Posted on

DYNAMICS OF LITHOGENESIS OF PHANEROZOIC SEDIMENTARY SEQUENCE OF THE CARPATHIAN-BLACK SEA REGION IN THE ASPECT OF THEIR OIL- AND GAS-BEARING POTENTIAL

Home > Archive > No. 1–2 (183–184) 2021 > 60–75


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 60–75.

https://doi.org/10.15407/ggcm2021.01-02.060

Nataliya RADKOVETS, Kostyantyn HRYGORCHUK, Yuriy KOLTUN, Volodymyr HNIDETS, Ihor POPP, Marta MOROZ, Yuliya HAYEVSKA, Halyna HAVRYSHKIV, Oksana KOKHAN, Oksana CHEREMISSKA, Petro MOROZ, Lesya KOSHIL, Lina BALANDYUK, Mykhaylo SHAPOVALOV, Anastasiya REVER

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: radkov_n@ukr.net

Abstract

The objective of this work was to study the environments and processes of ancient sedimentation in the epi- and mesopelagic basins of the Carpathian-Black Sea region and to clarify the conditions of oil and gas basins formation within the study region as well as the main aspects of hydrocarbon generation.

The burial history of the basins, some aspects of their fluid regime, issues of lithogenetic record, features of transformation of sedimentary basins into the rock-formation basins and the development of the latter during the Phanerozoic are considered. The spatial and temporal peculiarities of the evolution of epi-mesopelogic systems and their influence on the formation of oil- and gas-bearing strata within the Carpathian-Black Sea region have been studied.

It has been established that in the sedimentary basins of the Carpathian-Black Sea continental margin of the Tethys Ocean during the long geological history the different intensity structural and morphological changes took place: changes of the subsidence rate of the basin bottom, inversion uplifts, sedimentation pauses, deformation of the sedimentary fill. This was reflected both in the peculiarities of the development of sedimentary environments and in the processes of substance differentiation with the formation of certain post-sedimentary mineral-structural parageneses. It was proved that discrete processes of differentiated compaction and defluidization of sediments cause a number of deformation phenomena, which can be reflected in the features of the morphology of the sedimentary basin bottom, influencing the nature of sediment transportation and accumulation. On the basis of the conducted investigations a number of practical results were obtained which will allow forming new approaches to criteria of hydrocarbons prospecting, in particular the lithophysical aspect which is concentrated on the reservoir properties of rocks; sedimentary reconstructions and the diversity of cyclicity of the studied sediments as a factor of the establishment of prospective areas, reconstruction of the burial history, which provides an information on the state of transformation of organic matter and hydrocarbons, and therefore the range of prospective depths for oil and gas occurrence.

Keywords

geological paleoceanography, sedimentary-rock basins, Tethys Ocean, sedimento-lithogenesis, black shale strata, oil and gas bearing.

Referenses

Gabinet, M. P. (1985). Postsedimentatsionnye preobrazovaniya flisha Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Hnidets, V. P., Hryhorchuk, K. H., Koshil, L. B., Tsizh, N. V., & Yakovenko, M. B. (2016). Litoloho-fatsialna zonalnist ta litmolohichna struktura eifelskykh vidkladiv Pereddobrudzkoho prohynu. Heodynamika, 1(20), 50–62. https://doi.org/10.23939/jgd2016.01.050 [in Ukrainian]

Karpenchuk, Yu. R., Zhabina, N. M., & Anikeieva, O. V. (2006). Osoblyvosti budovy i perspektyvy naftohazonosnosti verkhnoiurskykh ryfohennykh kompleksiv Bilche-Volytskoi (Zovnishnoi) zony Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 44–52. [in Ukrainian]

Khain, V. E., & Sokolov, B. A. (1984). Okrainy kontinentov – glavnye neftegazonosnye zony Zemli. Sovremennaya geologiya, 7, 49–60. [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. T., Bratus, M. D., Velychko, N. Z., Harasymchuk, V. Yu., Hnylko, O. M., Danysh, V. V., Dudok, I. V., Zubko, O. S., Kaliuzhnyi, V. A., Kovalyshyn, Z. I., Koltun, Yu. V., Kopach, I. P., Krupskyi, Yu. Z., Osadchyi, V. H., Kurovets, I. M., Lyzun, S. O., Naumko, I. M., . . . Shcherba, O. S. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Koltun, Y. V. (1993). Source rock potential of the black shale formations of the Ukrainian Carpathians. Acta Geologica Hungarica, 36(2), 251–261.

