun, Yu. V., Hnidets, V. P., Radkovets, N. Ya., Popp, I. T., Moroz, M. V., Moroz, P. V., Rever, A. O., Haievska, Yu. P., Havryshkiv, H. Ya., Kokhan, O. M., & Koshil, L. B. (2018). Litohenez osadovykh kompleksiv okeanu Tetys. Karpato-Chornomorskyi sehment. Kyiv: Naukova dumka. [in Ukrainian]

Shlapinskyi, V. Ye. (2015). Heolohichna budova Skybovoho, Krosnenskoho i Dukliansko-Chornohorskoho pokryviv Ukrainskykh Karpat ta perspektyvy yikh naftohazonosnosti [Extended abstract of sandidateʼs thesis]. Lviv. [in Ukrainian]

Shlapinskyi, V., Kuzovenko, V., Krupskyi, Yu., & Kharchenko, M. (2006). Perspektyvy poshukiv pokladiv vuhlevodniv u Skybovii zoni Karpat. In Problemy heolohii ta naftohazonosnosti Karpat: tezy dopovidei (pp. 239–241). Lviv. [in Ukrainian]

Shvanov, V. N. (1982). Opyt klassifikatsii osadochnykh formatsii po veshchestvennym (litomologicheskim) priznakam. Vestnik Leningradskogo gosudarstvennogo universiteta, 24, 43–52. [in Russian]

Varban, B., Derer, C., Anastasiu, N., Roban, R., & Popa, M. (2001). Architecture of turbidite systems as revealed by the East Carpathians Paleogene sequences (“Tarceu formation” – siriu, Romania). St. cerc. geologie, 46, 19–37.

Vul, M. Ya. (1995). Formuvannia ta zakonomirnosti rozmishchennia rodovyshch nafty i hazu u pidnasuvnykh zonakh Karpat. Lviv: Fondy UkrDHRI. [in Ukrainian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Smirnov, S. S., Tsarnenko, P. N., Lemishko, O. D., & Tsizh, I. T. (1988). Stratotipy melovykh i paleogenovykh otlozhenii Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Zonenshain, L. P. (1983). Glubokovodnye otlozheniya na kontinentakh. In Spravochnik po litologii (pp. 426–429). Moskva: Nedra. [in Russian]

Zonenshain, L. P., Derkur, Zh., & Kaz’min, V. G. (1987). Evolyutsiya Tetisa. In Istoriya okeana Tetis (pp. 4–115). Moskva. [in Russian]


Posted on

CLAY MINERALS FROM ROCK SALT OF BAHADUR KHEL FORMATION, EOCENE, PAKISTAN

Home > Archive > No. 1 (182) 2020 > 87-100


Geology & Geochemistry of Combustible Minerals No. 1 (182) 2020, 87-100.

https://doi.org/10.15407/ggcm2020.01.087

Yaroslava YAREMCHUK, Serhiy VOVNYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, е-mail: slava.yaremchuk@gmail.com

Mohammad TARIQ

Baluchistan University of Information Technology, Engineering and Management Sciences, Department of Petroleum and Gas Engineering, Quetta, Pakistan

Abstract

According to studies of the pelitic fraction of the water-insoluble residue of 10 samples of Eocene rock salt of the Bahadur Khel Formation (Pakistan), it was determined that the clay minerals association contains swelling chlorite, chlorite-smectite, illite and kaolinite; chlorite was identified in three samples. Non-clay minerals are represented by quartz, dolomite, less often – magnesite; one sample contains impurities of both carbonates. Swelling chlorite, chlorite and mixed-layer minerals are trioctahedral, and illite and kaolinite are dioctahedral. All identified clay minerals, with the exception of kaolinite, are authigenic.

The presence of swelling chlorite in Eocene rock salt is probably caused by changes in the concentration of brines in the basin against the background of complex geological processes of this era (climate change from thermal maximum to global cooling, changes in water circulation in oceans, changes in isotopic composition of carbonates).

The association of clay minerals of Eocene rock salt, taking into account the peculiarities of its composition and the presence of swelling chlorite in it, we attributed to that formed during the SO4-rich seawater chemical type. This is also confirmed by two finds of swelling chlorite in the Triassic evaporites (rock salt of the Western Moroccan Basin, Midland marl) described in the literature, which are known to have been deposited from SO4-rich seawater.

The presence of kaolinite in almost all samples is caused by its largest accumulation in sediments of this time period – terrigenous kaolinite came in large quantities from dry land and did not transform even at the stage halite precipitation.

Keywords

clay minerals, swelling chlorite, rock salt, Eocene, Bahadur Khel Salt, Pakistan.

REFERENCES

Bain, D. C., & Russell, J. D. (1981). Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite. Clay Miner., 16 (2), 203-212. doi.org/10.1180/claymin.1981.016.2.08
https://doi.org/10.1180/claymin.1981.016.2.08
 
Bilonizhka, P. M. (1973). Nekotorye osobennosti mineral’nogo sostava glin nizhnemolasovykh otlozhenii Prikarpat’ya. In Voprosy litologii i petrografii (Kn. 2, s. 113-120). L’vov: Izdatel’stvo L’vovskogo universiteta. [in Russian]
 
Brindley, G. W. (1961). Chlorite minerals. In G. Brown (ed.), The X-ray identification and crystal structures of clay minerals (pp. 242-296). The Mineralogical Society, London.
 
