Posted on

PLATE-TECTONIC GEODYNAMICS OF THE TISZA–DACIA TERRAIN, UKRAINIAN CARPATHIANS

Home > Archive > No. 3–4 (191–192) 2023 > 61–73


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 61–73

https://doi.org/10.15407/ggcm2023.191-192.061

Oleh HNYLKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: ohnilko@yahoo.com

Abstract

In the work, the knowledge about the geological structure and evolution of the Marmarosh Massif (part of the Dacia terrane or the larger Tisza–Dacia terrane) of the Ukrainian Carpathians is supplemented and summarized. The geodynamic conditions of the formation of the Marmarosh massif are reconstructed in the context of the general evolution of the folded border of the East European craton on the basis of the author’s geological observations and with taking into account previous data. Detailed geological mapping was carried out to identify some areas, the results of which are partially published on the State Geological Map of Ukraine. The Marmarosh massif of the Central Eastern Carpathians is represented by a crystalline basement, which includes pre-Hercynian and Hercynian metamorphosed complexes, and a late Paleozoic – Cenozoic cover of unmetamorphosed or weakly metamorphosed sediments. The Precambrian basement Bilyi Potik and Dilove formations are metamorphosed up to amphibolite (possibly to granulite?) facies. Vendian – Early Paleozoic volcanogenic-terrigenous and carbonate weakly metamorphosed Berlebash and Megura formations are correlated with the Tulghes Formation (Romania), that compared with the remains of an ancient accretionary prism and volcanic arc. This prism/arc could belong to the Avalonia microcontinent, which collided with Baltica in the Early Paleozoic. The collision caused the formation of the pre-Alpine Caledonian thrust structure of the Marmarosh massif basement. Paleozoic volcanogenic-sedimentary, carbonate, and terrigenous complexes (Kuzya Formation in Ukraine, and Rusaia, Repedea and Cimpoiasa formations in Romania) were accumulated in a rift basin, the closure of which caused the Hercynian tectogenesis. Late Paleozoic coal-bearing Kvasnyi Formation and red-colored Krasnyi Pleso Formation are belonged to epi-Hercynian molasse and to the cover of the Marmarosh crystalline massif.

Jurassic rifting and spreading led to the separation of the Dacia microcontinent and the formation of a (sub)oceanic basin between Dacia microcontinent and Eurasia. This basin is now marked by the Fore-Marmarosh suture zone. The dipping of the Dacia into the subduction zone, which was inclined to the west, could have caused the formation of the Marmarosh basement nappes and their thrust eastward towards the Fore-Marmarosh basin (future Carpathian flysch basin). An accretionary flysch prism grew in front of the Marmarsh nappes, a significant part of the prism sank under the Marmarosh nappes (=crystalline massif) where it could generate hydrocarbons, which allows us to support the assumption about the prospects of the under Marmarosh nappes flysch autochthon.

Keywords

Ukrainian Carpathians, Tisza–Dacia terrain, Marmarosh Massif, basement nappes

Referenses

Balla, Z. (1982). Development of the Pannonian basin basement through the Cretaceous – Cenozoic collision: a new synthesis. Tectonophysics, 88(1–2), 61–102. https://doi.org/10.1016/0040-1951(82)90203-7

Chernov, V. G. (1966). Stratotip soymulskoy svity. In Ocherki po geologii Sovetskikh Karpat (pp. 78–90). Moskva: Izdatelstvo Moskovskogo universiteta. [in Russian]

Csontos, L., Argenio, B., Doglioni, C. et al. (2006). The Carpathian-Pannonian Region: A Reviev of Mesozoic-Cenozoic Stratigraphy and Tectonics: Vol. 1. Stratigraphy; Vol. 2. Geophysics, Tectonics, Facies, Paleogeography. Budapest: Hantken Press.

Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56. https://doi.org/10.1016/j.palaeo.2004.02.033

Ebner, F.,Vozarova, A., Kovacs, S., Krautner, H.-G., Krstic, B., Szederkenyi, T., Jamicic, D., Balen, D., Belak, M., & Trajanova, M. (2008). Devonian-Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geologica Carpathica, 59(2), 159–195.

Glushko, V. V., & Kruglov, S. S. (Ed.). (1985). Geodinamika Karpat. Kiev: Naukova dumka. [in Russian]

Golonka, J. (2000). Cambrian – Neogene plate tectonic map. Krakow.

van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Matenco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D., & Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009

Hnylko, O. M. (2012). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Stattia 2. Flishovi Karpaty – davnia akretsiina pryzma. Heodynamika, 1(12), 67–78. https://doi.org/10.23939/jgd2012.01.067 [in Ukrainian]

Hnylko, O. (2023). Tectono-sedimentary evolution of the junction area between the Western and Eastern Carpathian nappe systems (Ukrainian Carpathians). In M. Krobicki (Ed.), Second Symposium of the International Geosciences IGCP 710 Project Western Tethys meets Eastern Tethys (pp. 25–26). (Geotourism/Geoturystyka, 20(1–2(72–73)). https://journals.agh.edu.pl/geotour/article/view/5792

Hnylko, O., Hnylko, S., Heneralova, L., & Tsar, M. (2021). An Oligocene olistostrome with exotic clasts in the Silesian Nappe (Outer Ukrainian Carpathians, Uzh River Basin). Geological Quarterly, 65(4), 3–20. https://doi.org/10.7306/gq.1616

Hnylko, O., Krobicki, M., Feldman-Olszewska, A., & Iwańczuk, J. (2015). Geology of the volcano-sedimentary complex of the Kamyanyi Potik Unit on Chyvchyn Mountain (Ukrainian Carpathians): preliminary results. Geological Quarterly, 59(1), 145–156. https://doi.org/10.7306/gq.1220

Krautner, H. G., & Bindea, G. (2002). Structural units in the Pre-Alpine basement of the Eastern Carpathians. Geologica Carpathica, 53, 143–146.

Konečny, V., Kováč, M., Lexa, J., & Šefara, J. (2002). Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. Stefan Mueller Special Publication Series, 1, 105–123. https://doi.org/10.5194/smsps-1-105-2002

Kováč, M., Plašienka, D., Soták, J., Vojtko, R., Oszczypko, N., Less, G., Ćosović, V., Fügenschuh, B., & Králiková, S. (2016). Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 140, 9–27. https://doi.org/10.1016/j.gloplacha.2016.03.007

Matskiv, B. V., Pukach, B. D., Vorobkanych, V. M., Pastukhanova, S. V., & Hnylko, O. M. (2009a). Derzhavna heolohichna karta Ukrainy masshtabu 1:200 000, arkushi M 34 XXXVI (Khust), L 34 VI (Baia-Mare), M 35 XXXI (Nadvirna), L 35 I (Visheu-De-Sus). Karpatska seriia. Poiasniuvalna zapyska. Kyiv: UkrDHRI. [in Ukrainian]

Matskiv, B. V., Pukach, B. D., & Hnylko, O. M. (2009b). Derzhavna heolohichna karta Ukrainy masshtabu 1:200 000, arkushi M 35 XXXI (Nadvirna), L 35 I (Visheu-De-Sus). Karpatska seriia. Heolohichna karta dochetvertynnykh utvoren. Kyiv: UkrDHRI. [in Ukrainian]

Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T. (2006). The Variscan Orogen in Poland. Geological Quarterly, 50(1), 89–118.

Munteanu, M., & Tatu, M. (2003). The East-Carpathian Crystalline-Mesozoic Zone (Romania): Paleozoic Amalgamation of Gondwana- and East European Craton-derived Terranes. Gondvana Research, 6(2), 185–196. https://doi.org/10.1016/S1342-937X(05)70969-2

Neubauer, F., & Handler, R. (2000). Variscan orogeny in the Eastern Alps and Bohemian Massif: how do these units correlate? Mitt. Osterr. Geol. Ges, 92, 35–59.

