Posted on

THE INFLUENCE OF MARINE AND CONTINENTAL WATERS ON THE CLAY MINERALS TRANSFORMATION PROCESSES OF EVAPORITE DEPOSITS (on the example of the Kalush-Holin’ deposit, Carpathian Foredeep)

Home > Archive > No. 3–4 (191–192) 2023 > 122–134


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 122–134

https://doi.org/10.15407/ggcm2023.191-192.122

Sofiya HRYNIV, Yaroslava YAREMCHUK, Natalia RADKOVETS

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: sophia_hryniv@ukr.net

Abstract

The influence of the chemical composition of marine and continental waters on the formation and transformation of clay minerals is considered on the example of evaporites of the Kalush-Holin’ potash deposit of the Carpathian Foredeep. Clay minerals under variable physical and chemical conditions become unstable and transformed, adapting to new conditions. The main factor that causes changes in their composition and structure is the concentration of brines.

The increased concentration of brines at the stage of deposition of potassium salts contributed to the aggradational transformation of clay minerals, the transformation of labile minerals into illite and chlorite that are stable in the hipersaline environment. These two minerals – illite and chlorite are characteristic of the Kalush-Holin’ potash deposit. Further arrangement of the structure leads to the transformation of part of the illite into mica. On the clay fraction diffractograms of some potash rocks, the basal reflex 001 is wide and bifurcated at the top on a line with interplanar distances of 0.99 and 1.0 nm, this indicates the presence of structurally similar minerals – mica and illite.

Under conditions of hypergenesis, when evaporite deposits are washed away by fresh surface waters, a reverse process (degradational transformation) takes place, which occurs in the leaching of potassium from the interlayer space of a part of illite and the formation of labile clay structures. The clay mineral association of the gypsum-clay caprock of evaporite deposits, in addition to illite and chlorite, also contains mixed-layer illite-smectite and kaolinite – the appearance of these clay minerals in hypergenic deposits is the result of degradational transformation (illite-smectite) and formation de novo (kaolinite) under conditions of decreased saline brine concentration.

Capture of potassium by the structure of the mixed-layer illite-smectite and its transition into illite (aggradational transformation) occurs more easily than the reverse process – potassium leaching and transformation of illite into a mixed-layer illite-smectite (degradational transformation).

Keywords

clay minerals, aggradational and degradational transformation, evaporite deposits, hypergenesis zone, gypsum-clay caprock

Referenses

Andreyeva-Grigorovich, A., Oszczypko, N., Savitskaya, N., Ślączka, A., & Trofimovicz, N. (2003). Correlation of the Badenian Salts of the Wieliczka, Bochnia and Kalush Areas (Polish and Ukrainian Carpathian Foredeep). Annales Societatis Geologorum Poloniae, 73, 67–89.

Bąbel, M. & Schreiber, B. C. (2014). Geochemistry of Evaporites and Evolution of Seawater. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (2nd ed.) (Vol. 9, pp. 483–560). Elsevier. http://doi.org/10.1016/B978-0-08-095975-7.00718-X

Bilonizhka, P. M. (1992). Transformatsiini peretvorennia teryhennykh hlynystykh mineraliv pid chas halohenezu. Mineralohichnyi zbirnyk, 45(2), 51–56. [in Ukrainian]

Bilonizhka, P. M. (2001). Pryroda mizhsharovoi vody v hidrosliudakh. Mineralohichnyi zbirnyk, 51(1), 142–148. [in Ukrainian]

Bilonizhka, P., Iaremchuk, Ia., Hryniv, S., & Vovnyuk, S. (2012). Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine. Biuletyn Państwowego Instytutu Geologicznego, 449, 137–146.

Bodine, M. W., Jr. (1985). Trioctahedral Clay Mineral Assemblages in Paleozoic Marine Evaporite Rocks. In Sixth International Symposium on Salt (Vol. 1, pp. 267–284).

Calvo, J. P., Blanc-Valleron, M. M., Rodriguez Arandia, J. P., Rouchy, J. M., & Sanz, M. E. (1999). Authigenic clay minerals in continental evaporitic environments. International Association Sedimentologists Special Publication, 27, 129–151.

Drits, V. A., & Kossovskaya, A. G. (1990). Glinistyye mineraly: smektity, smeshanosloynyye obrazovaniya. Moskva: Nauka. [in Russian]

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

Dzhinoridze, N. M., Rogova, M. S., & Telegin, V. P. (1974). Vulkanogennyye porody Kalush-Golynskogo mestorozhdeniya kaliynykh soley. Trudy VNIIGalurgii, 71, 36–56. [in Russian]

Frank-Kamenetskiy, V. A., Kotov, N. V., & Goylo, E. L. (1983). Transformatsionnyye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]

Galán, E. (2006). Genesis of Clay Minerals. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.), Developments in Clay Science: Vol. 1. Handbook of Clay Science (Ch. 14, pp. 1129–1162). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01042-1

Honty, M., Uhlík, P., Šucha, V., Čaplovičova, M, Franců, J., Clauer, N., & Biroň, A. (2004). Smectite-to-illite alteration in salt-bearing bentonites (East Slovak Basin). Clay and Clay Minerals, 52, 533–551. https://doi.org/10.1346/CCMN.2004.0520502

Korenevskiy, S. M. (1954). Miotsenovyye vulkanicheskiye tufy Predkarpatia. Trudy VNIIGalurgii, 29, 176–196. [in Russian]

Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskiye problemy (pp. 60–69). Moskva: Nauka. [in Russian]

Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A., & Meunier A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37(1), 1–22. https://doi.org/10.1180/0009855023710014

Lipnitskiy, V. K. (1971). Litologicheskiye osobennosti i solevoy kompleks chetvertichnykh otlozheniy i porod gipsovo-glinistoy shlyapy Stebnikskogo mestorozhdeniya kaliynykh soley. In Materialy po gidrogeologii i geologicheskoy roli podzemnykh vod (pp. 98–108). Leningrad: Izdatelstvo Leningradskogo universiteta. [in Russian]

Lobanova, V. V. (1956). Voprosy petrografii kaliynykh zalezhey Vostochnogo Predkarpatia. Trudy VNIIGalurgii, 32, 164–214. [in Russian]

McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Research, 57(5), 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D

Meunier, A. (2005). Clays. Berlin: Springer.

Millot, G. (1970). Geology of Clays: Weathering, Sedimentology, Geochemistry (R. W. Farrand & H. Paquet, Trans.). New York; Berlin: Springer.

Millot, G., Lucas, J., & Paquet, H. (1966). Evolution géochimique par dégradation et agradation des minéraux argileux dans l’hydrosphère. Geologische Rundschau, 55, 1–20. https://doi.org/10.1007/BF01982951

Nikolishin, V. P. (1969). Gipso-glinistaya shlyapa Dombrovskogo mestorozhdeniya kaliynykh soley. Trudy VNIIGalurgii, 54, 308–312. [in Russian]

Oliiovych, O., Yaremchuk, Ya., & Hryniv, S. (2004). Hlyny halohennykh vidkladiv i kory zvitriuvannia Kalush-Holynskoho rodovyshcha kaliinykh solei (miotsen, Peredkarpattia). Mineralohichnyi zbirnyk, 54(2), 214–223. [in Ukrainian]

Petrichenko, O. Y. (1988). Fiziko-khimicheskiye usloviya osadkoobrazovaniya v drevnikh solerodnykh basseynakh. Kiev: Naukova dumka. [in Russian]

Rosenberg, P. E. (2002). The nature, formation, and stability of end-member illite: a hypothesis. American Mineralogist, 87, 103–107. https://doi.org/10.2138/am-2002-0111

Rudko, H. I., & Petryshyn, V. Yu. (2017). Soliani resursy Peredkarpattia ta perspektyvy yikh vykorystannia. Kyiv; Chernivtsi: Bukrek. [in Ukrainian]

Semchuk, Ya. M. (1995). Naukovi ta metodychni osnovy okhorony heolohichnoho seredovyshcha v raionakh rozrobky kaliinykh rodovyshch (na prykladi Peredkarpattia) [Extended abstract of Doctorʼs thesis, Vasyl Stefanyk Precarpathian National University]. Ivano-Frankivsk. [in Ukrainian]

Shestopalov, M., Liutyi, H., & Sanina, I. (2019). Suchasni pidkhody do hidroheolohichnoho raionuvannia Ukrainy. Mineralni resursy Ukrainy, 2, 3–12. https://doi. org/10.31996/mru.2019.2.3-12 [in Ukrainian]

Sokolova, T. N. (1982). Autigennoye silikatnoye mineraloobrazovaniye raznykh stadiy osoloneniya. Moskva: Nauka. [in Russian]

Środoń, J. (1978). Illite group clay minerals. In G. V. Middleton, M. J. Church, M. Coniglio, L. A. Hardie & F. J. Longstaffe (Eds.), Encyclopedia of Sediments and Sedimentary Rocks (p. 115). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-3609-5

Turner, C. E., & Fishman, N. S. (1991). Jurassic Lake T’oo’dichi: a large alkaline, saline lake, Morison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103(4), 538–558. https://doi.org/10.1007/3-540-32344-9

Weaver, C. E. (1989). Developments in Sedimentology: Vol. 44. Clays, muds, and shales. Amsterdam: Elsevier.