Brindli, G. V. (1965). Khloritovye mineraly. In G. Braun (red.), Rentgenovskie metody izucheniya i struktura glinistykh mineralov. (V. A. Drits i dr., per. s angl.; V. A. Frank-Kamenetskii, red.) (s. 284-344). Moskva: Mir. [in Russian]
 
Carroll, D. (1970). Clay Minerals: A Guide to Their X-ray Identification (Special Paper 126). Boulder, Colorado: Geological Society of America.
https://doi.org/10.1130/SPE126-p1
 
Frank-Kamenetskii, V. A. (red.). (1983). Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty). Leningrad: Nedra. [in Russian]
 
Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]
 
Gavrilov, Yu. O., & Shcherbinina, E. A. (2004). Global’noe biosfernoe sobytie na granitse paleotsena i eotsena. In Yu. O. Gavrilov & M. D. Khutorskoi (red.), Sovremennye problemy geologii (s. 493-531). Moskva: Nauka. [in Russian]
 
Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279-283.
https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
 
Holland, H. D. (2003). The geologic history of seawater. Treatise on Geochemistry, 6, 583-625.
 
Honeyborne, D. B. (1951). The clay minerals in the Keuper marl. Clay min. Bull., 1 (5), 150-157.
https://doi.org/10.1180/claymin.1951.001.5.05
 
Horita, J., Zimmermann, H., & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta, 66, 3733-3756.
https://doi.org/10.1016/S0016-7037(01)00884-5
 
Jaumé, S. C., & Lillie, R. J. (1988). Mechanics of the Salt Range-Potwar Plateau, Pakistan: A fold-and-thrust belt underlain by evaporites. Tectonics, 7, 57-71.
https://doi.org/10.1029/TC007i001p00057
 
Kazmi, A. H., & Jan, M. Q. (1997). Geology and Tectonics of Pakistan. Nazimabad; Karachi: Graphic Publishers.
 
Khrushcheva, M. O., & Nebera, T. S. (2019). Swelling clay minerals of bottom sediments of Uskol lake (Republic of Khakassia). IOP Conference Series: Earth and Environmental Science, 319, Article 012010. doi:10.1088/1755-1315/319/1/012010
https://doi.org/10.1088/1755-1315/319/1/012010
 
Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (s. 60-69). Moskva: Nauka. [in Russian]
 
Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimizma morskikh evaporitovykh basseinov i vod Mirovogo okeana. Geologiya i poleznye iskopaemye Mirovogo okeana, 4, 50-64. [in Russian]
 
Kovalevych, V. M., Peryt, T. M., & Petrychenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. The Journal of Geology, 106 (6), 695-712.
https://doi.org/10.1086/516054
 
Krupskaya, V. V., Krylov, A. A., & Sokolov, V. N. (2011). Glinistye mineraly kak indikatory uslovii osadkonakopleniya na rubezhakh mel-paleotsen-eotsen na khrebte Lomonosova (Severnyi ledovityi okean). Problemy Arktiki i Antarktiki, 2 (88), 23-35. [in Russian]
 
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T. et al. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086-1088.
https://doi.org/10.1126/science.1064280
 
Lucas, J. (1962). La transformation des mineraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem. Serv. Carte Geol. Als. et Lorraine, 20.
 
Meissner, C. R., Master J. M., Rashid, M. A., & Hussain, M. (1974). Stratigraphy of the Kohat Quadrangle, Pakistan. Geological survey professional paper, 716-D. Washington: U.S. Govt. Print. Off.
https://doi.org/10.3133/pp716D
 
Millo, Zh. (1968). Geologiya glin (vyvetrivanie, sedimentologiya, geokhimiya). (M. E. Kaplan, per. s frants.). Leningrad: Nedra. [in Russian]
 
Moore, D. M., & Reynolds, R. C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford; New York: Oxford University Press.
 
Pastukhova, M. V. (1965). K poznaniyu autigennykh silikatnykh i alyumosilikatnykh mineralov v solenosnykh porodakh. Litologiya i poleznye iskopaemye, 3, 78-90. [in Russian]
 
Premovi, P. I., Todorovi, B. Z., & Stankovi, M. N. (2008). Cretaceous-Paleogene boundary (KPB) Fish Clay at Hjerup (Stevns Klint, Denmark): Ni, Co, and Zn of the black marl. Geologica Acta, 6 (4), 369-382.
 
Shah, S. M. I. (ed.). (1977). Memoirs of the geological survey of Pakistan. Vol. 12. Stratigraphy of Pakistan. Quetta
 
Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]
 
Strakhov, N. M. (1962). Osnovy teorii litogeneza. T. 3. Zakonomernosti sostava i razmeshcheniya aridnykh otlozhenii. Moskva: AN SSSR. [in Russian]
 
Suchecki, R. K., Perry, E. A., & Hubert, J. F. (1977). Clay Petrology of Cambro-Ordovician Continental Margin, Cow Head Klippe, Western Newfoundland. Clays and Clay Minerals, 25, 163-170. doi.org/10.1346/CCMN.1977.0250301
https://doi.org/10.1346/CCMN.1977.0250301
 
Velde, B. (1977). A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed layered minerals. Clays and Clay Minerals, 25, 264-270.
https://doi.org/10.1346/CCMN.1977.0250403
 
Weaver, C. E., & Beck, K. C. (Eds.). (1977). Developments in Sedimentology. Vol. 22. Miocene of the S.E. United States: A Model for Chemical Sedimentation in a Peri-Marine Environment. New York: Elsevier.
 
Yaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138-146. doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]
https://doi.org/10.30836/igs.2522-9753.2010.147301
 
Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292 (5517), 686-693. doi.org/10.1126/science.1059412
https://doi.org/10.1126/science.1059412