Posted on

USE OF INFRARED SPECTROSCOPY METHODS FOR RESEARCH OF PEAT (Honchary deposit, Lviv Region)

Home > Archive > No. 1–2 (193–194) 2024 > 113–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (193–194) 2024, 113–129

https://doi.org/10.15407/ggcm2024.193-194.113

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1 myroslavakoshil@ukr.net; 2 khoha_yury@ukr.net

Abstract

The problems of peat analysis using near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods are considered.

Infrared spectroscopic researches of selected peat samples in a vertical section (depth 0–140 cm) from the Honchary deposit of the Lviv Region were carried out using instrumental analytical methods of infrared spectroscopy (near-infrared reflectance, NIR and mid-infrared reflectance, MIR) in order to determine the characteristics of the chemical group composition, mineral and organic components of peat to assess the quality of peat and its further exploitation in various industries.

As a result, the spectra of chemical compounds were identified, among which the largest number are: hydroxyl, methylene, methyl and aromatic groups.

Direct analysis of infrared spectrogram sections of the studied peat showed significantly greater informativeness of IR spectroscopy in the mid-infrared range (400–4000 cm−1) in contrast to the mid-infrared frequency range (from 3900 to 7400 cm−1).

The possibility and effectiveness of using near- and mid-infrared spectroscopy methods to analyze the chemical composition of peat and obtain information on the structure of organic matter at the level of functional groups has been assessed.

The advantage of this method in comparison with other instrumental research methods is also its speed and expressivity – the total time required for the preparation and analysis of peat samples was less than 5 minutes compared to 10–16 hours required for determining the content of moisture, proteins, lipids and ash by reference standard methods.

Near-infrared reflectance (NIR) and mid-infrared reflectance (MIR) spectroscopy methods can be used and effectively applied in combination with other methods as an analytical tool for peat quality monitoring, simultaneous measurement of several quality parameters and its further use in various industries and development of environmentally friendly technologies.

Keywords

peat, mineral and organic composition, infrared spectroscopy, near-infrared spectroscopy, mid-infrared spectroscopy, functional groups, peat quality

Referenses

A guide to near-infrared spectroscopic analysis of industrial manufacturing processes. (2013). Herisau: Metrohm AG.

Bellamy, L. J. (2013). The infra-red spectra of complex molecules. Springer Science & Business Media.

Burns, D. A., & Ciurczak, E. W. (Eds.). (2008). Handbook of near-infrared analysis (3rd ed.). CRC Press. https://doi.org/10.1201/9781420007374

Cross, A. D. (1960). An introduction to practical infra-red spectroscopy. Butterworths Scientific Publications.

Instytut gruntoznavstva ta ahrokhimii imeni O. N. Sokolovskoho Ukrainskoi akademii ahrarnykh nauk. (2008). Melioranty gruntu ta seredovyshcha rostu. Hotuvannia prob do khimichnoho ta fizychnoho analizu, vyznachennia vmistu sukhoi rechovyny, vmistu volohy ta laboratorno ushchilnenoi nasypnoi shchilnosti (EN 13040:1999, IDT) (DSTU EN 13040:2005). [in Ukrainian]

Mistry, B. D. (2009). A handbook of spectroscopic data – chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy). Oxford Book Company.

Myroniuk, O. V. (Сompiler). (2017). Instrumentalni metody khimichnoho analizu. Kyiv: NTUU “KPI im. I. Sikorskoho”. [in Ukrainian]

Rice, J. A., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 17(5), 635–648. https://doi.org/10.1016/0146-6380(91)90006-6

Stark, E., Luchter, K., & Margoshes, M. (1986). Near-infrared analysis (NIRA): A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, 22(4), 335–399. https://doi.org/10.1080/05704928608060440

Szymanski, H. A., & Erickson, R. E. (1970). Infrared Band Handbook: Vol. 1. 4240–999 cm−1/Vol. 2. 999–29 cm−1 [Electronic resource]. Boston, MA: Springer US: Imprint: Springer. https://doi.org/10.1007/978-1-4684-6069-8