Koltun, Y., Espitalie, J., Kotarba, M., Roure, F., Ellouz, N., & Kosakovski, P. (1998). Petroleum generation in the Ukrainian External Carpathians and the adjacent foreland. Journal of Petroleum Geology, 21(3), 265–288. https://doi.org/10.1111/j.1747-5457.1998.tb00782.x

Konyukhov, A. I. (2009). Mirovoi okean i global’nye poyasa neftegazonakopleniya. In Geologiya morei i okeanov: materialy XVIII Mezhdunarodnoi nauchnoi konferentsii (Shkoly) po morskoi geologii (Vol. 2, pp. 61–65). Moskva: GEOS. [in Russian]

Kotarba, М., Więcław, В., Bilkiewicz, E., Radkovets, N., Koltun, Y., Kmiecik, N., Romanowski, T., & Kowalski, A. (2019). Origin of oil and natural gas and influence of secondary processes in the western part of the Ukrainian Outer Carpathians: geochemical and geological approach. Marine and Petroleum Geology, 103, 596–619. https://doi.org/10.1016/j.marpetgeo.2019.02.018

Kotarba, М., Więcław, D., Bilkiewicz, E., Radkovets, N., Koltun, Y., Kowalski, A., Kmiecik, N., & Romanowski, T. (2020). Origin and migration of oil and natural gas in the central part of the Ukrainian outer Carpathians. AAPG Bulletin, 104(6), 1323–1356. https://doi.org/10.1306/01222018165

Popp, I. T. (2005). Okremi aspekty problemy litohenezu naftohazonosnykh vidkladiv kreidovo-paleohenovoho flishovoho kompleksu Peredkarpatskoho prohynu ta Ukrainskykh Karpat. Chastyna 1. Sedymentohenez i postsedymentatsiini peretvorennia. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 43–59. [in Ukrainian]

Radkovets, N. (2016). Rannokreidovyi bezkysnevyi sedymentohenez v mezhakh Karpatskoho sehmentu Mezotetysu. Mineralohichnyi zbirnyk, 66(2), 100–111. [in Ukrainian]

Reding, X. G., Kollinson, D. D., Allen, F. A., Elliott, T., Shreiber, B. Sh., Dzhonson, G. D., & Bolduin, K. T. (1990). Obstanovki osadkonakopleniya i fatsii. Moskva: Mir. [in Russian]

Senkovsky, Y. M., Grigorchuk, K. G., Gnidets, V. P., Koltun, Y. V., Popp, I. T., & Radkovets, N. Y. (2015). Geological and chemical-paleooceanographic aspects of sedimentogenesis of the Сarpathian-Black Sea Segment of Tethys ocean. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 7, 46–51. https://doi.org/10.30836/igs.2522-9753.2015.145261

Senkovskyi, Yu. M., Hryhorchuk, K. H., Koltun, Yu. V., Hnidets, V. P., Radkovets, N. Ya., Popp, I. T., Moroz, M. V., Moroz, P. V., Rever, A. O., Haievska, Yu. P., Havryshkiv, H. Ya., Kokhan, O. M., & Koshil, L. B. (2018). Litohenez osadovykh kompleksiv okeanu Tetis. Karpato-Chornomorskyi sehment. Kyiv: Naukova dumka. [in Ukrainian]

Senkovskyi, Yu. M., Koltun, Yu. V., Hryhorchuk, K. H., Hnidets, V. P., Popp, I. T., & Radkovets, N. Ya. (2012). Bezkysnevi podii okeanu Tetis. Karpato-Chornomorskyi sehment. Kyiv: Naukova dumka. [in Ukrainian]

Skachedub, Ye. O. (1998). Umovy osadkonahromadzhennia i naftohazonosnist serednodevonsko-nyzhnokamianovuhilnoi evaporytovoi formatsii Pereddobrudzkoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 1(102), 41–52. [in Ukrainian]

Taninskaya, N. V. (2015). Sedimentologicheskie kriterii prognoza kollektorov v sredneordoviksko-nizhnedevonskikh otlozheniyakh Timano-Pechorskoi provintsii. Neftegazovaya geologiya. Teoriya i praktika, 5(4), 1–29. [in Russian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Smirnov, S. S., Tsarnenko, P. N., Lemishko, O. D., & Tsizh, I. T. (1988). Stratotipy melovykh i paleogenovykh otlozhenii Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Vyalov, O. S., Gavura, S. P., Danysh, V. V., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Tsarnenko, P. N., & Tsizh, I. T. (1981). Istoriya geologicheskogo razvitiya Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]


Posted on

SUBSTANDARD CARBON-CONTAINING RAW MATERIALS AND METHODS OF THEIR THERMOCHEMICAL PROCESSING

Home > Archive > No. 1–2 (183–184) 2021 > 89–109


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 89–109.

https://doi.org/10.15407/ggcm2021.01-02.089

Dmytro BRYK, Myroslav PODOLSKYY, Yury KHOKHA, Oleksandr LYUBCHAK, Lesia KULCHYTSKA-ZHYHAYLO, Oleh GVOZDEVYCH

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: cencon@ukr.net

Abstract

The analysis of the structure of consumption of primary energy resources in the world and in Ukraine are carried out. It is shown that in recent decades the share of coal is stable at 25–30 % and does not show a tendency to decrease. Similar patterns are observed in Ukraine too. It is established that in Ukraine the energy potential of reserves of substandard carbon-containing raw materials is commensurate with the deposits of conditioned coal and can be used to increase the country’s energy security. At the same time, the deterioration of environmental indicators in the world and in Ukraine requires an increase in the level of environmental safety in the use of carbon-containing raw materials and appropriate environmental modernization of its thermochemical conversion methods.