Oszczypko, N. (2006). Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50(1), 169–194.

Pavliuk, M. I.,  & Medvediev, A. P. (2004). Pankardiia: problemy evoliutsii. Lviv: Liha-Pres. [in Ukrainian]

Plašienka, D., & Soták, J. (2015). Evolution of Late Cretaceous-Palaeogene synorogenic basins in the Pieniny Klippen Belt and adjacent zones (Western Carpathians, Slovakia): Tectonic controls over a growing orogenic wedge. Annales Societatis Geologorum Poloniae, 85(1), 43–76. https://doi.org/10.14241/asgp.2015.005

Putis, M. (1992). Variscan and Alpidic nappe structures of the Western Carpathians crystalline basement. Geologica Carpathica, 43(6), 369–380.

Sandulescu, M., Krautner, H. G., Balintoni, I., Russo-Sandulescu, D., & Micu, M. (1981). The Structure of the East Carpathians (Moldavia-Maramures Area). Guide to Excursion B 1 of the XII Congress CBGA. Bucharest: Institute of geology and geophysics.

Schmid, S., Bernoull, D., Fugenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaric orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183. https://doi.org/10.1007/s00015-008-1247-3

Schmid, S. M., Fügenschuh, B., Kounov, A., Matenco, L., Nievergelt, P., Oberhansli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenovic, B., Ustaszewski, K., van Hinsbergen, D. J. J. (2020). Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78, 308–374. https://doi.org/10.1016/j.gr.2019.07.005

Tretiak, K. R., Maksymchuk, V. Yu., Kutas, R. I., Rokytianskyi, I. I., Hnylko, O. M., Kendzera, O. V., Pronyshyn, R. S., Klymkovych, T. A., Kuznietsova, V. H., Marchenko, D. O., Smirnova, O. M., Serant, O. V., Babak, V. I., Vovk, A. I., Romaniuk, V. V., & Tereshyn, A. V. (2015). Suchasna heodynamika i heofizychni polia Karpat ta sumizhnykh terytorii. Lviv: Vydavnytstvo Lvivskoi politekhniky. [in Ukrainian]

Ziegler, P. A. (1990). Geological atlas of Western and Central Europe. Avon: Geological Society Publishing House.

Zincenco, D. (1995). Chronostratigraphic scale of the pre-Permian metamorphites and granitoids from Romanian Carpathians. In XV Congress CBGA (Vol. 4, 2, pp. 647–652). Athens: Geological Society of Greece.


Posted on

CHARACTERISTICS OF THE DISTRIBUTION OF CHEMICAL ELEMENTS IN THE VERTICAL SECTION OF PEAT USING X-RAY FLUORESCENCE ANALYSIS (the Gonchary deposit, Lviv Region)

Home > Archive > No. 3–4 (191–192) 2023 > 45–60


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 45–60

https://doi.org/10.15407/ggcm2023.191-192.045

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology & Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1myroslavakoshil@ukr.net; 2khoha_yury@ukr.net

Abstract

This article discusses the features of peat analysis using X-ray fluorescence (XRF) analysis in order to study its qualitative and quantitative elemental composition, including heavy metals. The distribution of chemical elements is an indicator of various processes in geochemical and biological systems, by using of which it is possible to reproduce the conditions of accumulation of mineral deposits. This analysis is an important component of a comprehensive study of peat formation features, the environmental friendliness of peat extraction, and also for determining the suitability of peat for industrial use.

We analyzed the content of chemical elements in peat samples taken at different depths using a portable X-ray fluorescence spectrometer. The article considers the main characteristics of the spectrum of individual elements, depending on the atomic number.

In order to establish the general regularity of the distribution of 20 chemical elements in peat samples, we performed a mathematical and statistical analysis of the obtained data: calculation of the main statistical characteristics of chemical elements distribution (average, minimum and maximum values, median, variance, coefficient of variation, etc.), calculation of correlation matrices, selection of typomorphic geochemical associations of chemical elements using cluster and factor analyses. We singled out two types of factors that are decisive and influence the accumulation of chemical elements in the investigated peat: “organogenic” and “natural” (lithological), which are decisive, and a secondary factor –anthropogenic.

We compared the obtained results with the average values obtained from the results of spectral semi-quantitative analysis of peat ash samples taken at depths of 0.1–7 m in the same region. We evaluated the possibility and efficiency of using a portable X-ray fluorescence spectrometer for the analysis of the macro- and microelement composition of peats with different ash content.

It has been established that portable X-ray fluorescence analysis is a powerful tool for fast and high-quality elemental analysis of peat, and the range of its application depends on specific research goals and tasks.

Keywords

peat, X-ray fluorescence spectroscopy, XRF, microelement composition, spectrum interpretation

Referenses

Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavleniye geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (Lvovskaya oblast) [Research report]. Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]

Kaiser, B., & Wright, A. (2008). Draft Bruker XRF spectroscopy user guide: Spectral interpretation and sources of interference. BRUKER, Madison, WI.

Shand, C. A., & Wendler, R. (2014). Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31–42. https://doi.org/10.1016/j.gexplo.2014.03.005

Van Loon, L. L., McIntyre, N. S., Bauer, M., Sherry, N. S., & Banerjee, N. R. (2019). Peakaboo: Advanced software for the interpretation of X-ray fluorescence spectra from synchrotrons and other intense X-ray sources. Software Impacts, 2, 100010. https://doi.org/10.1016/j.simpa.2019.100010

Yakovenko, M. (2022). Heokhimichni osoblyvosti nahromadzhennia i mihratsii Strontsiiu v torfakh Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(187–188), 58–70. https://doi.org/10.15407/ggcm2022.01-02.058 [in Ukrainian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk of V. N. Karazin Kharkiv National University, Series “Geology. Geography. Ecology”, 56, 105–121. https://doi.org/10.26565/2410-7360-2022-56-07 [in Ukrainian]


Posted on

APPARATUS-METHODICAL COMPLEX OF THE STUDY OF PETROPHYSICAL PROPERTIES OF FRACTURED RESERVOIR ROCKS OF HYDROCARBONS

Home > Archive > No. 3–4 (191–192) 2023 > 37–44


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 37–44

https://doi.org/10.15407/ggcm2023.191-192.037

Ihor KUROVETS, Oleksandr ZUBKO, Ihor HRYTSYK, Oleksandr PRYKHODKO, Roman-Danyil KUCHER

IInstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

We have developed the apparatus-methodical complex of laboratory investigations of fractured reservoir rocks of hydrocarbons. Basing on the study of variability of acoustic properties in different-oriented directions for measuring of raw pieces of core, it was possible to develop the apparatus for the express-diagnostics of the inner structure of the rock. The results of analysis of anisotropy of acoustic properties of the core give us the possibility to choose the specimens with abnormal properties on which one can conduct further investigations for determination of the factors of heterogeneity of rocks. Measuring of the velocity of longitudinal and transverse oscillations with recording their wave pictures is conducting in the acoustic bath. The acoustic system is equipped with corresponding adapter for connection to the computer that enables us to keep up the recording of all parameters of measuring. To estimate the permeability of microfractures and the influence of composite taut state upon them we have developed the device for studying radial filtration the results of which allow us to estimate the rock permeability due to the change in the structure and microfractures size depending upon the value and the character of the taut state. To measure deformational-strength parameters the corresponding plant was developed and produced, which was additionally equipped with a meter for the measuring of deformation, that allows to measure the values of contact strength, elasticity module and the boundary of rock strength while one-axis charging. The parameters are determined at arbitrary points of the core cuts, and the velocity of charging is half-automatically regulated at a wide bounds. The device is equipped with the electron controller that allows us not only to measure the value of contact strength, but to conduct observations on a display as to the changes in deformation depending on the charging value in real time and to put down the parameters of investigations into corresponding data base. Obtained characteristic of rocks is not only parametric basis for interpretation of materials of charging, but for the estimation of the changes in volume, type of porous space and permeability, and also for modelling of formation conditions of fractured reservoir, and on the whole, for prediction of zones (plots) where a dense rock with corresponding mechanical parameters should acquire the properties of the collector. The usage of the complex for the studying of fracturing in oil geology allows us to widen the prognosis and discovery of new fields and to improve production and exploitation possibilities of already acting ones.