Tekhnichnyi komitet standartyzatsii “Gruntoznavstvo”. (2016). Yakist gruntu. Vyznachennia zolnosti torfu i torfovoho gruntu (DSTU 7942:2015). [in Ukrainian]

Tsutsuki, K., & Kuwatsuka, S. (1978). Chemical studies on soil humic acids: II. Composition of oxygen-containing functional groups of humic acids. Soil Science and Plant Nutrition, 24(4), 547–560. https://doi.org/10.1080/00380768.1978.10433134

Yonebayashi, K., & Hattori, T. (1988). Chemical and biological studies on environmental humic acids: I. Composition of elemental and functional groups of humic acids. Soil Science and Plant Nutrition, 34(4), 571–584. https://doi.org/10.1080/00380768.1988.10416472

Yurchenko, O. M., Kormosh, Zh. O., Savchuk, T. I., & Korolchuk, S. I. (2021). Metodychni rekomendatsii do vyvchennia temy “Infrachervona spektroskopiia” z dystsypliny “Fizychni metody doslidzhennia rechovyny”. Lutsk. [in Ukrainian]


Posted on

CHARACTERISTICS OF THE DISTRIBUTION OF CHEMICAL ELEMENTS IN THE VERTICAL SECTION OF PEAT USING X-RAY FLUORESCENCE ANALYSIS (the Gonchary deposit, Lviv Region)

Home > Archive > No. 3–4 (191–192) 2023 > 45–60


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 45–60

https://doi.org/10.15407/ggcm2023.191-192.045

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology & Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1myroslavakoshil@ukr.net; 2khoha_yury@ukr.net

Abstract

This article discusses the features of peat analysis using X-ray fluorescence (XRF) analysis in order to study its qualitative and quantitative elemental composition, including heavy metals. The distribution of chemical elements is an indicator of various processes in geochemical and biological systems, by using of which it is possible to reproduce the conditions of accumulation of mineral deposits. This analysis is an important component of a comprehensive study of peat formation features, the environmental friendliness of peat extraction, and also for determining the suitability of peat for industrial use.

We analyzed the content of chemical elements in peat samples taken at different depths using a portable X-ray fluorescence spectrometer. The article considers the main characteristics of the spectrum of individual elements, depending on the atomic number.

In order to establish the general regularity of the distribution of 20 chemical elements in peat samples, we performed a mathematical and statistical analysis of the obtained data: calculation of the main statistical characteristics of chemical elements distribution (average, minimum and maximum values, median, variance, coefficient of variation, etc.), calculation of correlation matrices, selection of typomorphic geochemical associations of chemical elements using cluster and factor analyses. We singled out two types of factors that are decisive and influence the accumulation of chemical elements in the investigated peat: “organogenic” and “natural” (lithological), which are decisive, and a secondary factor –anthropogenic.

We compared the obtained results with the average values obtained from the results of spectral semi-quantitative analysis of peat ash samples taken at depths of 0.1–7 m in the same region. We evaluated the possibility and efficiency of using a portable X-ray fluorescence spectrometer for the analysis of the macro- and microelement composition of peats with different ash content.

It has been established that portable X-ray fluorescence analysis is a powerful tool for fast and high-quality elemental analysis of peat, and the range of its application depends on specific research goals and tasks.

Keywords

peat, X-ray fluorescence spectroscopy, XRF, microelement composition, spectrum interpretation

Referenses

Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavleniye geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (Lvovskaya oblast) [Research report]. Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]

Kaiser, B., & Wright, A. (2008). Draft Bruker XRF spectroscopy user guide: Spectral interpretation and sources of interference. BRUKER, Madison, WI.