The paper reviews the methods of thermochemical processing of substandard carbon-containing raw materials (pyrolysis and coking, hydrogenation, gasification) and shows that the gasification process, which allows processing of various substandard fuel resources in terrestrial and underground conditions, is the most promising for environmental safety use. It is shown that developed terrestrial gasification methods are characterized by insufficient productivity of gas generators, significant capital costs for their installation and negative impact on the environment. In addition, terrestrial processing of low-quality coal is not a waste-free technology and does not solve the problem of “secondary” gasification residues recycling . Some of these shortcomings can be eliminated by using the method of underground gasification, in which there is no need to extract coal to the surface, and secondary waste remains underground.

Keywords

energy resources, carbon-containing raw materials, coal, environmental conversion.

Referenses

Biletskyi, V. (2003). Problemy pererobky solonoho vuhillia. Pratsi Naukovoho tovarystva imeni Shevchenka. Khemiia i biokhimiia, 10, 205–227. [in Ukrainian]

Bryk, D. V. (2015). Nekondytsiini horiuchi kopalyny Ukrainy ta perspektyvy yikh zaluchennia dlia enerhetychnykh potreb. In Netradytsiini i ponovliuvalni dzherela enerhii yak alternatyvni pervynnym dzherelam enerhii v rehioni: zbirnyk naukovykh statei VIII Mizhnarodnoi naukovo-praktychnoi konferentsii (pp. 73–78). Lviv: LvTsNTEI. [in Ukrainian]

Bryk, D. V., Hvozdevych, O. V., & Kulchytska-Zhyhailo, L. Z. (2013). Heotekhnolohiia spaliuvannia vuhilnykh blokiv vidpratsovanykh shakht dlia otrymannia teplovoi enerhii. Uglekhimicheskii zhurnal, 1–2, 73–78. [in Ukrainian]

Bryk, D., Hvozdevych, O., Kulchytska-Zhyhailo, L., & Podolskyi, M. (2019). Tekhnohenni vuhlevmisni obiekty Chervonohradskoho hirnychopromyslovoho raionu ta deiaki tekhnichni rishennia yikhnoho vykorystannia. Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 45–65. https://doi.org/10.15407/ggcm2019.04.045 [in Ukrainian]

Bryk, D., Makitra, R., & Kalmuk, S. (2008). Vplyv svitovoi enerhetychnoi kryzy na perspektyvy protsesu hazyfikatsii vuhillia. Pratsi Naukovoho tovarystva imeni Shevchenka. Khemiia i heokhimiia, 21, 198–211. [in Ukrainian]

Bryk, D. V., Pavliuk, M. I., & Makitra, R. H. (2006). Syntetychne palyvo z vuhillia perspektyvnyi zaminnyk nafty i pryrodnoho hazu. Uglekhimicheskii zhurnal, 3–4, 3–9. [in Ukrainian]

Bryk, D. V., Podolskyi, M. R., & Hvozdevych, O. V. (2014). Fizyko-tekhnichne obgruntuvannia vyrobnytstva syntetychnoho palyva z vuhillia (na prykladi Lvivsko-Volynskoho baseinu). Uglekhimicheskii zhurnal, 4, 69–74. [in Ukrainian]

Bryk, D. V., & Stefanyk, Yu. V. (2010). Hazyfikatsiia nekondytsiinoho vuhillia Lvivsko-Volynskoho baseinu. Uglekhimicheskii zhurnal, 1–2, 20–32. [in Ukrainian]

Duncan, W. (1981). Oil: an interlude in a century of coal. Chemistry and Industry, 9, 311–316.