Keywords

apparatus-methodical complex, fractured reservoir rocks, acoustic waves, deformational-strength parameters

Referenses

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Chepil, P. M., Dryhant, D. M., Shlapinskyi, V. Ye., Koltun, Yu. V., Chepil, V. P., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kurovets, I., Zubko, O., Hrytsyk, I., Prykhodko, O., & Kucher, R.-D. (2023). Osoblyvosti formuvannia yemnisno-filtratsiinykh vlastyvostei porid-kolektoriv Vnutrishnoi zony Peredkarpatskoho prohynu. In Heofizyka i heodynamika: prohnozuvannia ta monitorynh heolohichnoho seredovyshcha: zbirnyk materialiv IX Mizhnarodnoi naukovoi konferentsii (10–12 zhovtnia 2023 r.) (pp. 109–112). Lviv. [in Ukrainian]

Kurovets, I. M., Zubko, O. S., Kit, N. O., & Hvozdevych, O. V. (2007). Prystrii dlia vyznachennia pronyknosti zrazka hirskoi porody (Deklaratsiinyi patent Ukrainy № 80551). Biuleten, 16. [in Ukrainian]

Pavliuk, M., Naumko, I., Lazaruk, Ya., Khokha, Yu., Krupskyi, Yu., Savchak, O., Rizun, B., Medvediev, A., Shlapinskyi, V., Kolodii, I., Liubchak, O., Yakovenko, M., Ternavskyi, M., Hryvniak, H., Triska, N., Seniv, O., & Huzarska, L. (2022). Rezerv naftohazovydobutku Zakhidnoho rehionu Ukrainy (Digital ed.). Lviv. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf [in Ukrainian]

Zubko, A. S. (1989). Nekotoryye osobennosti metodiki laboratornogo opredeleniya vodonasyshchennosti porod-kollektorov. In Geofizicheskaya diagnostika neftegazonosnykh i uglenosnykh razrezov: sbornik nauchnykh trudov AN USSR (pp. 103–113). Kiev: Naukova dumka. [in Russian]

Zubko, A. S., & Sheremeta, O. V. (1988). Razrabotka universalnoy ustanovki vysokogo davleniya UVD-500 i metodika izucheniya petrofizicheskikh svoystv gornykh porod dlya usloviy. modeliruyushchikh plastovyye [Research report]. Lvov: Fondy IGGGI AN USSR. [in Russian]


Posted on

ASSESSMENT OF THE DYNAMICS OF WATER-OIL CONTACTS AND ESTABLISHMENT OF EFFECTIVE THICKNESSES ACCORDING TO THE RESULTS OF COMPREHENSIVE GEOPHYSICAL RESEARCH

Home > Archive > No. 3–4 (191–192) 2023 > 31–36


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 31–36

https://doi.org/10.15407/ggcm2023.191-192.031

Dmytro FEDORYSHYN1, Ihor MYKHAILOVSKYI2, Serhii FEDORYSHYN3, Oleksandr TRUBENKO4

1, 3, 4 Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
2 LLC “BURPROEKT”, Lviv, Ukraine
e-mail: 1dmytro.fedoryshyn@nung.edu.ua; 2burproekt@ukr.net; 3serhii.fedoryshyn@nung.edu.ua; 4geotom@nung.edu.ua

Abstract

The purpose of the work is to assess the reliability of the results of geological and geophysical studies of complex-constructed Neogene deposits by electrical methods and to develop optimally reliable approaches to the selection of hydrocarbon-saturated rocks with an assessment of their reservoir parameters. In addition, to establish the factors that affect the ambiguity of geological and geophysical conclusions in the process of research of complex lithological and stratigraphic strata, which ultimately causes the omission of reservoir rocks saturated with hydrocarbons. The obtained experimental results of the research of the core material taken from the wells of the adjacent gas condensate fields made it possible to identify the main factors and parameters that determine the filtration-capacity parameters of Neogene deposits. Based on the above, there is a need to substantiate and develop methodological aspects of the use of electrical methods to determine the nature of reservoir rock saturation and to determine the dynamics of water-gas-condensate contacts. The subject of research is the electrical parameters of water- and gas-saturated reservoir rocks. In addition, the substantiation of the effect of pressure and temperature on the performance of electrical methods in the process of researching complex-constructed Neogene reservoir rocks and the peculiarities of the dynamics of changes in water-oil and gas-water contacts. The decrease in oil and gas production from complex geological sections is due to both economic and technological factors that arise in the process of researching the lithological and stratigraphic strata of the Bilche-Volytsa zone. The geological structure of the above-mentioned territories is extremely complex and represents, in particular in the Bilche-Volitsa zone, a classically expressed wing of the platform type, weakly dislocated by upper Miocene molasses.

Keywords

geophysical studies of monomictic and polymictic reservoir rocks of complex structure, gamma spectrometry, litho-stratigraphic section, clay content, water saturation, porosity, resistivity

Referenses

Catuneanu, O. (2006). Principles of sequence stratigraphy. Amsterdam: Elsevier.

Fedoryshyn, D. D. (1999). Teoretyko-eksperymentalni osnovy petrofizychnoi ta heofizychnoi diahnostyky tonkoprosharkovykh porid-kolektoriv nafty i hazu (na prykladi Karpatskoi naftohazonosnoi provintsii) [Doctorʼs thesis]. Lviv. [in Ukrainian]

Fedoryshyn, D. D., Trubenko, O. M., Fedoryshyn, S. D., Ftemov, Ya. M., & Koval Ya. M. (2016). Perspektyvy yaderno-fizychnykh metodiv pid chas vydilennia hazonasychenykh porid-kolektoriv skladnopobudovanykh neohenovykh vidkladiv. Heodynamika, 2, 134–143. https://doi.org/10.23939/jgd2016.02.134 [in Ukrainian]

Fedyshyn, V. O. (2005). Nyzkoporysti porody-kolektory hazu promyslovoho pryznachennia. Kyiv: UkrDHRI. [in Ukrainian]

Honarpour, M. M., Nagarajan, N. R., & Sampath, K. (2006). Rock/fluid characterization and their integration – Implications on reservoir management. Journal of Petroleum Technology, 58(9), 120–130. https://doi.org/10.2118/103358-JPT

Khomyn, V., Tsomko, V., Hoptarova, N., Bronitska, N., & Trubenko, A. (2019). Heoloho-promyslovi osoblyvosti rozkryttia ta vyprobuvannia slabopronyknykh hazonasychenykh vidkladiv. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiia, 1(84), 42–48. https://doi.org/10.17721/1728-2713.84.06 [in Ukrainian]

Krupskyi, Yu. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]

Larsen, J. K., & Fabricius, I. L. (2004). Interpretation of water saturation above the transitional zone in chalk reservoirs. SPE Reservoir Evaluation and Engineering, 7(2), 155–163. https://doi.org/10.2118/69685-PA

Lazaruk, Ya., Zaiats, Kh., & Pobihun, I. (2013). Hravitatsiinyi tektohenez Bilche-Volytskoi zony Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(162–163), 5–16. [in Ukrainian]

Miall, A. D. (2006). The geology of fluvial deposits. Sedimentory facies, basin analysis, and petroleum geology. Springer.