Shand, C. A., & Wendler, R. (2014). Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31–42. https://doi.org/10.1016/j.gexplo.2014.03.005

Van Loon, L. L., McIntyre, N. S., Bauer, M., Sherry, N. S., & Banerjee, N. R. (2019). Peakaboo: Advanced software for the interpretation of X-ray fluorescence spectra from synchrotrons and other intense X-ray sources. Software Impacts, 2, 100010. https://doi.org/10.1016/j.simpa.2019.100010

Yakovenko, M. (2022). Heokhimichni osoblyvosti nahromadzhennia i mihratsii Strontsiiu v torfakh Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(187–188), 58–70. https://doi.org/10.15407/ggcm2022.01-02.058 [in Ukrainian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk of V. N. Karazin Kharkiv National University, Series “Geology. Geography. Ecology”, 56, 105–121. https://doi.org/10.26565/2410-7360-2022-56-07 [in Ukrainian]


Posted on

GEOCHEMICAL FEATURES OF STRONTIUM ACCUMULATION AND MIGRATION IN THE PEATS OF THE LVIV REGION

Home > Archive > No. 1–2 (187–188) 2022 > 58–70


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 58–70.

https://doi.org/10.15407/ggcm2022.01-02.058

Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: myroslavakoshil@ukr.net

Abstract

The article is devoted to the study of geochemical characteristics of the distribution, accumulation and migration of strontium in the lowland peats of the Lviv Region, both laterally and vertically, and to identify the main factors influencing the formation of its concentrations.

A significant uneven distribution of concentration, high dispersion and variability (coefficient of variation – 116.61, standard deviation – 564.11) of Sr in peats within deposits, districts and regions both with depth and area of distribution and high content indicators were established Sr relative to clarks of the lithosphere, soils, plant ash (CC relative to the lithosphere = 1.42; CC relative to soil clarks = 1.94; Сs relative to background values in the soils of Ukraine = 4.56; CK relative to clarks of terrestrial plants = 1.61).

The content of Sr in the peat of the Lviv Region ranges from 40–3190 mg/kg (average content 483.75 mg/kg, median content (background content) – 250 mg/kg), which is due to natural-climatic, geological, lithological, hydrogeochemical and anthropogenic factors.

The features of the distribution and the degree of concentration of Sr in the peatlands of the Lviv Region are mainly influenced by the chemical-mineralogical-petrographic composition of the bedrocks of the wear area during their weathering; terrain, climatic, geomorphological, tectonic and hydrogeological conditions of the area, which determine the of the weathering processes of the rocks in the wear areas, the degree of transformation of terrigenous material in the weathering processes, the rate of accumulation of biomass and the rate of its decomposition; features of water and mineral nutrition of the peatland.

High concentrations of strontium in the peat of the Lviv Region reflect the local regional processes of the concentration of the element in the mass of peat and may indicate the accumulation of Sr of both natural and anthropogenic origin in the upper layers of peat profiles. There is an enrichment of Sr in the upper intervals of deposits (0–1 m) of deposits in the northeastern part of the Lviv Region (Malopoliska peat region) is observed.

Keywords

peat, peat deposit, strontium, microelement composition, concentration, Clark concentration, accumulation, migration

Referenses

Angino, E., Billings, G. K., & Andersen, N. (1966). Observed variations in the strontium concentration of seawater. Chemical Geology, 1, 145–153. https://doi.org/10.1016/0009-2541(66)90013-1

Boiko, T. I. (1995). Heokhimiia sirky ta strontsiiu v zoni tekhnohenezu sirkodobuvnykh pidpryiemstv Peredkarpattia [Extended abstract of Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San-Francisco: Academic Press.

Buchynska, I., Lazar, H., Savchynskyi, L., & Shevchuk, O. (2013). Umovy utvorennia vuhillia plasta n8 Lvivsko-Volynskoho baseinu za heokhimichnymy danymy. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2, 32–41. [in Ukrainian]

Burkov, V. V., & Podporina, Ye. K. (1962). Strontsii. Trudi Instituta mineralogii, geokhimii i kristallografii redkikh metallov, 12, 180. [in Russian]

Chertko, N. K., & Chertko, E. N. (2008). Geokhimiya i ekologiya khimicheskikh elementov. Minsk: Izdatelskii tsentr BGU. [in Russian]