Wójtowicz, A., Hryniv, S. P., Peryt, T. M., Bubniak, A., Bubniak, I., & Bilonizhka, P. M. (2003). K-Ar dating of the Miocene potash salts of the Carpathian Foredeep (West Ukraine): application to dating of tectonic events. Geologica Carpatica, 54(4), 243–249.

Yaremchuk, Ya. V. (2012). Zalezhnist asotsiatsii hlynystykh mineraliv neohenovykh evaporytiv Karpatskoho rehionu vid kontsentratsii rozsoliv solerodnykh baseiniv. Heolohiia i heokhimiia horiuchykh kopalyn, 160–161(3–4), 119–130. [in Ukrainian]

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974


Posted on

LITHOGENESIS OF UPPER JURASSIC DEPOSITS OF OUTER ZONE OF THE CARPATHIAN FOREDEEP

Home > Archive > No. 3–4 (191–192) 2023 > 105–121


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 105–121

https://doi.org/10.15407/ggcm2023.191-192.105

Marta MOROZ

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: martamgv69@gmail.com

Abstract

Geological- and biological-paleogeographical conditions of sedimentogenesis within the Carpathian segment of Tethys ocean during Tithonian were considered. The rock-forming organisms with calcic function (flora and fauna), which compose main lithological types of carbonate rocks were identified.

On the base of biological-paleoceanographical and lithological investigation of different genetic types of Upper Jurassic carbonate rocks of the Outer zone of the Carpathian Foredeep and analysis of literature data on modern carbonate sediments, the structural classification of Late Jurassis epipelagic sediments of the Carpathian segment of the Meso-Tethys was made. In that classification pelitic, aleuritic, psammitic and ruditic fractions of sediments were distingnished.

Geological-paleogeographical model of occurrence of the Tithonian sediments within the Carpathian segment of the Meso-Tethys (the Outer zone of the Carpathian Foredeep) was built by the author. That model presents areals of biogenic and abiogenic epipelagic sediments and depicts their facial variations.

Geological-paleogeographical study of Upper Jurassic sediment complexes of epipelagic part of the Meso-Tethys has shown that they were formed within widespread interior shelf, probably, with small inclination of the sea bottom. In Upper Jurassic there was abundant growth of the benthos with calcic function and avalanchecal sedimentation of their skeletal remains took place with forming of biogenic carbonate sediments. The coral-algae biocoenosis there were biological indicators of considered parts of Tethys region. In modern basins of the World ocean analogous processes take place at the depths of about 50 m, in temperature conditions about 23–25 °C and the salinity of the sea waters about 2.7–3.8 ‰.

The manifestations of diagenetic and katagenetic processes in the Upper Jurassic carbonate rocks of Outer zone of the Carpathian Foredeep have been investigated and their influence of the formation of the reservoir properties of rocks has been found out.

During the diagenesis, the rocks were recrystallized, micritizated and cemented. From the mineralogical point of view, the changes consisted in the transformation of primary aragonite and magnesium-calcite skeletal remains of organisms into calcite, as well as processes of dolomitization, ferruginization and silicification. At the stage of diagenesis, Fe-containing minerals ̶ glauconite and pyrite ̶ has been formed. The dolomitization of Jurassic organogenic limestones of Outer zone of the Carpathian Foredeep has been caused by the mixing of the fresh meteoric waters with buried marine pore waters in the underground phreatic zone adjacent to the ancient coastline. Silicification is a consequence of the metasomatic substitution of the carbonate substance by silicate, which has been caused by decrease of the pH occurred after dolomitization.

Katagenetic transformation of the rocks are manifested in the dissolution of the remains of organisms, grains of carbonate cement and the late cementation of pores and microfractures. Changes of carbonate rocks are associated with the bringing of certain substances in the sediment (sulphatization, celestinization) or their removal (dedolomitization, decementation). Neoplasm minerals of the katagenesis stages are represented by anhydrite and celestine.

The proceses of recrystallization of carbonate rocks at different stages of katagenesis contributed to the selective leaching of limestones and dolomites and led to formation of secondary cavities and caverns, different in shape and size. The predominance of cavities of certain types determines the type of reservoir, among which are distinguished pores, pore-caverns and joint caverns. The processes of diagenesis and katagenesis are associated with the dissolution of carbonate material, which differently affects the reservoir properties of sediments. Authigenous mineral formation, with the exception of dolomitization, impairs the reservoir properties of the Upper Jurassic carbonate rocks, and recrystallization improves.

Burial of carbonate rocks at depth contributes to the preservation and even improvement of their reservoir properties both due to dissolution and textural heterogeneity (jointing develops at the boundary of the elements of textural heterogeneity). Observations show that the most favourable in this respect are organogenic and detrital varieties of carbonate rocks. The presence of clay minerals in the composition of their cement increases the textural heterogeneity and, as a consequence, the ability to formation of joints.

Keywords

carbonate rocks, sedimentogenesis, diagenesis, katagenesis, reservoir properties, Upper Jurassic, Carpathian Foredeep

Referenses

Degens, E. T. (1967). Geokhimiya osadochnykh obrazovaniy. Moskva: Mir. [in Russian]

Dragastan, O., Gielisch, H., Richter, D.K., Grewer, T., Kaziur, T., Cube, B., & Radusch, C. (1994). Jurassic algae of the Perachora – Peninsula: Biostratigraphical and paleoecological implications. Beitrage zur palaontologie, 19, 49−80.

Garetskiy, R. G. (Ed.). (1985). Osadkonakopleniye i paleogeografiya zapada Vostochno-Evropeyskoy platformy v mezozoye. Minsk: Nauka i tekhnika. [in Russian]

Golonka, J., & Krobicki, M. (2001). Upwelling regime in the Carpathian Tethys: a Jurassic − Cretaceous paleogeographic and paleoclimatic perspective. Geologogical Quarterly, 45(1), 15–32.

Golonka, J., Ross, M. I., & Scotese, C. R. (1994). Phanerozoic paleogeographic and paleoclimatic modeling maps. In A. F. Embry, B. Beachamp & D. J. Glass (Eds.), Pangea: Global Environments and Resources: Canadian Society of Petroleum Geologists, Memoirs 17, 1–47.

Gradzinskiy, R., Kostetskaya, A., Radomskiy, A., & Unrug, R. (1980). Sedimentologiya (R. E. Meltser & N. P. Grigoryev, Trans.; N. B. Vassoyevich & M. G. Berger, Eds.). Moskva: Nedra. [in Russian]

Haczewski, G. (Ed.). (2008). Wyksztalcenie wapieni skalistych Bramy Bolechowickiej: przewodnik sesji terenowych: Pierwszy Polski Kongres Geologiczny (26–28 czerwca 2008, Krakow). Polskie Towarzystwo Geologiczne.

Havrylyshyn, V. I., & Hrab, M. V. (1996). Pro znakhidku yurskykh ryfohennykh utvoren v avtokhtoni pidnasuvu Karpat (raion Lopushna). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 125–131. [in Ukrainian]

Kaleda, G. A., & Kalistova, E. A. (1970). Perekristallizatsiya karbonatnykh porod paleozoya Russkoy platformy. Litologiya i poleznyye iskopayemyye, 6, 50–73. [in Russian]

Moroz, M. V. (2012). Litolohiia verkhnoiurskykh vidkladiv Zovnishnoi zony Peredkarpatskoho prohynu [Candidateʼs thesis]. Institute of Geology and Geochemistry of Combustible Minerals of NAS of Ukraine. Lviv. [in Ukrainian]

Sandler, Ya. M. (1969). Stratyhrafiia yurskykh vidkladiv URSR: Peredkarpattia i prylehli chastyny Ruskoi platformy. In Stratyhrafiia URSR: Vol. 7. Yura (pp. 144–163). Kyiv. [in Ukrainian]

Senkovskyi, Yu., Hryhorchuk, K., Hnidets, V., Koltun, Yu., & Popp, I. T. (2004). Heolohichna paleookeanohrafiia okeanu Tetis. Kyiv: Naukova dumka. [in Ukrainian]

Senkovskyi, Yu. M., Hryhorchuk, K. H., Koltun, Yu. V., Hnidets, V. P., Radkovets, N. Ya., Popp, I. T., Moroz, M. V., Moroz, P. V., Rever, A. O., Havryshkiv, H. Ya., Haievska, Yu. P., Kokhan, O. M., & Koshil, L. B. (2018). Litohenez osadovykh kompleksiv okeanu Tetis. Kyiv: Naukova dumka. [in Ukrainian]