Pavliukh, O. (2009). Osoblyvosti heolohichnoi budovy ta formuvannia pokladiv hazu v Zovnishnii zoni Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(148–149), 31–43. http://dspace.nbuv.gov.ua/handle/123456789/58960 [in Ukrainian]

Prokopiv, V. Y., & Fedoryshyn, D. D. (2003). Otsinka heoloho-heofizychnykh neodnoridnostei pry doslidzhenniakh skladnopobudovanykh porid-kolektoriv. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 2(7), 28–34. http://elar.nung.edu.ua/handle/123456789/6307 [in Ukrainian]

Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-87813-8

Trubenko, O. M., Fedoryshyn, D. D., Artym, I. V., Fedoryshyn, S. D., & Fedoryshyn, D. S. (2021). Geophysical interpretation methods’ improvement of Bilche-Volytska zone of Pre-carpathian foredeep complex geological cross-sections’ comprehensive research results. Prospecting and Development of Oil and Gas Fields, 4(81), 33–40. https://doi.org/10.31471/1993-9973-2021-4(81)-33-40

Zaiats, Kh. (2013). Hlybynna budova nadr Zakhidnoho rehionu Ukrainy na osnovi seismichnykh doslidzhen i napriamky poshukovykh robit na naftu ta haz. Lviv: Tsentr Yevropy. [in Ukrainian]

Zaiats, Kh., & Havrylko, V.  (2007). Porivnialna kharakterystyka heolohichnoi budovy ta seismichnoi informatsii rodovyshch Lopushna (Ukraina) ta Lonkta (Polshcha). Heolohiia i heokhimiia horiuchykh kopalyn, 4, 55–62. [in Ukrainian]


Posted on

LITHOLOGICAL AND GEOCHEMICAL CHARACTERISTICS OF THE MIDDLE DEVONIAN STRATA OF THE LVIV DEPRESSION IN THE ASPECT OF THEIR OIL AND GAS BEARING PROSPECTS

Home > Archive > No. 3–4 (191–192) 2023 > 20–30


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 20–30

https://doi.org/10.15407/ggcm2023.191-192.020

Natalia RADKOVETS, Yuriy KOLTUN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: radkov_n@ukr.net

Abstract

The Middle Devonian deposits within the Lviv Depression of the Volyn-Podillya plate are largely underexplored and are of great interest for further exploration for hydrocarbons. The presence of two discovered gas fields and the occurrence of granular and fractured reservoir rocks within the entire Lviv Depression point that the deposits of this age range are prospective for further exploration works for hydrocarbons. The authors conducted mineralogical and petrographic studies of these strata in order to study different types of reservoir rocks.

Petrographic studies of terrigenous rocks showed that the reservoir rocks are composed of fine-grained and medium-grained sandstones, as well as fine-grained and coarse-grained siltstones. The matrix in these rocks is contact-porous and contact, composed of dolomitized calcite (4–19 %) and hydromica (3–13 %). Regardless of the type of matrix, the pore space in rocks is formed by intergranular spaces of 0.05 to 0.5 mm size. Siltstone-sandstone deposits represent the granular-type reservoir rocks, the filtration properties of which are formed by the intergranular space, while fractures are of subordinate importance. Terrigenous rocks form gas-bearing horizons in Middle Devonian (Eiffelian and Zhivetian) in the Lokachi field of the Lviv Depression. Carbonate rocks are represented by a wide range of lithological types from slightly dolomitized biodetrital limestones to secondary dolomites. Dolomitization and recrystallization form fracture-like microcaverns with a size of up to 0.5 mm and result in a high porosity of up to 9 %. In carbonate reservoir rocks fracturing is prevailing, while porosity has a subordinate value.

Studies of the molecular composition of natural gases from reservoir rocks of the Middle Devonian of the Lokachi field showed that their predominant component is methane. Its content is 92.7–95.4 vol %. The rest of the methane homologues account for 1.45–2.16 vol %. The total share of non-hydrocarbon gases – nitrogen, carbon dioxide, helium and hydrogen are 3.102–5.082 vol %.

In order to clarify the origin of the Middle Devonian gases of the Lviv Depression, further studies of the carbon, nitrogen, and hydrogen isotopic composition of these gases and the study of the generation properties of the Lower and Middle Devonian rocks of the studied region are necessary.

Keywords

Lviv Depression, Middle Devonian, reservoir rocks, mineralogical and petrographic composition of rocks, molecular composition of gases

Referenses

Chebanenko, I. I., Vishnyakov, I. B., Vlasov, B. I., & Volovnik, B. Ya. (1990). Geotektonika Volyno-Podolii. Kiev: Naukova dumka. [in Russian]

Fedyshyn, V. O. (Ed.). (1998). Atlas rodovyshch nafty i hazu Ukrainy: Vol. 4. Zakhidnyi naftohazonosnyi rehion. Lviv: Tsentr Yevropy. [in Ukrainian]

Kiessling, W., Flügel, E., & Golonka, J. (2003). Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36(3), 195–226. https://doi.org/10.1080/00241160310004648

Krupskyi, Yu. Z. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Pomyanovskaya, G. M. (1974). Stratigrafiya devona Volyno-Podolskoy okrainy Vostochno-Evropeyskoy platformy. In Stratigrafiya USSR: Devon (pp. 7–14. 36–83). Kiev: Naukova dumka. [in Russian]

Radkovets, N., & Koltun, Y. (2022). Dynamics of sedimentation within the southwestern slope of the East European Platform in the Silurian-Early Devonian. Geodynamics, 1(32), 36–48. https://doi.org/10.23939/jgd2022.02.036

Radkovets, N., Kotarba, M., & Wójcik, K. (2017). Source rock geochemistry, petrography of reservoir horizons and origin of natural gas in the Devonian of the Lublin and Lviv basins (SE Poland and western Ukraine). Geological Quarterly, 61(3), 569–589. https://doi.org/10.7306/gq.1361

Rizun, B. P., Medvedev, A. P., & Chizh, E. I. (1976). Formatsii osadochnogo chekhla Volyno-Podolia. Litologiya i poleznyye iskopayemyye, 3, 85–92. [in Russian]

Rizun, B. P., & Chizh, E. I. (1980). Perspektivy neftegazonosnosti Volyno-Podolskoy plity. In Geologiya i neftegazonosnost Volyno-Podolskoy plity (pp. 79–99). Kiev: Naukova dumka. [in Russian]


Posted on

OPTIMIZATION DIRECTIONS OF EXPLORATION AND DEVELOPMENT OF OIL FIELDS OF THE WESTERN FORE-BLACK SEA AREA OF UKRAINE

Home > Archive > No. 3–4 (191–192) 2023 > 7–19


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 7–19

https://doi.org/10.15407/ggcm2023.191-192.007

Yaroslav LAZARUK, Myroslav PAVLYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The southern part of the Dobrogea Foredeep is located in the southwestern regions of Ukraine within the Odesa region. Here, on the territory of the uplifted Bilolissya block, the East Sarata, Zhovtyjar, Saryjar, Zarichna oil accumulations are located in the chemogenic-carbonate layer of the Middle and Upper Devonian. The deposits are confined to limestones and dolomites with secondary fractured-cavernous-porous reservoirs. They lie at depths of 2500–3200 m. During the test of two dozen wells, the filtrate of the drilling fluid with a small amount of oil was received with the estimated flow rates of several tons per day. The rise of the oil level in the wells was quickly stopped, the hydrodynamic connection of the wells with the productive formations was lost. The use of today’s known methods of intensification of the flow of hydrocarbon fluids did not lead to positive results. According to the research of microphotographs of reservoir rocks, it is proved that the largest voids of reservoir rocks are filled with immobile bitumen, while the smaller cavities contain mobile oil. Immobile bitumen fills main channels and blocks communication between rock cavities. This is the main reason for the absence of industrial inflows of oil to the wells. Another important reason is the low filtering properties of the collectors. Most of them have a permeability of less than 0.01∙μD. Other reasons for the failure of the industrial development of oil deposits are the high dynamic viscosity of oil due to the high content of asphaltenes, silicagel resins, paraffins, the low energy potential of oil deposits due to their degassing during the long geological time, as well as the lack of hydrodynamic connection of oil deposits with natural water pressure systems. We assume that the Middle and Upper Devonian oil fields of the Western Fore-Black Sea area are most likely mainly bituminous. Given the significant depths of the deposits, their industrial development is technically impossible today. Therefore, it is impractical to plan further scientific research on the mentioned complex. Instead, research should be reoriented to the Silurian terrigenous-carbonate complex and the Lower Devonian terrigenous complex, which are hydrodynamically more closed and in which non-degassed hydrocarbon accumulations can be preserved.