For, G., & Dzhons, L. (1974). Izotopnii sostav strontsiya v rossipyakh Krasnogo morya. In Sovremennoe gidrotermalnoe rudootlozhenie (pp. 141–148). Moskva: Mir. [in Russian]

Ivantsiv, O. Ye., & Uzhenkov, G. A. (1984). Geokhimicheskie osobennosti torfyano-bolotnogo litogeneza Prikarpatya. In Osadochnie porodi i rudi (pp. 215–220). Kiev: Naukova dumka. [in Russian]

Kabata-Pendias, A., & Pendias, X. (1989). Mikroelementi v pochvakh i rasteniyakh. Moskva: Mir. [in Russian]

Klos, V. R., Birke, M., Zhovynskyi, E. Ya., Akinfiiev, H. O., Amaiyukeli, Yu. A., & Klamens, R. (2012). Rehionalni heokhimichni doslidzhennia gruntiv Ukrainy v ramkakh mizhnarodnoho proektu z heokhimichnoho kartuvannia silskohospodarskykh ta pasovyshchnykh zemel Yevropy (GEMAS). Poshukova ta ekolohichna heokhimiia, 1, 51–66. [in Ukrainian]

Kushnir, S. V., Shuter, Ya. N., Pankiv, R. II., & Srebrodolskii, B. I. (1982). Osnovnie formi nakhozhdeniya strontsiya v sernikh rudakh Predkarpatya. In Geologiya i geokhimiya nemetallicheskikh iskopaemikh (pp. 102–108). Kiev: Naukova dumka. [in Russian]

Kushnir, S. V., Vivchar, O. I., & Boiko, T. I. (1995). Deiaki heokhimichni naslidky zastosuvannia “vapniakovo-sirchanoho dobryva”. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 27–35. [in Ukrainian]

Kyrylchuk, A. A., & Bonishko, O. S. (2011). Khimiia gruntiv. Osnovy teorii i praktykum. Lviv: LNU imeni Ivana Franka. [in Ukrainian]

Lazar, H. (2017). Osoblyvosti poshyrennia strontsiiu u vuhilli plasta v6 Lvivsko-Volynskoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 86. [in Ukrainian]

Noll, W. (1931). Über die Bestimmung des Strontiums in der Mineral- und Gesteinsanalyse. Zeitschrift für anorganische und allgemeine Chemie, 199(1), 193–208. https://doi.org/10.1002/zaac.19311990121

Odum, H. T. (1951). Notes on the Strontium Content of Sea Water, Celestite Radiolaria, and Strontianite Snail Shells. Science, 114(2956), 211–213. https://doi.org/10.1126/science.114.2956.211

Orru, H., & Orru, M. (2006). Sources and distribution of trace elements in Estonian peat. Global and Planetary Change, 53(4), 249–258. https://doi.org/10.1016/j.gloplacha.2006.03.007

Pampura, V. D., Sandimirova, G. P., & Brandt, S. B. (1991). Geokhimiya i izotopnii sostav strontsiya v gidrotermalnikh sistemakh. Nauka, Sibirskoe otdelenie. [in Russian]

Sklyarov, Ye. V., Barash, I. G., Bulanov, V. A., Gladkochub, D. P., Donskaya, T. V., Ivanov, A. V., Letnikova, Ye. F., Mironov, A. G., & Sizikh, A. I. (2001). Interpretatsiya geokhimicheskikh dannikh. Moskva: Intermetinzhiniring. [in Russian]

Sprynskyi, M. I. (1999). Litii, rubidii, tsezii i strontsii u pidzemnykh vodakh Karpatskoi naftohazonosnoi provintsii [Extended abstract of Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Turekian, K. K., & Kulp, J. L. (1956). The geochemistry of strontium. Geochimica et Cosmochimica Acta, 10(5–6), 245–296. https://doi.org/10.1016/0016-7037(56)90015-1