Senkovskyi, Yu. M., Koltun, Yu. M., Hryhorchuk, K. H., Hnidets, V. P., Popp, I. T., & Radkovets, N. Ya. (2012). Bezkysnevi podii okeanu Tetis. Kyiv: Naukova dumka. [in Ukrainian]

Strakhov, N. M. (1962). Osnovy teorii litogeneza (Vol. 1). Moskva. [in Russian]

Uilson, Dzh. L. (1980). Karbonatnyye fatsii v geologicheskoy istorii. Moskva: Nedra. [in Russian]

Viliams, Kh., Terner, F., & Gilbert, Ch. (1985). Petrografiya (Vol. 2). Moskva: Mir. [in Russian]


Posted on

EVOLUTION OF CONDITIONS OF SEDIMENTOGENESIS IN THE CARPATHIAN FLYSCH BASIN IN THE CRETACEOUS-PALEOGENE

Home > Archive > No. 3–4 (191–192) 2023 > 86–104


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 86–104

https://doi.org/10.15407/ggcm2023.191-192.086

Ihor POPP, Halyna HAVRYSHKIV, Yulia HAIEVSKA, Petro MOROZ, Mykhailo SHAPOVALOV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, е-mail: itpopp @ukr.net

Abstract

The aim of this work is to show the evolution of geological-paleoceanographic and geochemical conditions of sedimentation in the segment of Carpathians of the Tethys Ocean. And also, selection of the basic stages of sedimentogenesis, to which the formation of oil and gas parent and oil- and gas-bearing deposits is timed.

In the article, the authors showed the lithologic-genetic classification of the Cretaceous-Paleogene flysch of the Ukrainian Carpathians. Authors distinguished the lithologic-geochemical types of sedimentation son the basis of geochemical terms of sedimentation, and also lithologic-facies types of sedimentation on the basis of features of terrigenous sedimentation.

Four stages of sedimentogenesis in the history of geological and paleoceanographic development of the Carpathian sedimentary basinare described in the article: Early Cretaceous (stage I), Late Cretaceous (stage II), Paleocene-Eocene (stage III), Oligocene-Early Miocene (stage IV), each of which has specific geochemical conditions of sedimentogenesis and diagenesis.

It is shown that forming of Cretaceous-Paleogene flysch deposits of Ukrainian Carpathians took place under action of very changeable geological-paleoceanographic and geochemical factors the joint action of that stipulated oil and gas capacity of this sedimentary complex. The thick series of psamitolites were formed in periods of avalanche terrigenous sedimentation, that are the reservoirs of hydrocarbons. Formation of bituminous parent-rocks-of-oil siliceous-clayed sedimentation is related to deceleration of processes of terrigenous sedimentation and phases of ocean anoxic events of ОАЕ-1 (Barremian–Albian) and ОАЕ-4 (Oligocene).

Keywords

Carpathian flysch basin, sedimentogenesis, flysch, geological-paleoceanographic and geochemical conditions, oil and gas potential

Referenses

Afanasyeva, I. M. (1983). Litogenez i geokhimiya flishevoy formatsii severnogo sklona Sovetskikh Karpat. Kiev: Naukova dumka. [in Russian]

Behl, R. J. (2011). Chert spheroids of the Monterey Formation, California (USA): early-diagenetic structures of bedded siliceous deposits. Sedimentology, 58, 325–351. https://doi.org/10.1111/j.1365-3091.2010.01165.x

Gabinet, M. P. (1985). Postsedimentatsionnyye preobrazovaniya flisha Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Gabinet, M. P., & Gabinet, L. M. (1991). K geokhimii organicheskogo veshchestva bituminoznykh argillitov flishevoy formatsii Karpat. Geologiya i geokhimiya goryuchikh iskopayemykh, 76, 23–31. [in Russian]

Gabinet, M. P., Kulchitskiy, Ya. O., & Matkovskiy, O. I. (1976). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat (Part 1). Lvov: Izdatelstvo Lvovskogo universiteta. [in Russian]

Gurzhiy, D. V. (1983). K voprosu o vydelenii vertikalnogo ryada geoformatsiy v Sovetskikh Karpatakh. Geologicheskiy zhurnal, 43(6), 128–129. [in Russian]

Haievska, Yu. P. (2019). Litoloho-fatsialni osoblyvosti eotsenovykh vidkladiv Boryslavsko-Pokutskoi zony Peredkarpatskoho prohynu ta peredovykh skyb Skybovoi zony Ukrainskykh Karpat u zviazku z yikh naftohazonosnistiu [Extended abstract of Candidateʼs thesis, Institute of Geology and Geochemistry of Combustible Minerals of NAS of Ukraine]. Lviv. [in Ukrainian]

Havryshkiv, H. Ya. (2019). Mineraloho-petrohrafichni osoblyvosti paleotsenovykh vidkladiv Berehovoi i Orivskoi skyb Ukrainskykh Karpat v aspekti yikh naftohazonosnosti [Extended abstract of Candidateʼs thesis, Institute of Geology and Geochemistry of Combustible Minerals of NAS of Ukraine]. Lviv. [in Ukrainian]

Hnylko, O. M. (2010). Pro sedymentatsiini protsesy formuvannia flishevykh vidkladiv Ukrainskykh Karpat. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 32‒37. https://doi.org/10.30836/igs.2522-9753.2010.146667 [in Ukrainian]

Hnylko, O., Hnylko, S., & Navarivska, K. (2021). Stratyhrafiia ta umovy nakopychennia chornoslantsevykh tovshch Ukrainskykh Karpat. Paleontolohichnyi zbirnyk, 53, 35‒54. https://doi.org/10.30970/pal.53.03 [in Ukrainian]

Jenkyns, H. C. (1980). Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137(2), 171–188. https://doi.org/10.1144/gsjgs.137.2.0171

Jenkyns, H. C. (2010). Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst., 11, Q03004. https://doi.org/10.1029/2009GC002788

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. T., Bratus, M. D., Velychko, N. Z., Harasymchuk, V. Yu., Hnylko, O. M., Danysh, V. V., Dudok, I. V., Zubko, O. S., Kaliuzhnyi, V. A., Kovalyshyn, Z. I., Koltun, Yu. V., Kopach, I. P., Krupskyi, Yu. Z., Osadchyi, V. H., Kurovets, I. M., Lyzun, S. O., Naumko, I. M., . . . Shcherba, O. S. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Koltun, Yu. V. (1993). Source rock potential of the black formation of the Ukrainian Carpathians. Acta Geologica Hungarica, 2(36), 251–261.

Kosakowski, P., Koltun, Y., Machowski, G., Poprawa, P., & Papiernik, B. (2018). The geochemical characteristics of the Oligocene – Lower Miocene Menilite Formation in the Polish and Ukranian Outer Carpathians: a review. Journal of Petroleum Geology, 41(3), 319–335. https://doi.org/10.1111/jpg.12705

Lyashkevich, Z. M., Medvedev, A. P., Krupskiy, Yu. Z. et al. (1995). Tektono-magmaticheskaya evolyutsiya Karpat. Kiev: Naukova dumka. [in Russian]

Olszewska, B., & Szydło, A. (2017). Environmental stress in the northern Tethys during the Paleogene: a review of foraminiferal and geochemical records from the Polish Outer Carpathians. Geological Quarterly, 3(61), 682‒695. https://doi.org/10.7306/gq.1369

Ozsvárt, P., Kocsis, L., Nyerges, A., Győri, O., & Pálfy, J. (2016). The Eocene-Oligocene climate transition in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 471–487. https://doi.org/10.1016/j.palaeo.2016.07.034

Panov, H. M. (1982). Vertykalnyi riad heoformatsii v Radianskykh Karpatakh. Dopovidi AN URSR. Ser. B, 7, 21–23. [in Ukrainian]

Panov, G. M. (1984). O geologicheskikh formatsiyakh Karpat i prilegayushchikh progibov. Geologicheskiy zhurnal, 44(5), 131–133. [in Russian]

Pearson, P. N., McMillan, I. K., Wade, B. S., Jones, T. D., Coxall, H. K., & Bown, P. R. (2008). Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania. Geology, 2(36), 179–182. https://doi.org/10.1130/G24308A.1

Popp, I. T. (1995). Naftomaterynski vlastyvosti bituminoznykh kremenystykh vidkladiv Ukrainskykh Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(92–93), 35–41. [in Ukrainian]

Popp, I. (2012a). Heokhemichni umovy sedymentohenezu i diiahenezu kreidovo-paleohenovykh vidkladiv Ukrainskykh Karpat. Pratsi Naukovoho tovarystva im. Shevchenka. Heolohichnyi zbirnyk, 30, 162–182. [in Ukrainian]

Popp, I. (2012b). Mineraloho-heokhimichni fatsii vidkladiv kreidovo-paleohenovoho flishu Ukrainskykh Karpat. Mineralohichnyi zbirnyk, 2(62), 206–215. [in Ukrainian]