Keywords

oil, bitumen, deposit, oil traps, carbonate reservoir, terrigenous complex, hydrocarbon reserves, exploration and development of deposits

Referenses

Hnidets, V. P., Hryhorchuk, K. H., Polukhtovych, B. M., & Fedyshyn, V. O. (2003). Litohenez devonskykh vidkladiv Prydobrudzkoho prohynu (paleookeanohrafiia, sedymentatsiina tsyklichnist, formuvannia porid-kolektoriv). Kyiv: UkrDHRI. [in Ukrainian]

Lazaruk, Ya. H., Melnyk, A. Yu., Vasylyna, R. M., & Sheremet, B. B. (2017a). Heoloho-ekonomichna otsinka Skhidnosaratskoho naftovoho rodovyshcha Odeskoi oblasti [Research report]. Kyiv: PrAT NVK “Ukrnaftinvest”. [in Ukrainian]

Lazaruk, Ya. H., Melnyk, A. Yu., Vasylyna, R. M., & Sheremet, B. B. (2017b). Heoloho-ekonomichna otsinka Zhovtoiarskoho naftovoho rodovyshcha Odeskoi oblasti [Research report]. Kyiv: PrAT NVK “Ukrnaftinvest”. [in Ukrainian]

Pavliuk, M. I. (2014). Heodynamichna evoliutsiia ta naftohazonosnist Azovo-Chornomorskoho i Barentsovomorskoho perykontynentalnykh shelfiv. Lviv: Proman. [in Ukrainian]

Serhii, H. B., & Postnikova, N. M. (2014). Utochnennia heolohichnoi budovy perspektyvnykh vidkladiv Biloliskoho bloka Pereddobrudzkoho prohynu na osnovi pohlyblenoi obrobky ta interpretatsii danykh seismorozvidky [Research report]. Kyiv: PrAT NVK “Ukrnaftinvest”. [in Ukrainian]

Trokhymenko, H. L. (2013). Osoblyvosti pryrodnykh rezervuariv vuhlevodniv u potuzhnykh karbonatnykh kompleksakh. Geologiya i poleznyye iskopayemyye Mirovogo okeana, 4, 46–62. [in Ukrainian]


Posted on

ENERGY COMPONENTS OF SUSTAINABLE DEVELOPMENT IN THE COUNTRIES OF THE EUROPEAN UNION AND IN UKRAINE

Home > Archive > No. 1–2 (189–190) 2023 > 92–112


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 92–112

https://doi.org/10.15407/ggcm2023.189-190.092

Myroslav PODOLSKY, Dmytro BRYK, Lesia KULCHYTSKA-ZHYHAILO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: cencon@ukr.net

Abstract

The energy components of sustainable development in the countries of the European Union have been analyzed, in particular according to goal 7 “Affordable and clean energy”, directions of the European Green Deal, taking into consideration synergies and compromises, as well as cross-cutting factors in achieving the specified indicators. It is shown that in 2019, the EU’s energy dependence on energy imports by types of fuel was: oil and oil products – more than 90 %, natural gas – about 80 %, solid fossil fuels – about 40 %. During 2014–2019, the decrease in the use of solid fuels (−4.9 %) was compensated by the increase in the use of renewable energy sources and biofuels (+2 %), as well as by the increase in the use of natural gas (+3.4 %), which could not cause a significant reduction in the share of fossil fuel use and a reduction in emissions of greenhouse gas – carbon dioxide CO2, at the same time the total dependence of EU countries on fuel imports increased from 54.4 to 60.7 % (by 6.3 %), which negatively affects the achievement of energy indicators of sustainable development. In 2019, the total share of renewable energy sources was 19.7 % with an ambitious goal of reaching 32 % in 2030.

The energy components of sustainable development in Ukraine are analyzed. It is shown that, in particular, according to goal 7 “Affordable and clean energy”, the progress of the specified indicators is characterized by a low probability of achievement; in 2019, the share of coal imports in Ukraine was 68.6 %, oil – 76.7 %, natural gas – 45.1 %, and the total share of imports of primary energy resources by 2030 should be reduced to a level of not less than 12 % and the share of energy from renewable sources should reach 17 %.

Based on a comparison of the energy components of sustainable development in the countries of the European Union and in Ukraine, the main requirements for energy indicators and tasks of sustainable development for Ukraine and its regions are proposed. These requirements differ in the addition of energy indicators and tasks of sustainable development in Ukraine with indicators that are monitored in the countries of the European Union and were not used in Ukraine before, as well as the introduction of indicators that take into consideration the energy characteristics of the regions of Ukraine. An adaptive structure of energy tasks and indicators for the regions of Ukraine is proposed.

Keywords

sustainable development goals, energy tasks and indicators, sustainable energy

Referenses

Derzhavna sluzhba statystyky Ukrainy. (2021a). Dobrovilnyi natsionalnyi ohliad shchodo Tsilei staloho rozvytku v Ukraini (2015–2019 rr.). https://ukraine.un.org/index.php/uk/151096-dobrovilnyy-natsionalnyy-ohlyad-shchodo-tsiley-staloho-rozvytku-v-ukrayini [in Ukrainian]

Derzhavna sluzhba statystyky Ukrainy. (2021b). Monitorynhovyi zvit shchodo dosiahnennia Tsilei staloho rozvytku 2020. https://ukraine.un.org/uk/151095-monitorynhovyy-zvit-shchodo-dosyahnennya-tsiley-staloho-rozvytku-2020 [in Ukrainian]

European Commission. (2019). A European Green Deal. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

European Commission. (2021). Sustainable development in the European Union Monitoring report on progress towards the SDGs in an EU context 2021 edition. https://ec.europa.eu/eurostat/en/web/products-flagship-publications/-/ks-03-21-096

Hauke, J., & Kossowski, T. (2011). Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaestiones Geographicae, 30(2), 87–93. https://doi.org/10.2478/v10117-011-0021-1

Ministerstvo zakhystu dovkillia ta pryrodnykh resursiv Ukrainy. (2019). Natsionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Ukraini. https://mepr.gov.ua/diyalnist/napryamky/ekologichnyj-monitoryng/natsionalni-dopovidi-pro-stan-navkolyshnogo-pryrodnogo-seredovyshha-v-ukrayini/ [in Ukrainian]

NextGenerationEU. (2019). NextGenerationEU. https://europa.eu/next-generation-eu/index_en

Podolskyi, M., & Bryk, D. (2020). Naukovi pidkhody dlia dosiahnennia tsilei staloho rozvytku Ukrainy. Zbirnyk naukovykh prats ΛΌГOΣ, 52–55. https://doi.org/10.36074/20.11.2020.v5.15 [in Ukrainian]