Fal’be, Yu. M. (Ed.). (1980). Khimicheskie veshchestva iz uglya. Moskva: Khimiya. [in Russian]

Falshtynskyi, V. S., Dychkovskyi, R. O., & Tabachenko, M. M. (2010). Novitnia tekhnolohiia rozrobky vuhilnykh plastiv na bazi sverdlovynnoi hazyfikatsii. Ugol’ Ukrainy, 1, 10–13. [in Ukrainian]

Ion, D. S. (1984). Mirovye energeticheskie resursy. Moskva: Nedra. [in Russian]

Ivanova, A. V., & Krivega, T. A. (1985). Solenye ugli Zapadnogo Donbassa. Kiev: Naukova dumka. [in Russian]

Ivanova, A. V., & Zaitseva, L. B. (1982). Problema genezisa solenykh uglei Zapadnogo Donbassa. Kiev: Naukova dumka. [in Russian]

Ivantsiv, O. Ye., Kukhar, Z. Ya., & Bryk, D. V. (2001). Novi pidkhody do perspektyv pidzemnoi hazyfikatsii vuhilnykh rodovyshch Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 129–134. [in Ukrainian]

Ivantsiv, O. Ye., Lyzun, O. S., & Kukhar, Z. Ya. (1999). Heoloho-ekolohichni ta sotsialni problemy Lvivsko-Volynskoho kamianovuhilnoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 20–28. [in Ukrainian]

Koval’chuk, N. R. (1985). Otsenka toplivnykh resursov menilitovykh slantsev Karpat i puti ikh perevoda v konditsionnye zapasy. In Geotekhnologicheskie problemy toplivno-energeticheskikh resursov Ukrainy: sbornik nauchnykh trudov (pp. 122–131). Kiev. [in Russian]

Kreinin, E. V., & Zorya, A. Yu. (2009). Problemy podzemnoi gazifikatsii uglei. Khimiya tverdogo topliva, 4, 24–28. [in Russian]

Kurovets, I. M., Mykhailov, V. A., Zeikan, O. Yu., Krupskyi, Yu. Z., Hladun, V. V., Chepil, P. M., Hulii, V. M., Kurovets, S. S., Kasianchuk, S. V., Hrytsyk, I. I., & Naumko, I. M. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 1. Netradytsiini dzherela vuhlevodniv: ohliad problemy. Kyiv: Nika-tsentr. [in Ukrainian]

Maistrenko, A. Yu., Dudnik, A. N., & Yatskevich, S. V. (1998). Tekhnologii gazifikatsii uglei dlya parogazovykh ustanovok. Kiev: Znanie. [in Russian]

Makitra, R. H., Midiana, H. H., & Bryk, D. V. (2013). Perspektyvy oderzhannia syntetychnoho ridkoho palyva shliakhom sumisnoho pirolizu vuhillia z vidpadamy polimeriv. Uhlekhymycheskyi zhurnal, 3–4, 84–87. [in Ukrainian]

Ministerstvo enerhetyky Ukrainy. (2020). Informatsiina dovidka pro osnovni pokaznyky rozvytku haluzei palyvno-enerhetychnoho kompleksu Ukrainy za hruden ta 2019 rik. Retrieved 01.03.2021 from http://mpe.kmu.gov.ua/minugol/control/uk/publish/article?art_id=245436840&cat_id=35081 [in Ukrainian]

Mykhailov, V. A., Zeikan, O. Yu., Koval, A. M., Zahnitko, V. M., Hurov, Ye. P., Vyzhva, S. A., Shniukov, Ye. F., Naumko, I. M., Chepil, P. M., Kozhushok, O. D., Radchenko, V. V., & Bezrodnyi, D. A. (2013). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 7. Metan vuhilnykh rodovyshch, hazohidraty, impaktni struktury i nakladeni zapadyny Ukrainskoho shchyta. Kyiv: Nika-tsentr. [in Ukrainian]

Mysak, Y. S., Pisko, M. S., Blyzniuk, V. F., & Tsepak, O. H. (2005). Perspektyvy zmenshennia spozhyvannia pervynnykh enerhetychnykh resursiv za rakhunok vprovadzhennia solomospaliuvalnykh kotliv. In Netradytsiini i ponovliuvalni dzherela enerhii yak alternatyvni pervynnym dzherelam enerhii v rehioni: zbirnyk naukovykh statei III Mizhnarodnoi naukovo-praktychnoi konferentsii (pp. 132–137). Lviv: LvTsNTEI. [in Ukrainian]

Porfiriev, V. B., Hrinberh, Y. V., & Ladyzhenskyi, M. R. (1963). Menilitovi slantsi Karpat. Kyiv: Vydavnytstvo AN URSR. [in Ukrainian]

Pozhidaev, S. A., Gritsai, R. A., & Ivanova, A. V. (1981). Metodicheskie razrabotki po izucheniyu solenykh uglei Zapadnogo Donbassa. Kiev: Naukova dumka. [in Russian]

Rapoport, I. B. (1950). Iskusstvennoe zhidkoe toplivo. Moskva; Leningrad: Gostoptekhizdat. [in Russian]

Rudko, H. I. (Ed.). (2014). Enerhetychni resursy heolohichnoho seredovyshcha Ukrainy (stan ta perspektyvy). Chernivtsi: Bukrek. [in Ukrainian]