Popp, I. T., Haiyevska, Yu. P., & Bubniak, I. M. (2022). Carbonate and siliceous rock horizons at the boundary of Eocene and Oligocene deposits in the Ukrainian Carpathians as geotourism sites. Journal of Geology, Geography and Geoecology, 31(2), 363–379. https://doi.org/10.15421/112234

Popp, I., Moroz, P., & Shapovalov, M. (2019). Litoloho-heokhimichni typy kreidovo-paleohenovykh vidkladiv Ukrainskykh Karpat ta umovy yikh formuvannia. Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 116‒133. https://doi.org/10.15407/ggcm2019.04.116 [in Ukrainian]

Popp, I. T., & Senkovskyi, Yu. M. (2003). Biohenni vuhletsvmisni sylitsyty barrem-albu i olihotsenu Ukrainskykh Karpat – svidchennia okeanichnykh bezkysnevykh podii. Chastyna 1. Petrohrafiia i stadiini peretvorennia. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 65–82. [in Ukrainian]

Popp, I. T., Senkovskyi, Yu. M., & Haievska, Yu. P. (2004a). Biohenni vuhletsvmisni sylitsyty barrem-albu i olihotsenu Ukrainskykh Karpat – svidchennia okeanichnykh bezkysnevykh podii. Chastyna 2. Paleookeanohrafichni umovy kremnenahromadzhennia. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 95–107. [in Ukrainian]

Popp, I. T., Senkovskyi, Yu. M., Haievska, Yu. P., & Semeniuk, M. V. (2004b). Heoloho-paleookeanohrafichni i heokhimichni aspekty litohenezu eotsen-olihotsenovykh vidkladiv Ukrainskykh Karpat (u konteksti problemy “oceanic anoxic events”). Heolohiia i heokhimiia horiuchykh kopalyn, 1, 41–56. [in Ukrainian]

Rauball, J. F., Sachsenhofer, R. F., Bechtel, A., Coric, S., & Gratzer, R. (2019). The Oligocene‒Miocene Menilite Formation in the Ukrainian Carpathians: a world-class source rock. Journal of Petroleum Geology, 4(42), 393‒415. https://doi.org/10.1111/jpg.12743

Schulz, H.-M., Bechtel, A., & Sachsenhofer, R. F. (2005). The birth of the Paratethys during the Early Oligocene: From Tethys to an ancient Black Sea analogue? Global and Planetary Change, 3–4, 163–176. https://doi.org/10.1016/j.gloplacha.2005.07.001

Senkovskyi Yu., Hryhorchuk K., Hnidets V., & Koltun Yu. (2004). Heolohichna paleookeanohrafiia okeanu Tetis (Karpato-Chornomorskyi sehment). Kyiv: Naukova dumka. [in Ukrainian]

Senkovskyi, Yu. M., Hryhorchuk, K. H., Koltun, Yu. V., Hnidets, V. P., Radkovets, N. Ya., Popp, I. T., Moroz, M. V., Moroz, P. V., Rever, A. O., Haievska Yu. P., Havryshkiv H. Ya., Kokhan, O. M., & Koshil L. B. (2019). Litohenez osadovykh kompleksiv okeanu Tetis. Karpato-Chornomorskyi sehment. Kyiv: Naukova dumka. [in Ukrainian]

Senkovskyi, Yu. M., Koltun, Yu. V., Hryhorchuk, K. H., Hnidets, V. P., Popp, I. T., & Radkovets, N. Ya. (2012). Bezkysnevi podii okeanu Tetis. Karpato-Chornomorskyi sehment. Kyiv: Naukova dumka. [in Ukrainian]

Shlanger, S. O., & Jenkyns, H. C. (1976). Cretaceons oceanic anoxic events couses and conseguences. Geolofie en Mijnbow, 55, 179–184.

Stupka, O., Liashkevych, Z., Ponomarova, L. ta in. (2006). Evoliutsiia Ukrainskykh Karpat i sumizhnykh oblastei z pozytsii rehionalnoi heodynamiky. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 58–75. [in Ukrainian]

Vyalov, O. S. (1971). O paleogeograficheskikh i formatsionnykh osobennostyakh Karpat i primykayushchikh progibov. Acta geolog., Acad. scient. Hungaricae, 15(1–4), 291–308. [in Russian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., Lemishko, O. D., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Smirnov, S. E., Smolinskaya, N. I., & Tsarnenko, P. N. (1988). Stratotipy melovykh i paleogenovykh otlozheniy Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Tsarnenko, P. N., & Tsizh, I. T. (1981). Istoriya geologicheskogo razvitiya Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]


Posted on

HETEROGENEITY OF LITHOGENESIS OF THE SILURIAN SEDIMENTS OF VOLYNO-PODILLYA

Home > Archive > No. 3–4 (191–192) 2023 > 74–85


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 74–85

https://doi.org/10.15407/ggcm2023.191-192.074

Volodymyr HNIDETS1, Kostjantin HRIGORCHUK2, Lina BALANDIUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1vgnidets53@gmail.com; 2kosagri@ukr.net

Abstract

The paper examines the features of the lithological-lithmological structure and the regime of catagenesis of the Silurian sediments of the Lishchynska and Rava-Ruska sections of Volyno-Podillya. It is shown that in the direction from the southwest to the northeast, the role of carbonate rocks in the composition of the stratum increases, which is connected with the established facies zonation. However, the structure of the section in these areas is different: in Rava-Ruska, it is more thinly layered. The sediments are also characterized by the spatial and age heterogeneity of the distribution of carbonate lithmites: in the first case, they tend to the boundary of the Upper and Lower and the middle of the Upper Silurian, and in the second case, they are developed in the tops of the Lower, in the lower, middle, and upper parts of the Upper Silurian. Attention is drawn to the significant role of clay and the absence of marl formations in the deposits of the Rava-Ruska-1 well, which testifies to the heterogeneity of sedimentation conditions in the mesopelagial of the Silurian basin. The cyclic nature of Silurian sedimentation is established. At the same time, four regressive episodes are recorded in the Lishchynska area, and five in Rava-Ruska, which may indicate a certain specificity of sedimentation conditions in different parts of the basin. The latter directly affects the peculiarity of the spatial-age distribution of reservoir rocks and aquifers. It is shown that the post-sedimentation transformations are mainly related to the development of authigenic silica and calcite, which is found in both clayey and carbonate rocks. A significant difference in the history of the formation of the oil and gas systems of the Lishchynska and Rava-Ruska areas has been established, which allows us to assess their prospects differently. Thus, in the first case, the generation potential of organic matter of Silurian sediments was largely exhausted by the end of the Mesozoic. In the second, large-scale processes of generation and migration of hydrocarbon fluids began only in Paleogene-Neogene time.

Keywords

Volynо-Podillya, Silurian sediments, lithological structure, cyclicity, catagenesis

Referenses

Bazhenova, T. K., & Shimanskiy, V. K. (2007). Issledovaniye ontogeneza uglevodorodnykh sistem kak osnova realnogo prognoza nefte- i gazonosnosti osadochnykh basseynov. Neftegazovaya geologiya. Teoriya i praktika, 2. http://www.ngtp.ru/rub/1/008.pdf [in Russian]

Dryhant, D. M. (2000). Nyzhnii i serednii paleozoi Volyno-Podilskoi okrainy Skhidno-Yevropeiskoi platformy ta Peredkarpatskoho prohynu. Naukovi zapysky Derzhavnoho pryrodoznavchoho muzeiu NAN Ukrainy, 15, 24–129. [in Ukrainian]

Hryhorchuk, K. H. (2010). Osoblyvosti litofliuidodynamiky eksfiltratsiinoho katahenezu. Heolohiia i heokhimiia horiuchykh kopalyn, 1, 60–68. [in Ukrainian]

Hryhorchuk, K. H. (2012). Dynamika katahenezu porid osadovykh kompleksiv naftohazonosnykh baseiniv [Extended abstract of Doctorʼs thesis, Institute of Geology and Geochemistry of Combustible Minerals of NAS of Ukraine]. Lviv. [in Ukrainian]

Ivanova, A. V. (2016). Vliyaniye geotektonicheskikh usloviy na formirovaniye uglenosnykh formatsiy Lvovskogo i Preddobrudzhinskogo progibov. Geologіchniy zhurnal, 1(354), 36–50. [in Russian]

Johnson, M. E. (2006). Relationship of Silurian sea-level fluctuations to oceanic episodes and events. GFF, 128(2), 115–121. https://doi.org/10.1080/11035890601282115

Karogodin, Yu. N. (1980). Sedimentatsionnaya tsiklichnost. Moskva: Nedra. [in Russian]

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Dryhant, D. M., Shlapinskyi, V. Ye., Koltun, Yu. V., Chepil, V. P., Kharchenko, M. V., & Kurovets, S. S. (2013). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kudelskiy, A. V. (1982). Litogenez, problemy gidrogeokhimii i energetiki neftegazonosnykh basseynov. Litologiya i poleznyye iskopayemyye, 5, 101–116. [in Russian]