Podolskyi, M., Kulchytska-Zhyhailo, L., & Hvozdevych O. (2020a). Pokaznyky enerhoefektyvnosti v konteksti tsilei staloho rozvytku Ukrainy. Materialy konferentsii MTsND, 27–31. https://doi.org/10.36074/02.10.2020.v1.05 [in Ukrainian]

Podolskyi, M., Kulchytska-Zhyhailo, L., & Hvozdevych, O. (2020b). Struktura ta tekhnolohichni aspekty vykorystannia enerhetychnykh resursiv v krainakh Yevropeiskoho Soiuzu ta v Ukraini. Zbirnyk naukovykh prats ΛΌГOΣ, 52–55. https://doi.org/10.36074/09.10.2020.v2.14 [in Ukrainian]

United Nations Statistics Division. (2021). The Sustainable Development Goals Report 2021. https://unstats.un.org/sdgs/report/2021/


Posted on

ON THE REGULARITY OF NATURAL PROCESSES OF SYNTHESIS AND GENESIS HYDROCARBONS AND WATER OF OIL AND GAS FIELDS: ABIOGENIC-BIOGENIC DUALISM

Home > Archive > No. 1–2 (189–190) 2023 > 81–91


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 81–91

https://doi.org/10.15407/ggcm2023.189-190.081

Yosyp SVOREN’

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

It is shown that the problem of the nature of water in oil and gas fields must be solved in an inextricable connection with the genesis and synthesis of natural hydrocarbons in the Earth’s bowels. The work offers an original solution, based on a new theory of the synthesis and genesis of hydrocarbons (oil, gas, etc.): abiogenic-biogenic dualism, which asserts that giant and supergiant oil and gas fields were formed from inorganic and organic original hydrocarbon-containing substances under the influence of abiogenic high-thermobaric deep fluid in harsh physical, physicochemical and geological conditions of the earth’s crust. Since the abiogenic high-thermobaric deep fluid contains hydrogen H+ and OH-containing anions, the described mechanism for the interaction of positively charged ions: C+, H+, CnHm+-radicals with the formation-synthesis of a complex hydrocarbon mixture such as gas, oil, bitumen, etc. must be logically supplemented by a reaction: Н2О → Н+ + ОН. As a result of this complex physical and chemical process, the maximum concentration of (OH) anions accumulated in the oxidation zone, which after the disappearance of the electric field become neutral and interact with each other according to the scheme: ОН + ОН = Н2О2 – hydrogen peroxide, which is an unstable compound, which decomposes into Н2О + О. Oxygen atoms became the starting substances for the formation of macro- and microcracks in these cavities under harsh conditions of rocks of the carbonate or quartz-carbonate type, etc., much less often – perfect mineral crystals, which with their defects in the process of growth (synthesis) captivate and preserve substances in the system (proper hydrocarbons and water). Тherefore, it was established for the first time that the natural water of oil and gas fields has a dual lithospheric-asthenospheric nature, while the lithospheric part is dominant, the isotopic composition is a mixture of these waters, and the deuterium isotope is more chemically active in complex physical and chemical processes, which run through the bowels of the planet. The obtained original data will contribute to the solution of Ukraine’s serious problem with energy carriers: natural gas, oil, coal and drinking water.

Keywords

fluid inclusions, hydrocarbons, drinking water, energy carriers, oil and gas industry, fundamental science, scientific discoveries

Referenses

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren, Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Dolenko, G. N. (1975). Sovremennoye sostoyaniye problemy proiskhozhdeniya nefti i gaza i formirovaniya ikh promyshlennykh zalezhey. In Zakonomernosti obrazovaniya i razmeshcheniya promyshlennykh mestorozhdeniy nefti i gaza (pp. 3–17). Kiev: Naukova dumka. [in Russian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Naumko, I., & Svoren, Y. (2021). Innovatsiini tekhnolohii poshukiv korysnykh kopalyn, osnovani na doslidzhenniakh fliuidnykh vkliuchen u mineralakh. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 92–108. https://doi.org/10.15407/ggcm2021.03-04.092 [in Ukrainian]

Pavliuk, I., Naumko, I., & Stefanyk, Yu. (2007, December 13). Heolohy-naukovtsi proty metanu-vbyvtsi. U Lvovi na Naukovii taky ye nauka. Ukraina i Chas, 50(286), 7.

Svoren, Y. M. (1975). Istochniki uglerodsoderzhashchikh gazov vklyucheniy. In Uglerod i ego soyedineniya v endogennykh protsessakh mineraloobrazovaniya (po dannym izucheniya flyuidnykh vklyucheniy v mineralakh): tezisy Respublikanskogo soveshchaniya (Lvov, sentyabr 1975 g.) (pp. 104–106). Lvov. [in Russian]

Svoren, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyaniye na svoystva veshchestv [Extended abstract of Candidateʼs thesis]. Institut geologii i geokhimii goryuchikh iskopayemykh AN USSR. Lvov. [in Russian]

Svoren. I. M. (1988). Formy nakhozhdeniya vodoroda v nekotorykh tverdykh materialakh razlichnogo proiskhozhdeniya soglasno fiziko-khimicheskoy modeli navodorozhivaniya tverdykh tel. In Geokhimiya i termobarometriya endogennykh flyuidov (pp. 95–103). Kiev: Naukova dumka. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy (pp. 143–145). Lviv. [in Ukrainian]

Svoren, Y. (2011). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: izotopy vuhletsiu pro pokhodzhennia planety Zemlia. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 158–159. [in Ukrainian]

Svoren, Y. (2018). Vlastyvist hlybynnoho abiohennoho metanovmisnoho vysokotermobarnoho fliuidu utvoriuvaty vuhillia. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(176–177), 105–109. [in Ukrainian]

Svoren, Y. (2019). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: rizna khimichna vlastyvist izotopiv vuhletsiu u pryrodnykh protsesakh syntezu riznykh spoluk. In Problemy heolohii fanerozoiu Ukrainy: materialy X Vseukrainskoi naukovoi konferentsii (do 95-richchia kafedry istorychnoi heolohii ta paleontolohii i 120-richchia vid narodzhennia Severyna Ivanovycha Pasternaka (Lviv, 9–11 zhovtnia 2019 r.) (pp. 64–67). Lviv: LNU imeni Ivana Franka. [in Ukrainian]

Svoren, Y. (2020a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda vody naftovykh i hazovykh rodovyshch. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 8–9 hrudnia 2020 r.) (pp. 158–160). Ivano-Frankivsk: IFNTUNH. [in Ukrainian]

Svoren, J. M. (2020b). Subsoil Natural Physico-Chemical Reactor: Regularity of Natural Processes of Synthesis of Perfect Diamond Crystals. Journal of Geological Resource and Engineering, 8(4), 133–136. https://doi.org/10.17265/2328-2193/2020.04.005

Svoren, J. M. (2021). Subsoil Natural Physico-chemical Reactor: The Property of Deep Abiogenic Methane-Containing High-Thermobaric Fluid to Form Coal Seams. Journal of Geological Resource and Engineering, 9(1), 25–28. https://doi.org/10.17265/2328-2193/2021.01.003

Svoren, Y. M., & Davydenko, M. M. (1995). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Dopovidi NAN Ukrainy, 9, 72–73. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2003). Nova teoriia syntezu i henezysu vuhlevodniv u litosferi Zemli: abiohenno-biohennyi dualizm. In Mezhdunarodnaya konferentsiya “Krym–2003” (pp. 75–77). Simferopol. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi NAN Ukrainy, 2, 111–116. [in Ukrainian]