Voitkevich, G. V., Miroshnikov, A. Ye., Povarennikh, A. S., & Prokhorov, V. G. (1970). Kratkii spravochnik po geokhimii. Moskva: Nedra. [in Russian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, ceriia “Heolohiia. Heohrafiia. Ekolohiia”, 56, 105–121. https://doi.org/10.26565/2410-7360-2022-56-07 [in Ukrainian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2021). Rozpodil khimichnykh elementiv u nyzynnykh torfakh Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 65–72. https://doi.org/10.15407/ggcm2021.03-04.065 [in Ukrainian]


Posted on

DISTRIBUTION OF CHEMICAL ELEMENTS IN PEAT DEPOSITS OF THE LVIV REGION

Home > Archive > No. 3–4 (185–186) 2021 > 65–72


Geology & Geochemistry of Combustible Minerals No. 3–4 (185–186) 2021, 65–72.

https://doi.org/10.15407/ggcm2021.03-04.065

Myroslava YAKOVENKO1, Yury KHOKHA2, Oleksandr LYUBCHAK3

1, 2, 3 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1myroslavakoshil@ukr.net; 2khoha_yury@ukr.net; 3lubchak1973@ukr.net

Abstract

The article is devoted to the study and interpretation of the content of chemical elements in peats of Lviv Region. It is known that peat has a pronounced ability to physical sorption and chemisorption, as a result it is able to accumulate a significant amount of metals, including dangerous – heavy, toxic and radioactive. Peat is used as an energy raw material, in recent years – as a raw material for the chemical and pharmaceutical industries. Thus, this geochemical research have scientific and applied importance for a wide range of industries and for environmental monitoring. The range of peat applications directly depends on the concentration of trace elements. The basic geochemical characteristics of peat lowland type in Lviv Region was found out. In general, the content of elements in the studied peat has concentrations lower than сlarkes in comparison with the lithosphere, soils and terrestrial plants. Lithophilic Sr, Yb, Be, Ba, siderophilic Mo, Co, and chalcophilic Pb, Ag are actively concentrated in comparison with clarkes in the lithosphere, soils, plant ashes and relative to background values in the soils of Ukraine. According to the results of a comprehensive analysis of the content of microelements in lowland peats of Lviv Region, three elements with high concentration were identified – Molybdenum, Strontium and Lead.Significant uneven distribution of microelement concentration with depth and area of distribution and high indicators of Mo, Yb, Sr, Be, Co, Ag, Ba, Pb relative to clarkes of lithosphere, soils, plant ash, etc. have been established. Comparison of patterns of accumulation and scattering of elements in peat with lithosphere, soils and terrestrial plants shows that peat is characterized by its own specific set of storage elements, there are specific patterns of accumulation and scattering of elements. Thus, peat has a clear geochemical structure that distinguishes them from mineral soils and lithosphere.

Keywords

peat, microelement composition, concentration, clark concentration, accumulation

Referenses

Biletskyi, V. S. (2004). Mala hirnycha entsyklopediia (Vol. 1–3). Donetsk: Donbas. [in Ukrainian]

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San Francisco: Academic Press.

Bradys, Ye. M. (1973). Torfovo-bolotnyi fond URSR, yoho raionuvannia ta vykorystannia. Kyiv: Naukova dumka. [in Ukrainian]

Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Otchet po teme “Sostavlenie geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR” (L’vovskaya oblast’). L’vov: Fondy DP “Zakhidukrheolohiia”. [in Russian]

Klos, V. R., Birke, M., Zhovynskyi, E. Ya., Akinfiiev, H. O., Amaiyukeli, Yu. A., & Klamens, R. (2012). Rehionalni heokhimichni doslidzhennia gruntiv Ukrainy v ramkakh mizhnarodnoho proektu z heokhimichnoho kartuvannia silskohospodarskykh ta pasovyshchnykh zemel Yevropy (GEMAS). Poshukova ta ekolohichna heokhimiia, 1, 51–66. [in Ukrainian]