Leonov, Yu. G., & Volozh, Yu. A. (Ed.). (2004). Osadochnyye basseyny: metodika izucheniya, stroyeniye i evolyutsiya. Moskva: Nauchnyy mir. [in Russian]

Senkovskyi, Yu. M., & Pavliuk, M. I. (2006). Vstanovlennia umov mihratsii i akumuliatsii pryrodnykh vuhlevodniv Pivdnia Ukrainy, vyznachennia dynamiky litohenezu ta formuvannia kolektoriv kreidy pivnichno-zakhidnoho shelfu Chornoho moria ta utochnennia perspektyv naftohazonosnosti syluriiskykh ryfiv Volyno-Podillia i Prydobrudzhia [Research report]. Lviv. [in Ukrainian]

Środon, J., Paszkowsky, M., Drygant, D., Anczkiewicz, A., & Banaś, M. (2013). Thermal history of Lower Paleozoic rocks on the Peri-Tornquist margin of the East European craton (Podolia, Ukraine) inferred from combined XRD, K-Ar and AFT data. Clays and Clay Minerals, 61(2), 107–132. https://doi.org/10.1346/CCMN.2013.0610209


Posted on

PLATE-TECTONIC GEODYNAMICS OF THE TISZA–DACIA TERRAIN, UKRAINIAN CARPATHIANS

Home > Archive > No. 3–4 (191–192) 2023 > 61–73


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 61–73

https://doi.org/10.15407/ggcm2023.191-192.061

Oleh HNYLKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: ohnilko@yahoo.com

Abstract

In the work, the knowledge about the geological structure and evolution of the Marmarosh Massif (part of the Dacia terrane or the larger Tisza–Dacia terrane) of the Ukrainian Carpathians is supplemented and summarized. The geodynamic conditions of the formation of the Marmarosh massif are reconstructed in the context of the general evolution of the folded border of the East European craton on the basis of the author’s geological observations and with taking into account previous data. Detailed geological mapping was carried out to identify some areas, the results of which are partially published on the State Geological Map of Ukraine. The Marmarosh massif of the Central Eastern Carpathians is represented by a crystalline basement, which includes pre-Hercynian and Hercynian metamorphosed complexes, and a late Paleozoic – Cenozoic cover of unmetamorphosed or weakly metamorphosed sediments. The Precambrian basement Bilyi Potik and Dilove formations are metamorphosed up to amphibolite (possibly to granulite?) facies. Vendian – Early Paleozoic volcanogenic-terrigenous and carbonate weakly metamorphosed Berlebash and Megura formations are correlated with the Tulghes Formation (Romania), that compared with the remains of an ancient accretionary prism and volcanic arc. This prism/arc could belong to the Avalonia microcontinent, which collided with Baltica in the Early Paleozoic. The collision caused the formation of the pre-Alpine Caledonian thrust structure of the Marmarosh massif basement. Paleozoic volcanogenic-sedimentary, carbonate, and terrigenous complexes (Kuzya Formation in Ukraine, and Rusaia, Repedea and Cimpoiasa formations in Romania) were accumulated in a rift basin, the closure of which caused the Hercynian tectogenesis. Late Paleozoic coal-bearing Kvasnyi Formation and red-colored Krasnyi Pleso Formation are belonged to epi-Hercynian molasse and to the cover of the Marmarosh crystalline massif.

Jurassic rifting and spreading led to the separation of the Dacia microcontinent and the formation of a (sub)oceanic basin between Dacia microcontinent and Eurasia. This basin is now marked by the Fore-Marmarosh suture zone. The dipping of the Dacia into the subduction zone, which was inclined to the west, could have caused the formation of the Marmarosh basement nappes and their thrust eastward towards the Fore-Marmarosh basin (future Carpathian flysch basin). An accretionary flysch prism grew in front of the Marmarsh nappes, a significant part of the prism sank under the Marmarosh nappes (=crystalline massif) where it could generate hydrocarbons, which allows us to support the assumption about the prospects of the under Marmarosh nappes flysch autochthon.

Keywords

Ukrainian Carpathians, Tisza–Dacia terrain, Marmarosh Massif, basement nappes

Referenses

Balla, Z. (1982). Development of the Pannonian basin basement through the Cretaceous – Cenozoic collision: a new synthesis. Tectonophysics, 88(1–2), 61–102. https://doi.org/10.1016/0040-1951(82)90203-7

Chernov, V. G. (1966). Stratotip soymulskoy svity. In Ocherki po geologii Sovetskikh Karpat (pp. 78–90). Moskva: Izdatelstvo Moskovskogo universiteta. [in Russian]

Csontos, L., Argenio, B., Doglioni, C. et al. (2006). The Carpathian-Pannonian Region: A Reviev of Mesozoic-Cenozoic Stratigraphy and Tectonics: Vol. 1. Stratigraphy; Vol. 2. Geophysics, Tectonics, Facies, Paleogeography. Budapest: Hantken Press.

Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56. https://doi.org/10.1016/j.palaeo.2004.02.033

Ebner, F.,Vozarova, A., Kovacs, S., Krautner, H.-G., Krstic, B., Szederkenyi, T., Jamicic, D., Balen, D., Belak, M., & Trajanova, M. (2008). Devonian-Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geologica Carpathica, 59(2), 159–195.

Glushko, V. V., & Kruglov, S. S. (Ed.). (1985). Geodinamika Karpat. Kiev: Naukova dumka. [in Russian]

Golonka, J. (2000). Cambrian – Neogene plate tectonic map. Krakow.

van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Matenco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D., & Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009

Hnylko, O. M. (2012). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Stattia 2. Flishovi Karpaty – davnia akretsiina pryzma. Heodynamika, 1(12), 67–78. https://doi.org/10.23939/jgd2012.01.067 [in Ukrainian]

Hnylko, O. (2023). Tectono-sedimentary evolution of the junction area between the Western and Eastern Carpathian nappe systems (Ukrainian Carpathians). In M. Krobicki (Ed.), Second Symposium of the International Geosciences IGCP 710 Project Western Tethys meets Eastern Tethys (pp. 25–26). (Geotourism/Geoturystyka, 20(1–2(72–73)). https://journals.agh.edu.pl/geotour/article/view/5792

Hnylko, O., Hnylko, S., Heneralova, L., & Tsar, M. (2021). An Oligocene olistostrome with exotic clasts in the Silesian Nappe (Outer Ukrainian Carpathians, Uzh River Basin). Geological Quarterly, 65(4), 3–20. https://doi.org/10.7306/gq.1616

Hnylko, O., Krobicki, M., Feldman-Olszewska, A., & Iwańczuk, J. (2015). Geology of the volcano-sedimentary complex of the Kamyanyi Potik Unit on Chyvchyn Mountain (Ukrainian Carpathians): preliminary results. Geological Quarterly, 59(1), 145–156. https://doi.org/10.7306/gq.1220

Krautner, H. G., & Bindea, G. (2002). Structural units in the Pre-Alpine basement of the Eastern Carpathians. Geologica Carpathica, 53, 143–146.

Konečny, V., Kováč, M., Lexa, J., & Šefara, J. (2002). Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. Stefan Mueller Special Publication Series, 1, 105–123. https://doi.org/10.5194/smsps-1-105-2002

Kováč, M., Plašienka, D., Soták, J., Vojtko, R., Oszczypko, N., Less, G., Ćosović, V., Fügenschuh, B., & Králiková, S. (2016). Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 140, 9–27. https://doi.org/10.1016/j.gloplacha.2016.03.007

Matskiv, B. V., Pukach, B. D., Vorobkanych, V. M., Pastukhanova, S. V., & Hnylko, O. M. (2009a). Derzhavna heolohichna karta Ukrainy masshtabu 1:200 000, arkushi M 34 XXXVI (Khust), L 34 VI (Baia-Mare), M 35 XXXI (Nadvirna), L 35 I (Visheu-De-Sus). Karpatska seriia. Poiasniuvalna zapyska. Kyiv: UkrDHRI. [in Ukrainian]

Matskiv, B. V., Pukach, B. D., & Hnylko, O. M. (2009b). Derzhavna heolohichna karta Ukrainy masshtabu 1:200 000, arkushi M 35 XXXI (Nadvirna), L 35 I (Visheu-De-Sus). Karpatska seriia. Heolohichna karta dochetvertynnykh utvoren. Kyiv: UkrDHRI. [in Ukrainian]

Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T. (2006). The Variscan Orogen in Poland. Geological Quarterly, 50(1), 89–118.

Munteanu, M., & Tatu, M. (2003). The East-Carpathian Crystalline-Mesozoic Zone (Romania): Paleozoic Amalgamation of Gondwana- and East European Craton-derived Terranes. Gondvana Research, 6(2), 185–196. https://doi.org/10.1016/S1342-937X(05)70969-2

Neubauer, F., & Handler, R. (2000). Variscan orogeny in the Eastern Alps and Bohemian Massif: how do these units correlate? Mitt. Osterr. Geol. Ges, 92, 35–59.

Oszczypko, N. (2006). Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50(1), 169–194.