Posted on

FUNDAMENTAL PROBLEMS AND ACHIEVEMENTS OF MINERAL FLUIDOLOGY IN THE WORKS OF PROFESSOR VOLODYMYR ANTONOVYCH KALYUZHNYI (based on the materials of the Memorial Academy on the occasion of the 100th anniversary of the birth)

Home > Archive > No. 1–2 (189–190) 2023 > 66–80


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 66–80

https://doi.org/10.15407/ggcm2023.189-190.066

Ihor NAUMKO1, Myroslav PAVLYUK1, Oleh ZYNYUK2, Anatoliy GALAMAY1, Myroslavа YAKOVENKO1, Zoryana MATVIISHYN1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Western Scientific Center of the National Academy of Sciences of Ukraine and the Ministry of Education and Science of Ukraine, Lviv, Ukraine, е-mail: zynyuk@ukr.net

Abstract

The fundamental problems and achievements of mineralofluidology in the works of the outstanding Ukrainian scientist-geologist, mineralogist-geochemist, laureate of the State Prize of Ukraine in the field of science and technology, laureate of the International Gold Medal named after the outstanding English researcher of fluid inclusions H. C. Sorby (the H. C. Sorby medal), recipient of the State Scholarship for Outstanding Scientists of Ukraine, Doctor of Sciences (Geology, Mineralogy), Professor Volodymyr Antonovych Kalyuzhnyі – one of the founders of the fundamental science on fluid inclusions, the creator of the world-famous scientific school of geochemistry and thermobarometry of mineral-forming fluids are discussed. The Memorial Academy on the occasion of celebrating a significant date – the 100th anniversary of the birth of Volodymyr Kalyuzhnyі was held on October 25, 2022, at the Institute of Geology and Geochemistry of Combustible Minerals (IGGCM) of the NAS of Ukraine within the framework of the Department of Earth Sciences of the NAS of Ukraine at the visiting meeting of the Earth Sciences Section of the Western Science Center (WSC) of the NAS of Ukraine and the Ministry of Education and Science of Ukraine. Members of the Council and Executive Committee of the WSC, employees of the Institute and neighboring scientific institutions took part in its work. Head of the Institute, Аcademician of the NAS of Ukraine Myroslav Pavlyuk opened the Memorial Academy with an opening speech, greetings from the WSC of the NAS of Ukraine and the Ministry of Education and Science of Ukraine were delivered by the deputy head of the WSC, director of the WSC, PhD (Тechnic), Аssociate Рrofessor Oleh Zynyuk. Scientific reports were given by: Head of the Department of Geochemistry of Deep Fluids of the Institute, Corresponding Member of the NAS of Ukraine Ihor Naumko and Head of the Department of Geochemistry of Sedimentary Strata of Oil and Gas-bearing provinces, PhD (Geology), Senior Research Fellow Anatoliy Galamay. Scientific Secretary of the Institute, PhD (Geology), Senior Researcher Myroslava Yakovenko read the greetings that were sent or personally delivered to Members of the Organizing Committee and participants of the Memorial Academy. Warm memories of Volodymyr Kalyuzhny were shared by his son Yuriy, Myroslav Bratus, and Myroslav Pavlyuk. The apotheosis of a worthy commemoration and celebration of a significant date – the 100th anniversary of the birth of an outstanding Scientist, Teacher, Patriot, Citizen, and Man being were the prophetic words: “We remember, they will remember us too! Ukraine is and will be!”

Keywords

Volodymyr Antonovych Kalyuzhnyі, outstanding scientist, thermobarogeochemistry, mineralofluidology, fluid inclusions research

Referenses

Bratus, M. D., Davydenko, M. M., Zinchuk, I. M., Kaliuzhnyi, V. A., Matviienko, O. D., Naumko, I. M., Pirozhyk, N. E., Redko, L. R., & Svoren Y. M. (1994). Fliuidnyi rezhym mineraloutvorennia v litosferi (v zviazku z prohnozuvanniam korysnykh kopalyn). Kyiv: Naukova dumka. [in Ukrainian]

Ermakov, N. P., & Dolgov, Yu. A. (1979). Termobarogeokhimiya. Moskva: Nedra. [in Russian]

Kaliuzhnyi, V. A. (1960). Metody vyvchennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Kaliuzhnyi, V. A. (Ed.). (1971). Mineraloutvoriuiuchi fliuidy ta parahenezysy mineraliv pehmatytiv zanoryshevoho typu Ukrainy (ridki vkliuchennia, termobarometriia, heokhimiia). Kyiv: Naukova dumka. [in Ukrainian]

Kalyuzhnyy, V. A. (1982). Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh. Kiev: Naukova dumka. (English translation: Kalyuzhnyi, V. A. (1985). Principles of knowledge about mineral forming fluids. In Fluid Inclusions Research: Proceedings of COFFI (Vol. 15, pp. 289–333; Vol. 16, pp. 306–320). [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. T., Bratus, M. D., Velychko, N. Z., Harasymchuk, V. Yu., Hnylko, O. M., Danysh, V. V., Dudok, I. V., Zubko, O. S., Kaliuzhnyi, V. A., Kovalyshyn, Z. I., Koltun, Yu. V., Kopach, I. P., Krupskyi, Yu. Z., Osadchyi, V. H., Kurovets, I. M., Lyzun, S. O., Naumko, I. M., . . . Shcherba, O. S. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Matkovskyi, O., Naumko, I., Pavlun, M., & Slyvko, Ye. (2021). Termobaroheokhimiia v Ukraini. Lviv: Prostir-M. [in Ukrainian]

Naumko, I. M. (2002). Korotkyi narys naukovoi, naukovo-orhanizatsiinoi, pedahohichnoi ta hromadskoi diialnosti V. A. Kaliuzhnoho. In Volodymyr Antonovych Kaliuzhnyi. Do 80-richchia vid dnia narodzhennia (M. I. Pavliuk, Ed.; I. M. Naumko, L. F. Telepko, Compilers) (pp. 3–8). Lviv: IHHHK NAN Ukrainy ta NAK “Naftohaz Ukrainy”. [in Ukrainian]

Roedder, E. (1984). Fluid inclusions [Monograph]. Reviews in Mineralogy, 12, 1–644. https://doi.org/10.1515/9781501508271

Sorby, H. C. (1858). On the Microscopic, Structure of Crystals, Indicating the Origin of Minerals and Rocks. The Quarterly Journal of the Geological Society of London, 14(1), 453–500. https://doi.org/10.1144/GSL.JGS.1858.014.01-02.44

Vynar, O. M., Kaliuzhnyi, V. A., Naumko, I. M., & Matviienko, O. D. (1987). Mineraloutvoriuiuchi fliuidy postmahmatychnykh utvoren hranitoidiv Ukrainskoho shchyta. Kyiv: Naukova dumka. [in Ukrainian]

Zinchuk, I. N., Kalyuzhnyy, V. A., & Shchiritsa, A. S. (1984). Flyuidnyy rezhim mineraloobrazovaniya Tsentralnogo Donbassa. Kiev: Naukova dumka. [in Russian]


Posted on

THERMOMETRICAL STUDIES OF FLUID INCLUSIONS IN THE BADENIAN HALITE OF THE CARPATHIAN REGION IN THE CONTEXT OF DETERMINING THE DEPTH OF THE SALT BASIN

Home > Archive > No. 1–2 (189–190) 2023 > 54–65


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 54–65

https://doi.org/10.15407/ggcm2023.189-190.054

Anatoliy GALAMAY, Ihor ZINCHUK, Daria SYDOR

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: galamaytolik@ukr.net

Abstract

It was established that in order to avoid errors in the interpretation of paleotectonic conditions of salt formation based on fluid inclusions in halite, the primary stage of the research should be the genetic identification of the sedimentation textures of halite and fluid inclusions in this mineral. For the thermometric study of inclusions and to determine the depth of the sedimentation basin based on the obtained data, only thermal test chambers are suitable which provide the possibility of observing groups of inclusions in different zones of sedimentary halite, as, for example, in the micro thermal test chamber designed by Prof. V. A. Kalyuzhny.