Semenov, V. H. (2007). Tsyvilizatsiia bez nafty: biodyzelne palyvo u toplyvno-enerhetychnomu kompleksi Ukrainy. In Netradytsiini i ponovliuvalni dzherela enerhii yak alternatyvni pervynnym dzherelam enerhii v rehioni: zbirnyk naukovykh statei IV Mizhnarodnoi naukovo-praktychnoi konferentsii (pp. 157–162). Lviv: LvTsNTEI. [in Ukrainian]

Shendrik, T. G., Simonova, V. V., & Pototskaya, L. L. (1986). Raspredelenie natriya v “solenykh” uglyakh Zapadnogo Donbassa. In Struktura i svoistva iskopaemykh uglei (pp. 59–67). Kiev: Naukova dumka. [in Russian]

Shilling, G.-D., Bonn, B., & Kraus, U. (1976). Gazifikatsiya uglya: gornoe delo – syr’e – energiya. Moskva: Nedra. [in Russian]

Stan ta perspektyvy vydobutku ta vykorystannia metanu vuhilnykh rodovyshch Ukrainy. (2014). Netradytsiinyi haz v Ukraini. http://shalegas.in.ua/cbm-in-ukraine-perspectives [in Ukrainian]

Statistical review of world energy (2020). https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

Stefanik, Yu. V. (1990). Geotekhnologiya nekonditsionnykh tverdykh topliv. Kiev: Naukova dumka. [in Russian]

Terent’ev, G. A., Tyukov, V. M., & Smal’, F. V. (1985). Proizvodstvo al’ternativnykh motornykh topliv i ikh primenenie na avtomobil’nom transporte. Moskva: TsNIITE Neftekhim. [in Russian]

Uilson, K. L. (1985). Ugol’ – “most v budushchee”. Moskva: Nedra. [in Russian]

Uziiuk, V. I., Byk, S. I., & Ilchyshyn, A. V. (2001). Hazoheneratsiinyi potentsial kamianovuhilnykh baseiniv Ukrainy. Heolohiia i heokhimiia horiuchykh kopalyn, 2, 110–121. [in Ukrainian]

Vladimirov, Yu. V. (2001). Analiz perspektiv ispol’zovaniya v Ukraine vozobnovlyaemykh istochnikov energii. In Netradytsiini i ponovliuvalni dzherela enerhii yak alternatyvni pervynnym dzherelam enerhii v rehioni: zbirnyk naukovykh statei I naukovo-praktychnoi konferentsii (pp. 16–20). Lviv: LvTsNTEI. [in Russian]

Voronovskyi, H. K., Denysiuk, S. P., & Kyrylenko, O. V. (2005). Enerhetyka svitu ta Ukrainy. Tsyfry ta fakty. Kyiv: Ukrainski entsyklopedychni znannia. [in Ukrainian]

Walters, E. A., & Wewerka, E. M. (1975). An overview of the energy crisis. Journal of Chemical Education, 52(5), 282–288. https://doi.org/10.1021/ed052p282

Yanko, S. V., & Troshen’kin, B. A. (2010). Perspektivy osvoeniya glubokozalegayushchikh ugol’nykh mestorozhdenii. Ugol’ Ukrainy, 10, 3–10. [in Russian]

Zabigailo, V. E., & Khrapkin, S. G. (1989). Geologicheskaya baza ugol’noi promyshlennosti USSR i sovremennye problemy ugol’noi geologii. Geologiya i geokhimiya goryuchikh iskopaemykh, 72, 1–5. [in Russian]


Posted on

PROSPECTS OF USING PEATS IN THE LVIV REGION FOR HUMATES EXTRACTION

Home > Archive > No. 1–2 (183–184) 2021 > 76–88


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 76–88.

https://doi.org/10.15407/ggcm2021.01-02.076

Myroslava YAKOVENKO1, Yury KHOKHA2, Oleksandr LYUBCHAK3

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: 1myroslavakoshil@ukr.net, 2khoha_yury@ukr.net, 3lubchak1973@ukr.net

Abstract

The paper briefly considers the problems of the Ukraine’s peat industry and identifies the reasons for its decline, including the low quality of peat as an energy source. We assume that the use of peat for briquetting will be stopped in the near future due to economic and political factors. On the other hand, peat can be a source of chemicals and their mixtures that have found application in agriculture and industry. It is known that the addition of sodium humates to the drilling mud improves its rheological properties and makes them environmentally safe, especially when passing through aquifers. We set a goal to determine the geological, technological and geochemical characteristics of peat in the Lviv Region, to establish its suitability for the humic acids extraction and to identify promising deposits for future processing. The study of the peats microelement composition of the Radekhiv district (Lviv Region) showed that the studied peats are not contaminated with heavy metals, as evidenced by the values of pollution indices. It is shown that the content of chemical elements in peats of Lviv Region is less than clarke in the lithosphere, soils and terrestrial plants. There is a tendency to scatter chalcophilic and most siderophilic elements, to a lesser extent lithophilic. Determining the yield of total and free humic acids testified to the possibility of using peat in the Lviv Region to extract humates. The studied samples were characterized by a high content of humic acids in terms of dry weight. Preliminary assessment of deposits suitability for peat extraction was performed according to the following parameters: field reserves, degree of decomposition, humus content and ash content. After constructing maps of these geochemical characteristic’s distribution, we have identified several of the most promising deposits in the Lviv Region: in the Kamyanka-Buzka district – Didylivske and Yarychivske deposits; in the Mykolayiv district – Verbizke, Saikivske, Demnyanske and Trostyanetske.