Kreshtapova, V. N. (1974). Metodicheskie rekomendatsii po otsenke soderzhaniya mikroelementov v torfyanykh mestorozhdeniyakh evropeiskoi chasti RSFSR. Moskva: Izd-vo Mingeo RSFSR. [in Russian]

Tyuremnov, S. N. (1976). Torfyanye mestorozhdeniya. Moskva: Nedra. [in Russian]

Voitkevich, G. V., Miroshnikov, A. E., Povarennykh, A. S., & Prokhorov, V. G. (1970). Kratkii spravochnik po geokhimii. Moskva: Nedra. [in Russian]

Yakovenko, M. B., Khokha, Yu. V., & Liubchak, O. V. (2020). Rozpodil molibdenu v nyzynnykh torfakh Lvivskoi oblasti. In Resursy pryrodnykh vod Karpatskoho perionu (Problemy okhorony ta ratsionalnoho vykorystannia): zbirnyk naukovykh statei XIKh mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 8–9 zhovtnia 2020 r.) (pp. 210–214). Lviv. [in Ukrainian]

Yakovenko, M. B., Khokha, Yu. V., & Liubchak, O. V. (2019). Rozpodil Svyntsiu v nyzynnykh torfakh Lvivskoi oblasti. In Resursy pryrodnykh vod Karpatskoho perionu (Problemy okhorony ta ratsionalnoho vykorystannia): zbirnyk naukovykh statei XVIII mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 26–27 travnia 2019 r.) (pp. 263–265). Lviv. [in Ukrainian]

Yakovenko, M. B., Khokha, Yu. V., & Lukʼianchuk, D. V. (2015a). Mikrokomponentnyi sklad torfiv Lvivskoi oblasti. In Novitni problemy heolohii: materialy naukovo-praktychnoi konferentsii, prysviachenoi 100-richchiu vid dnia narodzhennia V. P. Makrydina (Kharkiv, 21–23 travnia 2015 r.) (pp. 175–176). Kharkiv. [in Ukrainian]

Yakovenko, M. B., Khokha, Yu. V., & Lukʼianchuk, D. V. (2015b). Nakopychennia mikroelementiv u nyzynnykh torfakh Lvivskoi oblasti. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: materialy mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu imeni Ivana Franka (Lviv, 7–9 zhovtnia 2015 r.) (pp. 238–239). Lviv. [in Ukrainian]


Posted on

PROSPECTS OF USING PEATS IN THE LVIV REGION FOR HUMATES EXTRACTION

Home > Archive > No. 1–2 (183–184) 2021 > 76–88


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 76–88.

https://doi.org/10.15407/ggcm2021.01-02.076

Myroslava YAKOVENKO1, Yury KHOKHA2, Oleksandr LYUBCHAK3

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: 1myroslavakoshil@ukr.net, 2khoha_yury@ukr.net, 3lubchak1973@ukr.net

Abstract

The paper briefly considers the problems of the Ukraine’s peat industry and identifies the reasons for its decline, including the low quality of peat as an energy source. We assume that the use of peat for briquetting will be stopped in the near future due to economic and political factors. On the other hand, peat can be a source of chemicals and their mixtures that have found application in agriculture and industry. It is known that the addition of sodium humates to the drilling mud improves its rheological properties and makes them environmentally safe, especially when passing through aquifers. We set a goal to determine the geological, technological and geochemical characteristics of peat in the Lviv Region, to establish its suitability for the humic acids extraction and to identify promising deposits for future processing. The study of the peats microelement composition of the Radekhiv district (Lviv Region) showed that the studied peats are not contaminated with heavy metals, as evidenced by the values of pollution indices. It is shown that the content of chemical elements in peats of Lviv Region is less than clarke in the lithosphere, soils and terrestrial plants. There is a tendency to scatter chalcophilic and most siderophilic elements, to a lesser extent lithophilic. Determining the yield of total and free humic acids testified to the possibility of using peat in the Lviv Region to extract humates. The studied samples were characterized by a high content of humic acids in terms of dry weight. Preliminary assessment of deposits suitability for peat extraction was performed according to the following parameters: field reserves, degree of decomposition, humus content and ash content. After constructing maps of these geochemical characteristic’s distribution, we have identified several of the most promising deposits in the Lviv Region: in the Kamyanka-Buzka district – Didylivske and Yarychivske deposits; in the Mykolayiv district – Verbizke, Saikivske, Demnyanske and Trostyanetske.