Pavliuk, M. I.,  & Medvediev, A. P. (2004). Pankardiia: problemy evoliutsii. Lviv: Liha-Pres. [in Ukrainian]

Plašienka, D., & Soták, J. (2015). Evolution of Late Cretaceous-Palaeogene synorogenic basins in the Pieniny Klippen Belt and adjacent zones (Western Carpathians, Slovakia): Tectonic controls over a growing orogenic wedge. Annales Societatis Geologorum Poloniae, 85(1), 43–76. https://doi.org/10.14241/asgp.2015.005

Putis, M. (1992). Variscan and Alpidic nappe structures of the Western Carpathians crystalline basement. Geologica Carpathica, 43(6), 369–380.

Sandulescu, M., Krautner, H. G., Balintoni, I., Russo-Sandulescu, D., & Micu, M. (1981). The Structure of the East Carpathians (Moldavia-Maramures Area). Guide to Excursion B 1 of the XII Congress CBGA. Bucharest: Institute of geology and geophysics.

Schmid, S., Bernoull, D., Fugenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaric orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183. https://doi.org/10.1007/s00015-008-1247-3

Schmid, S. M., Fügenschuh, B., Kounov, A., Matenco, L., Nievergelt, P., Oberhansli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenovic, B., Ustaszewski, K., van Hinsbergen, D. J. J. (2020). Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78, 308–374. https://doi.org/10.1016/j.gr.2019.07.005

Tretiak, K. R., Maksymchuk, V. Yu., Kutas, R. I., Rokytianskyi, I. I., Hnylko, O. M., Kendzera, O. V., Pronyshyn, R. S., Klymkovych, T. A., Kuznietsova, V. H., Marchenko, D. O., Smirnova, O. M., Serant, O. V., Babak, V. I., Vovk, A. I., Romaniuk, V. V., & Tereshyn, A. V. (2015). Suchasna heodynamika i heofizychni polia Karpat ta sumizhnykh terytorii. Lviv: Vydavnytstvo Lvivskoi politekhniky. [in Ukrainian]

Ziegler, P. A. (1990). Geological atlas of Western and Central Europe. Avon: Geological Society Publishing House.

Zincenco, D. (1995). Chronostratigraphic scale of the pre-Permian metamorphites and granitoids from Romanian Carpathians. In XV Congress CBGA (Vol. 4, 2, pp. 647–652). Athens: Geological Society of Greece.


Posted on

CHARACTERISTICS OF THE DISTRIBUTION OF CHEMICAL ELEMENTS IN THE VERTICAL SECTION OF PEAT USING X-RAY FLUORESCENCE ANALYSIS (the Gonchary deposit, Lviv Region)

Home > Archive > No. 3–4 (191–192) 2023 > 45–60


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 45–60

https://doi.org/10.15407/ggcm2023.191-192.045

Myroslava YAKOVENKO1, Yurii KHOKHA2

Institute of Geology & Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1myroslavakoshil@ukr.net; 2khoha_yury@ukr.net

Abstract

This article discusses the features of peat analysis using X-ray fluorescence (XRF) analysis in order to study its qualitative and quantitative elemental composition, including heavy metals. The distribution of chemical elements is an indicator of various processes in geochemical and biological systems, by using of which it is possible to reproduce the conditions of accumulation of mineral deposits. This analysis is an important component of a comprehensive study of peat formation features, the environmental friendliness of peat extraction, and also for determining the suitability of peat for industrial use.

We analyzed the content of chemical elements in peat samples taken at different depths using a portable X-ray fluorescence spectrometer. The article considers the main characteristics of the spectrum of individual elements, depending on the atomic number.

In order to establish the general regularity of the distribution of 20 chemical elements in peat samples, we performed a mathematical and statistical analysis of the obtained data: calculation of the main statistical characteristics of chemical elements distribution (average, minimum and maximum values, median, variance, coefficient of variation, etc.), calculation of correlation matrices, selection of typomorphic geochemical associations of chemical elements using cluster and factor analyses. We singled out two types of factors that are decisive and influence the accumulation of chemical elements in the investigated peat: “organogenic” and “natural” (lithological), which are decisive, and a secondary factor –anthropogenic.

We compared the obtained results with the average values obtained from the results of spectral semi-quantitative analysis of peat ash samples taken at depths of 0.1–7 m in the same region. We evaluated the possibility and efficiency of using a portable X-ray fluorescence spectrometer for the analysis of the macro- and microelement composition of peats with different ash content.

It has been established that portable X-ray fluorescence analysis is a powerful tool for fast and high-quality elemental analysis of peat, and the range of its application depends on specific research goals and tasks.

Keywords

peat, X-ray fluorescence spectroscopy, XRF, microelement composition, spectrum interpretation

Referenses

Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavleniye geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (Lvovskaya oblast) [Research report]. Lvov: Fondy DP “Zakhidukrheolohiia”. [in Russian]

Kaiser, B., & Wright, A. (2008). Draft Bruker XRF spectroscopy user guide: Spectral interpretation and sources of interference. BRUKER, Madison, WI.

Shand, C. A., & Wendler, R. (2014). Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. Journal of Geochemical Exploration, 143, 31–42. https://doi.org/10.1016/j.gexplo.2014.03.005

Van Loon, L. L., McIntyre, N. S., Bauer, M., Sherry, N. S., & Banerjee, N. R. (2019). Peakaboo: Advanced software for the interpretation of X-ray fluorescence spectra from synchrotrons and other intense X-ray sources. Software Impacts, 2, 100010. https://doi.org/10.1016/j.simpa.2019.100010

Yakovenko, M. (2022). Heokhimichni osoblyvosti nahromadzhennia i mihratsii Strontsiiu v torfakh Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(187–188), 58–70. https://doi.org/10.15407/ggcm2022.01-02.058 [in Ukrainian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk of V. N. Karazin Kharkiv National University, Series “Geology. Geography. Ecology”, 56, 105–121. https://doi.org/10.26565/2410-7360-2022-56-07 [in Ukrainian]


Posted on

APPARATUS-METHODICAL COMPLEX OF THE STUDY OF PETROPHYSICAL PROPERTIES OF FRACTURED RESERVOIR ROCKS OF HYDROCARBONS

Home > Archive > No. 3–4 (191–192) 2023 > 37–44


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 37–44

https://doi.org/10.15407/ggcm2023.191-192.037

Ihor KUROVETS, Oleksandr ZUBKO, Ihor HRYTSYK, Oleksandr PRYKHODKO, Roman-Danyil KUCHER

IInstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

We have developed the apparatus-methodical complex of laboratory investigations of fractured reservoir rocks of hydrocarbons. Basing on the study of variability of acoustic properties in different-oriented directions for measuring of raw pieces of core, it was possible to develop the apparatus for the express-diagnostics of the inner structure of the rock. The results of analysis of anisotropy of acoustic properties of the core give us the possibility to choose the specimens with abnormal properties on which one can conduct further investigations for determination of the factors of heterogeneity of rocks. Measuring of the velocity of longitudinal and transverse oscillations with recording their wave pictures is conducting in the acoustic bath. The acoustic system is equipped with corresponding adapter for connection to the computer that enables us to keep up the recording of all parameters of measuring. To estimate the permeability of microfractures and the influence of composite taut state upon them we have developed the device for studying radial filtration the results of which allow us to estimate the rock permeability due to the change in the structure and microfractures size depending upon the value and the character of the taut state. To measure deformational-strength parameters the corresponding plant was developed and produced, which was additionally equipped with a meter for the measuring of deformation, that allows to measure the values of contact strength, elasticity module and the boundary of rock strength while one-axis charging. The parameters are determined at arbitrary points of the core cuts, and the velocity of charging is half-automatically regulated at a wide bounds. The device is equipped with the electron controller that allows us not only to measure the value of contact strength, but to conduct observations on a display as to the changes in deformation depending on the charging value in real time and to put down the parameters of investigations into corresponding data base. Obtained characteristic of rocks is not only parametric basis for interpretation of materials of charging, but for the estimation of the changes in volume, type of porous space and permeability, and also for modelling of formation conditions of fractured reservoir, and on the whole, for prediction of zones (plots) where a dense rock with corresponding mechanical parameters should acquire the properties of the collector. The usage of the complex for the studying of fracturing in oil geology allows us to widen the prognosis and discovery of new fields and to improve production and exploitation possibilities of already acting ones.