Keywords

peat, humic substances, microelements, geochemical analysis, ash content, degree of decomposition.

Referenses

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San Francisco: Academic Press.

Galenko, V. G., Semchuk, S. A., & Ekimova, N. A. (1974). Sostavlenie geologo-ekonomicheskikh obzorov po osnovnym torfodobyvayushchim oblastyam USSR (L’vovskaya oblast’) (Vol. 1). [Research paper]. L’vov: L’vovskaya geologicheskaya ekspeditsiya. [in Russian]

Khokha, Yu. V., Yakovenko, M. B., & Lukianchuk, D. V. (2013). Heoloho-heokhimichni ta heotekhnolohichni osoblyvosti torfianykh rodovyshch Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(164–165), 56–61. [in Ukrainian]

Klos, V. R., Birke, M., Zhovynskyi, E. Ya., Akinfiiev, H. O., Amaiyukeli, Yu. A., & Klamens, R. (2012). Rehionalni heokhimichni doslidzhennia gruntiv Ukrainy v ramkakh mizhnarodnoho proektu z heokhimichnoho kartuvannia silskohospodarskykh ta pasovyshchnykh zemel Yevropy (GEMAS). Poshukova ta ekolohichna heokhimiia, 1, 51–66. [in Ukrainian]

Lishtvan, I. I., Bazin, E. T., Gamayunov, N. I., & Terent’ev, A. A. (1989). Fizika i khimiya torfa. Moskva: Nedra. [in Russian]

Voitkevich, G. V., Miroshnikov, A. E., Povarennykh, A. S., & Prokhorov, V. G. (1970). Kratkii spravochnik po geokhimii. Moskva: Nedra. [in Russian]

Yakovenko, M. B., Khokha, Yu. V., & Liubchak, O. V. (2020). Rozpodil molibdenu v nyzynnykh torfakh Lvivskoi oblasti. In Resursy pryrodnykh vod Karpatskoho rehionu. Problemy okhorony ta ratsionalnoho vykorystannia: materialy XIX Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 8–9 zhovtnia 2020 r.) (pp. 210–214). Lviv: Natsionalnyi universytet “Lvivska politekhnika”. [in Ukrainian]


Posted on

GEOCHEMICAL FEATURES OF EURASIAN EVAPORITES IN THE CONTEXT OF THE CHEMICAL EVOLUTION OF SEAWATER IN PHANEROZOIC

Home > Archive > No. 1–2 (183–184) 2021 > 110–129


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 110–129.

https://doi.org/10.15407/ggcm2021.01-02.110

Аnatoliy GALAMAY, Andriy POBEREZHSKYY, Sofiya HRYNIV, Serhiy VOVNYUK, Dariya SYDOR, Iaroslava IAREMCHUK, Sofiya MAKSYMUK, Oksana OLIYOVYCH-HLADKA, Lyudmila BILYK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

Studies of evaporites provide new data to characterize the seawater chemistry in the Early Paleozoic and Middle Mesozoic. In particular, we studied the fluid inclusions in halite from Ordovician (China) and Cretaceous (Laos) evaporites. The corresponding sections on the plot of Ca/SO4 oscillations curve in the Phanerozoic seawater are updated. The calcium content in seawater concentrated to halite precipitation stage was 45.6 mol %, 485 million years ago and 24.3 mol % 112.2–93.5 million years ago.

By analyzing the previously published and new factual material, it is established that in Permian evaporites the sulfur isotopic composition is inversely correlated with the sulfate ion content in evaporite basin brines. Thus, the evolution of seawater chemistry in Permian is confirmed by the evolution of the isotopic composition of dissolved seawater sulfate.

According to the generalization of 38 Phanerozoic marine evaporite formations, it was found that the peculiarities of the clay minerals associations correlate with the change of the seawater chemical type. Clay minerals associations precipitated from the SO4-rich seawater are characterized by a larger set of minerals, among which smectite and mixed- layered minerals often occur; Mg-rich clay minerals (corensite, paligorskite, sepiolite, talc) also occur. Instead, in the associations of evaporite clay minerals formed from the Ca-rich seawater are represented by the smaller amount of minerals, and Mg-rich minerals are extremely rare. The increased content of magnesium in seawater of SO4-rich type is the main factor in the formation of Mg-rich silicates in evaporites.