In the course of the research, the equipment of the thermometric method, which is based on the use of a microthermal test chamber designed by V. A. Kalyuzhny, was modernized. In particular, the material of the thermal chamber (stainless steel) was replaced with copper, which made it possible to avoid excessive thermal gradients into chamber and to increase the permissible heating rate by 20 times due to the higher thermal conductivity of copper. For the same purpose, the glass optical windows of the camera were replaced with leukosapphire windows, which have a much higher thermal conductivity. The measuring system of the installation is made on a miniature platinum resistance thermometer with an electronic measuring unit. These improvements made it possible to achieve high system stability and good reproducibility of measurement results.

Using the thermometric method, it was established that the temperature of sedimentation at the bottom of the Badenian salt basin of the Carpathian region was 19.5–20.5; 20.0–22.0; 24.0–26.0 °C, and on the surface of the brine was 34.0–36.0 °C. On this basis, a model of the basin with a pronounced thermocline and a total thickness of the water column of up to 30 meters was built, which is the most likely to establish the features of sedimentation. Crystallization of halite at different depths in basins with a thermocline can explain the presence of so-called “low-temperature” (24.0–25.0 °C) and “high-temperature” (37.8–42.6 °C) bottom halite in a number of ancient salt-bearing basins.

Keywords

halite, fluid inclusions, thermometric method, thermal chamber, homogenization temperature

Referenses

Acros, D., & Ayora, C. (1997). The use of fluid inclusions in halite as environmental thermometer: an experimental study. In XIV ECROFI: proceedings of the XIVth European Current Research on Fluid Inclusions (Nancy, France, July 1–4, 1997) (pp. 10–11). CNRS-CREGU.

Benison, K. C., & Goldstein, R. H. (1999). Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1–4), 113–132. https://doi.org/10.1016/S0009-2541(98)00127-2

Galamay, A. R., Bukowski, K., Sydor, D. V., & Meng, F. (2020). The ultramicrochemical analyses (UMCA) of fluid inclusions in halite and experimental research to improve the accuracy of measurement. Minerals, 10(9), 823. https://doi.org/10.3390/min10090823

Galamay, A. R., Meng, F., Bukowski, K., Lyubchak, A., Zhang, Y., & Ni, P. (2019). Calculation of salt basin depth using fluid inclusions in halite from the Ordovician Ordos Basin in China. Geological Quarterly, 63(3), 619–628. https://doi.org/10.7306/gq.1490

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A., Sydor, D., & Liubchak, O. (2014). Osoblyvosti poiavy hazovoi fazy v odnofazovykh ridkykh vkliuchenniakh u haliti (dlia vyznachennia temperatury yoho krystalizatsii). In Mineralohiia: sohodennia i maibuttia: materialy VIII naukovykh chytan imeni akademika Yevhena Lazarenka (prysviacheno 150-richchiu zasnuvannia kafedry mineralohii u Lvivskomu universyteti) (pp. 34–36). Lviv; Chynadiieve. [in Ukrainian]

Kaliuzhnyi, V. A. (1960). Metody vyvchennia bahatofazovykh vkliuchen u mineralakh. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Khrushchov, D. P. (1980). Litologiya i geokhimiya galogennykh formatsiy Predkarpatskogo progiba. Kiev: Naukova dumka. [in Russian]

Korenevskiy, S. M., Zakharova, V. M., & Shamakhov, V. A. (1977). Miotsenovyye galogennyye formatsii predgoriy Karpat. Leningrad: Nedra. [in Russian]

Kovalevich, V. M. (1978). Fiziko-khimicheskiye usloviya formirovaniya soley Stebnikskogo kaliynogo mestorozhdeniya. Kiev: Naukova dumka. [in Russian]

Kovalevych, V., Paul, J., & Peryt, T. M. (2009). Fluid inclusions in the halite from the Röt (Lower Triassic) salt deposit in Central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporates, 24(1), 45–57. https://doi.org/10.1007/BF03228056

Lowenstein, T. K., Li, J., & Brown, C. B. (1998). Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3–4), 223–245. https://doi.org/10.1016/S0009-2541(98)00061-8

Meng, F., Ni, P., Schiffbauer, J. D., Yuan, X., Zhou, C., Wang, Y., & Xia, M. (2011). Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Research, 184(1–4), 63–69. https://doi.org/10.1016/j.precamres.2010.10.004

Meng, F., Zhang, Y., Galamay, A. R., Bukowski, K., Ni, P., Xing, E., & Ji, L. (2018). Ordovician seawater composition: evidence from fluid inclusions in halite. Geological Quarterly, 62(2), 344–352. https://doi.org/10.7306/gq.1409

Petrichenko, O. Y. (1988). Fiziko-khimicheskiye usloviya osadkoobrazovaniya v drevnikh solerodnykh basseynakh. Kiev: Naukova dumka. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Roberts, S. M., & Spencer, R. J. (1995). Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19), 3929–3942. https://doi.org/10.1016/0016-7037(95)00253-V

Shanina, S. N., Sokerina, N. V., Galamay, A. R., Ledentsov, V. N., & Onosov, D. V. (2014). Opredeleniye temperatur gomogenizatsii vklyucheniy v galite Yakshinskogo mestorozhdeniya. Vestnik Instituta geologii Komi NTs UrO RAN, 8, 3–6. [in Russian]

Sirota, I., Enzel, Y., & Lensky, N. G. (2017). Temperature seasonality control on modern halite layers in the Dead Sea: In situ observations. GSA Bulletin, 129(9–10), 1181–1194. https://doi.org/10.1130/B31661.1

Sydor, D. V., Halamai, A. R., & Meng, F. (2018). Pirotynova mineralizatsiia u halohennykh vidkladakh Verkhnokamskoho rodovyshcha kaliino-mahniievykh solei (termobaroheokhimichni doslidzhennia). Mineralohichnyi zbirnyk, 68(2), 52–61. [in Ukrainian]

Valyashko, M. G. (1952). Galit, osnovnyye ego raznosti, vstrechayemyye v solyanykh ozerakh, i ikh struktura. Trudy VNIIGalurgii, 23, 25–32. [in Russian]

Vorobyev, Yu. K. (1988). K probleme termometrii po pervichnym vklyucheniyam v mineralakh. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 117(1), 125–132. [in Russian]

Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-32344-9

Xu, Y., Liu, C., Cao, Y., & Zhang, H. (2018). Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm. International Journal of Earth Sciences, 108, 173–182. https://doi.org/10.1007/s00531-018-1648-0

Zambito, J. J., & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590. https://doi.org/10.1130/G34078.1

Zhang, H., Lü, F., Mischke, S., Fan, M., Zhang, F., & Liu, C. (2017). Halite fluid inclusions and the late Aptian sea surface temperatures of the Congo Basin, northern South Atlantic Ocean. Cretaceous Research, 71, 85–95. https://doi.org/10.1016/j.cretres.2016.11.008

Zhao, X., Zhao, Y., Wang, M., Hu, Y., Liu, C., & Zhang, H. (2022). Estimation of the ambient temperatures during the crystallization of halite in the Oligocene salt deposit in the Shulu Sag, Bohaiwan Basin, China. Minerals, 12(4), 410. https://doi.org/10.3390/min12040410

Zinchuk, I. M. (2003). Heokhimiia mineraloutvoriuiuchykh rozchyniv zoloto-polimetalevykh rudoproiaviv Tsentralnoho Donbasu (za vkliuchenniamy u mineralakh) [Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]