Keywords

peat, humic substances, microelements, geochemical analysis, ash content, degree of decomposition.

Referenses

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San Francisco: Academic Press.

Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavlenie geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (L’vovskaya oblast’) (Vol. 1). [Research paper]. L’vov: L’vovskaya geologicheskaya ekspeditsiya. [in Russian]

Khokha, Yu. V., Yakovenko, M. B., & Lukianchuk, D. V. (2013). Heoloho-heokhimichni ta heotekhnolohichni osoblyvosti torfianykh rodovyshch Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(164–165), 56–61. [in Ukrainian]

Klos, V. R., Birke, M., Zhovynskyi, E. Ya., Akinfiiev, H. O., Amaiyukeli, Yu. A., & Klamens, R. (2012). Rehionalni heokhimichni doslidzhennia gruntiv Ukrainy v ramkakh mizhnarodnoho proektu z heokhimichnoho kartuvannia silskohospodarskykh ta pasovyshchnykh zemel Yevropy (GEMAS). Poshukova ta ekolohichna heokhimiia, 1, 51–66. [in Ukrainian]

Lishtvan, I. I., Bazin, E. T., Gamayunov, N. I., & Terent’ev, A. A. (1989). Fizika i khimiya torfa. Moskva: Nedra. [in Russian]

Voitkevich, G. V., Miroshnikov, A. E., Povarennykh, A. S., & Prokhorov, V. G. (1970). Kratkii spravochnik po geokhimii. Moskva: Nedra. [in Russian]

Yakovenko, M. B., Khokha, Yu. V., & Liubchak, O. V. (2020). Rozpodil molibdenu v nyzynnykh torfakh Lvivskoi oblasti. In Resursy pryrodnykh vod Karpatskoho rehionu. Problemy okhorony ta ratsionalnoho vykorystannia: materialy XIX Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 8–9 zhovtnia 2020 r.) (pp. 210–214). Lviv: Natsionalnyi universytet “Lvivska politekhnika”. [in Ukrainian]


Posted on

ANATOMICAL STRUCTURE OF TISSUES OF THE PLANT STEMS OF CARBONIFEROUS OF UKRAINE AND THEIR ROLE IN PEAT AND COAL FORMATION

Home > Archive > No. 3-4 (176-177) 2018 > 21-48


Geology & Geochemistry of Combustible Minerals No. 3-4 (176-177) 2018, 21-48.

Vasyl UZIYUK

Ivan Franko National University of Lviv, е-mail: coalgeol@franco.Lviv.ua

Abstract

Here the results of the determination of the intensity of compression of coaly rocks and coal-forming phytomass based on macroscopic geological comparative methods for different conditions of occurrence of remnants of organs of coal-forming plants as well as based on studies of the thin sections of different coal-forming tissues of phytoleims and petrifications by macropaleobotanic comparative and micropaleobotanic anatomical-morphological methods are described. The influence of the mineral composition of inorganic rocks, that compose the cores of the plant fragments or fill the hollowness of the cells of the plant tissues, and the intensity of their decomposition while peat- and coal-forming upon the intensity of phytomass compression is revealed.

Keywords

Carboniferous, plant, peat, coal, vitrain, phytomass, anatomy, peat and coal formation, compression, decomposition.