Keywords

apparatus-methodical complex, fractured reservoir rocks, acoustic waves, deformational-strength parameters

Referenses

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Chepil, P. M., Dryhant, D. M., Shlapinskyi, V. Ye., Koltun, Yu. V., Chepil, V. P., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kurovets, I., Zubko, O., Hrytsyk, I., Prykhodko, O., & Kucher, R.-D. (2023). Osoblyvosti formuvannia yemnisno-filtratsiinykh vlastyvostei porid-kolektoriv Vnutrishnoi zony Peredkarpatskoho prohynu. In Heofizyka i heodynamika: prohnozuvannia ta monitorynh heolohichnoho seredovyshcha: zbirnyk materialiv IX Mizhnarodnoi naukovoi konferentsii (10–12 zhovtnia 2023 r.) (pp. 109–112). Lviv. [in Ukrainian]

Kurovets, I. M., Zubko, O. S., Kit, N. O., & Hvozdevych, O. V. (2007). Prystrii dlia vyznachennia pronyknosti zrazka hirskoi porody (Deklaratsiinyi patent Ukrainy № 80551). Biuleten, 16. [in Ukrainian]

Pavliuk, M., Naumko, I., Lazaruk, Ya., Khokha, Yu., Krupskyi, Yu., Savchak, O., Rizun, B., Medvediev, A., Shlapinskyi, V., Kolodii, I., Liubchak, O., Yakovenko, M., Ternavskyi, M., Hryvniak, H., Triska, N., Seniv, O., & Huzarska, L. (2022). Rezerv naftohazovydobutku Zakhidnoho rehionu Ukrainy (Digital ed.). Lviv. http://iggcm.org.ua/wp-content/uploads/2015/10/РЕЗЕРВ-НАФТОГАЗОВИДОБУТКУ-ЗАХІДНОГО-РЕГІОНУ-УКРАЇНИ.pdf [in Ukrainian]

Zubko, A. S. (1989). Nekotoryye osobennosti metodiki laboratornogo opredeleniya vodonasyshchennosti porod-kollektorov. In Geofizicheskaya diagnostika neftegazonosnykh i uglenosnykh razrezov: sbornik nauchnykh trudov AN USSR (pp. 103–113). Kiev: Naukova dumka. [in Russian]

Zubko, A. S., & Sheremeta, O. V. (1988). Razrabotka universalnoy ustanovki vysokogo davleniya UVD-500 i metodika izucheniya petrofizicheskikh svoystv gornykh porod dlya usloviy. modeliruyushchikh plastovyye [Research report]. Lvov: Fondy IGGGI AN USSR. [in Russian]


Posted on

ASSESSMENT OF THE DYNAMICS OF WATER-OIL CONTACTS AND ESTABLISHMENT OF EFFECTIVE THICKNESSES ACCORDING TO THE RESULTS OF COMPREHENSIVE GEOPHYSICAL RESEARCH

Home > Archive > No. 3–4 (191–192) 2023 > 31–36


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 31–36

https://doi.org/10.15407/ggcm2023.191-192.031

Dmytro FEDORYSHYN1, Ihor MYKHAILOVSKYI2, Serhii FEDORYSHYN3, Oleksandr TRUBENKO4

1, 3, 4 Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
2 LLC “BURPROEKT”, Lviv, Ukraine
e-mail: 1dmytro.fedoryshyn@nung.edu.ua; 2burproekt@ukr.net; 3serhii.fedoryshyn@nung.edu.ua; 4geotom@nung.edu.ua

Abstract

The purpose of the work is to assess the reliability of the results of geological and geophysical studies of complex-constructed Neogene deposits by electrical methods and to develop optimally reliable approaches to the selection of hydrocarbon-saturated rocks with an assessment of their reservoir parameters. In addition, to establish the factors that affect the ambiguity of geological and geophysical conclusions in the process of research of complex lithological and stratigraphic strata, which ultimately causes the omission of reservoir rocks saturated with hydrocarbons. The obtained experimental results of the research of the core material taken from the wells of the adjacent gas condensate fields made it possible to identify the main factors and parameters that determine the filtration-capacity parameters of Neogene deposits. Based on the above, there is a need to substantiate and develop methodological aspects of the use of electrical methods to determine the nature of reservoir rock saturation and to determine the dynamics of water-gas-condensate contacts. The subject of research is the electrical parameters of water- and gas-saturated reservoir rocks. In addition, the substantiation of the effect of pressure and temperature on the performance of electrical methods in the process of researching complex-constructed Neogene reservoir rocks and the peculiarities of the dynamics of changes in water-oil and gas-water contacts. The decrease in oil and gas production from complex geological sections is due to both economic and technological factors that arise in the process of researching the lithological and stratigraphic strata of the Bilche-Volytsa zone. The geological structure of the above-mentioned territories is extremely complex and represents, in particular in the Bilche-Volitsa zone, a classically expressed wing of the platform type, weakly dislocated by upper Miocene molasses.

Keywords

geophysical studies of monomictic and polymictic reservoir rocks of complex structure, gamma spectrometry, litho-stratigraphic section, clay content, water saturation, porosity, resistivity

Referenses

Catuneanu, O. (2006). Principles of sequence stratigraphy. Amsterdam: Elsevier.

Fedoryshyn, D. D. (1999). Teoretyko-eksperymentalni osnovy petrofizychnoi ta heofizychnoi diahnostyky tonkoprosharkovykh porid-kolektoriv nafty i hazu (na prykladi Karpatskoi naftohazonosnoi provintsii) [Doctorʼs thesis]. Lviv. [in Ukrainian]

Fedoryshyn, D. D., Trubenko, O. M., Fedoryshyn, S. D., Ftemov, Ya. M., & Koval Ya. M. (2016). Perspektyvy yaderno-fizychnykh metodiv pid chas vydilennia hazonasychenykh porid-kolektoriv skladnopobudovanykh neohenovykh vidkladiv. Heodynamika, 2, 134–143. https://doi.org/10.23939/jgd2016.02.134 [in Ukrainian]

Fedyshyn, V. O. (2005). Nyzkoporysti porody-kolektory hazu promyslovoho pryznachennia. Kyiv: UkrDHRI. [in Ukrainian]

Honarpour, M. M., Nagarajan, N. R., & Sampath, K. (2006). Rock/fluid characterization and their integration – Implications on reservoir management. Journal of Petroleum Technology, 58(9), 120–130. https://doi.org/10.2118/103358-JPT

Khomyn, V., Tsomko, V., Hoptarova, N., Bronitska, N., & Trubenko, A. (2019). Heoloho-promyslovi osoblyvosti rozkryttia ta vyprobuvannia slabopronyknykh hazonasychenykh vidkladiv. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiia, 1(84), 42–48. https://doi.org/10.17721/1728-2713.84.06 [in Ukrainian]

Krupskyi, Yu. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]

Larsen, J. K., & Fabricius, I. L. (2004). Interpretation of water saturation above the transitional zone in chalk reservoirs. SPE Reservoir Evaluation and Engineering, 7(2), 155–163. https://doi.org/10.2118/69685-PA

Lazaruk, Ya., Zaiats, Kh., & Pobihun, I. (2013). Hravitatsiinyi tektohenez Bilche-Volytskoi zony Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(162–163), 5–16. [in Ukrainian]

Miall, A. D. (2006). The geology of fluvial deposits. Sedimentory facies, basin analysis, and petroleum geology. Springer.

Pavliukh, O. (2009). Osoblyvosti heolohichnoi budovy ta formuvannia pokladiv hazu v Zovnishnii zoni Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(148–149), 31–43. http://dspace.nbuv.gov.ua/handle/123456789/58960 [in Ukrainian]

Prokopiv, V. Y., & Fedoryshyn, D. D. (2003). Otsinka heoloho-heofizychnykh neodnoridnostei pry doslidzhenniakh skladnopobudovanykh porid-kolektoriv. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 2(7), 28–34. http://elar.nung.edu.ua/handle/123456789/6307 [in Ukrainian]

Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-87813-8

Trubenko, O. M., Fedoryshyn, D. D., Artym, I. V., Fedoryshyn, S. D., & Fedoryshyn, D. S. (2021). Geophysical interpretation methods’ improvement of Bilche-Volytska zone of Pre-carpathian foredeep complex geological cross-sections’ comprehensive research results. Prospecting and Development of Oil and Gas Fields, 4(81), 33–40. https://doi.org/10.31471/1993-9973-2021-4(81)-33-40

Zaiats, Kh. (2013). Hlybynna budova nadr Zakhidnoho rehionu Ukrainy na osnovi seismichnykh doslidzhen i napriamky poshukovykh robit na naftu ta haz. Lviv: Tsentr Yevropy. [in Ukrainian]

Zaiats, Kh., & Havrylko, V.  (2007). Porivnialna kharakterystyka heolohichnoi budovy ta seismichnoi informatsii rodovyshch Lopushna (Ukraina) ta Lonkta (Polshcha). Heolohiia i heokhimiia horiuchykh kopalyn, 4, 55–62. [in Ukrainian]


Posted on

LITHOLOGICAL AND GEOCHEMICAL CHARACTERISTICS OF THE MIDDLE DEVONIAN STRATA OF THE LVIV DEPRESSION IN THE ASPECT OF THEIR OIL AND GAS BEARING PROSPECTS

Home > Archive > No. 3–4 (191–192) 2023 > 20–30


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 20–30

https://doi.org/10.15407/ggcm2023.191-192.020

Natalia RADKOVETS, Yuriy KOLTUN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: radkov_n@ukr.net

Abstract

The Middle Devonian deposits within the Lviv Depression of the Volyn-Podillya plate are largely underexplored and are of great interest for further exploration for hydrocarbons. The presence of two discovered gas fields and the occurrence of granular and fractured reservoir rocks within the entire Lviv Depression point that the deposits of this age range are prospective for further exploration works for hydrocarbons. The authors conducted mineralogical and petrographic studies of these strata in order to study different types of reservoir rocks.