Referenses

Egorov, A. I. (1969). Mekhanizm nakopleniya biomassy i formirovaniya ugol’nogo plasta. In Geologiya ugol’nykh mestorozhdenii (T. 1, s. 66–75). Moskva: Nauka. [in Russian]

Esau, K. (1969). Anatomiya rastenii. (A. E. Vasil’ev, M. F. Danilova, N. V. Pervukhina & N. S. Snigirvskaya, Trans.). Moskva. [in Russian]

Inosova, K. I. (1964). Iskhodnyi material uglei. In Atlas uglei nizhnego karbona Donetskogo basseina (s. 26–31). Moskva: Nauka. [in Russian]

Ivanov, G. A., & Sarbeeva, L. I. (1940). Klivazh (otdel’nosti) v uglyakh i vmeshchayushchikh porodakh i puti ego prakticheskogo ispol’zovaniya (Ch. 2). GONTI. [in Russian]

Krishtofovich, A. N. (1957). Paleobotanika. Leningrad: Gosnauchtekhizdat. [in Russian]

Levenshtein, M. L., & Spirina, O. I. (1991). Komplekt kart metamorfizma uglei Donetskogo basseina (poverkhnosti paleozoya, srezov –400 m, –1000 m, –1600 m i strukturnykh planov ugol’nykh plastov c61 i k8), masshtab 1 : 500 000. Kiev: TsTE. [in Russian]

Novik, E. O. (1952). Kamennougol’naya flora Evropeiskoi chasti SSSR. Moskva: AN SSSR. [in Russian]

Popov, E. I. (1959). K otsenke tochnosti izobrazheniya zalezhi poleznogo iskopaemogo po dannym razvedki. Zapiski LGI, 36 (2), 178–189. [in Russian]

Prikhod’ko, Yu. I. (1963). Nablyudeniya nad usadkoi uglei i peschano-glinistykh porod na Intinskom kamennougol’nom mestorozhdenii. Izvestiya Akademii nauk SSSR. Seriya geologicheskaya, 2, 99–105. [in Russian]

Prokopchenko, A. S. (1967). K voprosu o sokrashchenii moshchnosti ugol’nykh plastov Donbassa v ryadu uglefikatsii. Doklady Akademii nauk SSSR, 173 (2) 425–427. [in Russian]

Stutzer, O. (1940). Geology of coal. Chicago, Illinois.

Uziiuk, V. I. (1998). Rol riznykh roslyn karbonu Ukrainy, yikh orhaniv i tkanyn v utvorenni vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 1 (102), 64–76. [in Ukrainian]

Uziyuk, V. I. (1970). Iskhodnyi material uglei i fiziko-khimicheskie osobennosti vitrenov Donbassa. In Geologiya i razvedka ugol’nykh mestorozhdenii (s. 220–238). Tula: Tul’skii politekhnicheskii institut. [in Russian]

Uziyuk, V. I. (1990). Fiteral’nyi analiz ugol’nykh plastov srednego karbona Yugo-Zapadnogo Donbassa i ego prikladnoe znachenie. Geologiya i geokhimiya goryuchikh iskopaemykh, 75, 24–30. [in Russian]

Uziyuk, V. I., & Ignatchenko, N. A. (1985). Mikrostruktury vitrinizirovannykh tkanei rastenii (srednii karbon Donbassa). Kiev: Naukova dumka. [in Russian]

Volkov, V. N. (1973). Geneticheskie osnovy morfologii ugol’nykh plastov. Moskva: Nedra. [in Russian]

Volkova, I. B. (1965). Litologiya i stratigrafiya moshchnogo ugol’nogo plasta Berezovskogo mestorozhdeniya (Kansko-Achinskii bassein). Sovetskaya geologiya, 6, 90–103. [in Russian]

Zabigailo, V. E. (1974). Geologicheskie usloviya vybrosoopasnosti ugol’nykh plastov Donbassa. Kiev: Naukova dumka. [in Russian]

Zaritskii, P. V. (1965). O vozmozhnosti ispol’zovaniya konkretsii dlya opredeleniya sokrashcheniya moshchnosti iskhodnogo veshchestva kamennogo uglya. Doklady Akademii nauk SSSR, 164 (3), 666–669. [in Russian]

Zhizn’ rastenii. T. 4. Mkhi, plauny, khvoshchi, paporotniki, golosemennye rasteniya. (1978). Moskva: Prosveshchenie. [in Russian]