Petrographic studies of terrigenous rocks showed that the reservoir rocks are composed of fine-grained and medium-grained sandstones, as well as fine-grained and coarse-grained siltstones. The matrix in these rocks is contact-porous and contact, composed of dolomitized calcite (4–19 %) and hydromica (3–13 %). Regardless of the type of matrix, the pore space in rocks is formed by intergranular spaces of 0.05 to 0.5 mm size. Siltstone-sandstone deposits represent the granular-type reservoir rocks, the filtration properties of which are formed by the intergranular space, while fractures are of subordinate importance. Terrigenous rocks form gas-bearing horizons in Middle Devonian (Eiffelian and Zhivetian) in the Lokachi field of the Lviv Depression. Carbonate rocks are represented by a wide range of lithological types from slightly dolomitized biodetrital limestones to secondary dolomites. Dolomitization and recrystallization form fracture-like microcaverns with a size of up to 0.5 mm and result in a high porosity of up to 9 %. In carbonate reservoir rocks fracturing is prevailing, while porosity has a subordinate value.

Studies of the molecular composition of natural gases from reservoir rocks of the Middle Devonian of the Lokachi field showed that their predominant component is methane. Its content is 92.7–95.4 vol %. The rest of the methane homologues account for 1.45–2.16 vol %. The total share of non-hydrocarbon gases – nitrogen, carbon dioxide, helium and hydrogen are 3.102–5.082 vol %.

In order to clarify the origin of the Middle Devonian gases of the Lviv Depression, further studies of the carbon, nitrogen, and hydrogen isotopic composition of these gases and the study of the generation properties of the Lower and Middle Devonian rocks of the studied region are necessary.

Keywords

Lviv Depression, Middle Devonian, reservoir rocks, mineralogical and petrographic composition of rocks, molecular composition of gases

Referenses

Chebanenko, I. I., Vishnyakov, I. B., Vlasov, B. I., & Volovnik, B. Ya. (1990). Geotektonika Volyno-Podolii. Kiev: Naukova dumka. [in Russian]

Fedyshyn, V. O. (Ed.). (1998). Atlas rodovyshch nafty i hazu Ukrainy: Vol. 4. Zakhidnyi naftohazonosnyi rehion. Lviv: Tsentr Yevropy. [in Ukrainian]

Kiessling, W., Flügel, E., & Golonka, J. (2003). Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36(3), 195–226. https://doi.org/10.1080/00241160310004648

Krupskyi, Yu. Z. (2001). Heodynamichni umovy formuvannia i naftohazonosnist Karpatskoho ta Volyno-Podilskoho rehioniv Ukrainy. Kyiv: UkrDHRI. [in Ukrainian]

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Pomyanovskaya, G. M. (1974). Stratigrafiya devona Volyno-Podolskoy okrainy Vostochno-Evropeyskoy platformy. In Stratigrafiya USSR: Devon (pp. 7–14. 36–83). Kiev: Naukova dumka. [in Russian]

Radkovets, N., & Koltun, Y. (2022). Dynamics of sedimentation within the southwestern slope of the East European Platform in the Silurian-Early Devonian. Geodynamics, 1(32), 36–48. https://doi.org/10.23939/jgd2022.02.036

Radkovets, N., Kotarba, M., & Wójcik, K. (2017). Source rock geochemistry, petrography of reservoir horizons and origin of natural gas in the Devonian of the Lublin and Lviv basins (SE Poland and western Ukraine). Geological Quarterly, 61(3), 569–589. https://doi.org/10.7306/gq.1361

Rizun, B. P., Medvedev, A. P., & Chizh, E. I. (1976). Formatsii osadochnogo chekhla Volyno-Podolia. Litologiya i poleznyye iskopayemyye, 3, 85–92. [in Russian]

Rizun, B. P., & Chizh, E. I. (1980). Perspektivy neftegazonosnosti Volyno-Podolskoy plity. In Geologiya i neftegazonosnost Volyno-Podolskoy plity (pp. 79–99). Kiev: Naukova dumka. [in Russian]


Posted on

OPTIMIZATION DIRECTIONS OF EXPLORATION AND DEVELOPMENT OF OIL FIELDS OF THE WESTERN FORE-BLACK SEA AREA OF UKRAINE

Home > Archive > No. 3–4 (191–192) 2023 > 7–19


Geology & Geochemistry of Combustible Minerals No. 3–4 (191–192) 2023, 7–19

https://doi.org/10.15407/ggcm2023.191-192.007

Yaroslav LAZARUK, Myroslav PAVLYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The southern part of the Dobrogea Foredeep is located in the southwestern regions of Ukraine within the Odesa region. Here, on the territory of the uplifted Bilolissya block, the East Sarata, Zhovtyjar, Saryjar, Zarichna oil accumulations are located in the chemogenic-carbonate layer of the Middle and Upper Devonian. The deposits are confined to limestones and dolomites with secondary fractured-cavernous-porous reservoirs. They lie at depths of 2500–3200 m. During the test of two dozen wells, the filtrate of the drilling fluid with a small amount of oil was received with the estimated flow rates of several tons per day. The rise of the oil level in the wells was quickly stopped, the hydrodynamic connection of the wells with the productive formations was lost. The use of today’s known methods of intensification of the flow of hydrocarbon fluids did not lead to positive results. According to the research of microphotographs of reservoir rocks, it is proved that the largest voids of reservoir rocks are filled with immobile bitumen, while the smaller cavities contain mobile oil. Immobile bitumen fills main channels and blocks communication between rock cavities. This is the main reason for the absence of industrial inflows of oil to the wells. Another important reason is the low filtering properties of the collectors. Most of them have a permeability of less than 0.01∙μD. Other reasons for the failure of the industrial development of oil deposits are the high dynamic viscosity of oil due to the high content of asphaltenes, silicagel resins, paraffins, the low energy potential of oil deposits due to their degassing during the long geological time, as well as the lack of hydrodynamic connection of oil deposits with natural water pressure systems. We assume that the Middle and Upper Devonian oil fields of the Western Fore-Black Sea area are most likely mainly bituminous. Given the significant depths of the deposits, their industrial development is technically impossible today. Therefore, it is impractical to plan further scientific research on the mentioned complex. Instead, research should be reoriented to the Silurian terrigenous-carbonate complex and the Lower Devonian terrigenous complex, which are hydrodynamically more closed and in which non-degassed hydrocarbon accumulations can be preserved.

Keywords

oil, bitumen, deposit, oil traps, carbonate reservoir, terrigenous complex, hydrocarbon reserves, exploration and development of deposits

Referenses

Hnidets, V. P., Hryhorchuk, K. H., Polukhtovych, B. M., & Fedyshyn, V. O. (2003). Litohenez devonskykh vidkladiv Prydobrudzkoho prohynu (paleookeanohrafiia, sedymentatsiina tsyklichnist, formuvannia porid-kolektoriv). Kyiv: UkrDHRI. [in Ukrainian]

Lazaruk, Ya. H., Melnyk, A. Yu., Vasylyna, R. M., & Sheremet, B. B. (2017a). Heoloho-ekonomichna otsinka Skhidnosaratskoho naftovoho rodovyshcha Odeskoi oblasti [Research report]. Kyiv: PrAT NVK “Ukrnaftinvest”. [in Ukrainian]

Lazaruk, Ya. H., Melnyk, A. Yu., Vasylyna, R. M., & Sheremet, B. B. (2017b). Heoloho-ekonomichna otsinka Zhovtoiarskoho naftovoho rodovyshcha Odeskoi oblasti [Research report]. Kyiv: PrAT NVK “Ukrnaftinvest”. [in Ukrainian]

Pavliuk, M. I. (2014). Heodynamichna evoliutsiia ta naftohazonosnist Azovo-Chornomorskoho i Barentsovomorskoho perykontynentalnykh shelfiv. Lviv: Proman. [in Ukrainian]

Serhii, H. B., & Postnikova, N. M. (2014). Utochnennia heolohichnoi budovy perspektyvnykh vidkladiv Biloliskoho bloka Pereddobrudzkoho prohynu na osnovi pohlyblenoi obrobky ta interpretatsii danykh seismorozvidky [Research report]. Kyiv: PrAT NVK “Ukrnaftinvest”. [in Ukrainian]

Trokhymenko, H. L. (2013). Osoblyvosti pryrodnykh rezervuariv vuhlevodniv u potuzhnykh karbonatnykh kompleksakh. Geologiya i poleznyye iskopayemyye Mirovogo okeana, 4, 46–62. [in Ukrainian]