The composition of clay minerals associations depends on the evaporate basin brine concentration; with its increase, unstable minerals are transformed, which theoretically leads to a decrease in the number of minerals in the associations. However, it was found that evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals – products of incomplete transformation of a significant amount of pyroclastic material from coeval volcanic activity.

The main factor determining the composition of clay minerals associations of Phanerozoic evaporites was the seawater (and basin brines) chemical type.

Geochemical studies of scattered organic matter and fluid inclusions with hydrocarbon phase in evaporites of the Upper Pechora Basin (overlying oil and gas deposits) indicate the presence of allochthonous bitumoids and allow to use this method to predict oil and gas potential of other areas. Analysis of the results of oil and gas exploration in a number of areas of the Transcarpathian Trough indicates the presence of fluid-saturated reservoirs and the prospects for the discovery of new accumulations of hydrocarbons. Geochemical studies proved the effectiveness of gas-flow survey method for oil and gas exploration, assessing the prospects for fluid saturation of seismic structures.

Keywords

fluid inclusions, halit, salt Basin, seawater.

Referenses

Bao, H. P., Yang, C. Y., & Huang, J. S. (2004). “Evaporation drying” and “reinfluxing and redissolving” – a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography, 6, 279–288.

Berner, R. A., Vandenbrooks, J. M., & Ward, P. D. (2007). Oxygen and evolution. Science, 316, 557–558. https://doi.org/10.1126/science.1140273

Demicco, R. V., Lowenstein, T. K., Hardie, L. A., & Spencer, R. J. (2005). Model of seawater composition for the Phanerozoic. Geology, 33(11), 877–880. https://doi.org/10.1130/G21945.1

Duchuk, S. V., & Maksymuk, S. V. (2019). Naftohazovyi potentsial Zakarpatskoho prohynu. In Mineralno-syrovynni bahatstva Ukrainy: shliakhy optymalnoho vykorystannia: tezy dopovidei naukovo-praktychnoi konferentsii (4 zhovtnia 2019 r., smt Khoroshiv) (pp. 55–61). Kyiv. [in Ukrainian]

Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol., 15(3–4), 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x

D’yakonov, A. I., Tskhadaya, N. D., Ovcharova, T. A., Yudin, V. M., Ivanov, V. V., & Kuznetsov, N. I. (2002). Sovremennyi evolyutsionno-dinamicheskii metod prognoza neftegazonosnosti geologo-ekologicheskikh regionov osobo slozhnogo stroeniya (na primere yuga Verkhnepechorskoi vpadiny). Ukhta: UGTU. [in Russian]

Frank-Kamenetskii, V. A., Kotov, N. V., & Goilo, E. L. (1983). Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad: Nedra. [in Russian]

Galamai, A. R., Shanina, S. N., & Ignatovich, O. O. (2013). Sostav mineraloobrazuyushchikh rassolov Verkhnepechorskogo solerodnogo basseina na stadii kristallizatsii galita. Zapiski Rossiiskogo mineralogicheskogo obshchestva, 142(4), 32–46. [in Russian]

Galamay, A. R., & Bukowski, K. (2011). Skład chemiczny badeńskich solanek z pierwotnych ciekłych inkluzji w halicie, basen Zakarpacki (Ukraina). Geologia (kwart. AGH), 37(2), 245–267.

Galamay, A. R., Meng, F., Bukowski, K., Ni, P., Shanina, S. N., & Ignatovich, O. O. (2016). The sulphur and oxygen isotopic composition of anhydrite from the Upper Pechora Basin (Russia): new data in the context of the evolution of the sulphur isotopic record of Permian evaporites. Geological Quarterly, 60(4), 990–999. https://doi.org/10.7306/gq.1309

Halamai, A. R. (2001). Fizyko-khimichni umovy formuvannia badenskykh evaporytovykh vidkladiv Karpatskoho rehionu [Extended abstract of сandidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Halamai, A. R., & Baranenko, O. B. (2004). Proiavy vuhlevodniv u badenskykh soliakh Peredkarpattia i Zakarpattia. Mineralohichnyi zbirnyk, 54(1), 132–136. [in Ukrainian]

Halamai, A. R., & Meng, F. (2020). Khimichnyi sklad pivdenno-skhidnoi chastyny kreidovoho Sakon Nakhon solerodnoho baseinu Laosu u konteksti evoliutsii skladu okeanichnoi vody. In Vid mineralohii i heohnozii do heokhimii, petrolohii, heolohii ta heofizyky: fundamentalni i prykladni trendy XXI stolittia (MinGeoIntegration XXI): tezy dopovidei Vseukrainskoi konferentsii (Kyiv, 23–25 veresnia 2020 r.) (pp. 20–24). Kyiv. [in Ukrainian]

Hardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24, 279–283. https://doi.org/10.1016/S0016-7037(01)00884-5

Iaremchuk, Ya. V. (2010). Hlynysti mineraly evaporytiv fanerozoiu ta yikhnia zalezhnist vid stadii zghushchennia rozsoliv i khimichnoho typu okeanichnoi vody. Zbirnyk naukovykh prats Instytutu heolohichnykh nauk NAN Ukrainy, 3, 138–146. https://doi.org/10.30836/igs.2522-9753.2010.147301 [in Ukrainian]

Iaremchuk, I., Tariq, M., Hryniv, S., Vovnyuk, S., & Meng, F. (2017). Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan). Carbonates Evaporites, 32(1), 63–74. https://doi.org/10.1007/s13146-016-0294-5

Kossovskaya, A. G., & Drits, V. A. (1975). Kristallokhimiya dioktaedricheskikh slyud, khloritov i korrensitov kak indikatorov geologicheskikh obstanovok. In Kristallokhimiya mineralov i geologicheskie problemy (pp. 60–69). Moskva: Nauka. [in Russian]

Kovalevich, V. M. (1990). Galogenez i khimicheskaya evolyutsiya okeana v fanerozoe. Kiev: Naukova dumka. [in Russian]

Kovalevich, V. M., Peryt, T. M., & Petrichenko, O. I. (1998). Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Geology, 106, 695–712. https://doi.org/10.1086/516054

Kovalevich, V. M., & Vovnyuk, S. V. (2010). Vekovye variatsii khimicheskogo sostava rassolov morskikh evaporitovykh basseinov i vod mirovogo okeana. Litologiya, 4, 95–109. [in Russian]

Kovalevych, V. M., Peryt, T. M., Carmona, V., Sydor, D. V., Vovnyuk, S. V., & Halas, S. (2002). Evolution of Permian seawater: evidence from fluid inclusions in halite. N. Jb. Miner. Abh., 178(1), 27–62. https://doi.org/10.1127/0077-7757/2002/0178-0027

Kovalevych, V. M., Peryt, T. M., Shanina, S. N., Wieclaw, D., & Lytvyniuk, S. F. (2008). Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in rock salt. Journal of Petrolium Geology, 31(3), 245–262. https://doi.org/10.1111/j.1747-5457.2008.00419.x

Кovalevych, V. M., & Vovnyuk, S. V. (2010). Fluid inclusions in halite from marine salt deposits: are they real microdroplets of ancient sea water? Geological Quarterly, 54(4), 401–410.

Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., & Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54, 485–506. https://doi.org/10.1007/s00126-019-00873-9

Lenton, T. M., Daines, S. J., & Mills, B. J. W. (2018). COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci Rev., 178, 1–28. https://doi.org/10.1016/j.earscirev.2017.12.004

Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., Demicco, R. V. (2001). Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086–1088. https://doi.org/10.1126/science.1064280

Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M., & Horita, J. (2005). The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, 69(7), 1701–1719. https://doi.org/10.1016/j.gca.2004.09.015

Lytvyniuk, S. V. (2007). Heokhimichni oreoly u soliakh nad pokladamy vuhlevodniv. Heolohiia i heokhimiia horiuchykh kopalyn, 4, 95–111. [in Ukrainian]

Maksymuk, S. V. (2012). Osoblyvosti vidobrazhennia fliuidonasychenosti horyzontiv Vyshnianskoi ploshchi Zovnishnoi zony Peredkarpatskoho prohynu v heokhimichnykh poliakh prypoverkhnevykh vidkladiv. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(160–161), 109–117. [in Ukrainian]

Maksymuk, S. V., & Bodlak, P. M. (2015). Dosvid zastosuvannia heokhimichnykh metodiv u kompleksnykh poshukovykh robotakh na naftu i haz u Karpatskomu rehioni. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu im. Ivana Franka (Lviv, 7–8 zhovtnia 2015 r.) (pp. 151–152). Lviv. [in Ukrainian]

McCaffrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57, 928–937. https://doi.org/10.1306/212F8CAB-2B24-11D7-8648000102C1865D

Moskovskii, G. A. (1983). Issledovaniya fiziko-khimicheskikh uslovii sedimentatsii kungurskikh galogennykh otlozhenii zapadnoi chasti Prikaspiiskoi sineklizy po vklyucheniyam v mineralakh [Extended abstract of сandidateʼs thesis]. Moskovskii gossudarstvennyi universitet. Moskva. [in Russian]

Petrychenko, O. Y. (1973). Metody doslidzhennia vkliuchen u mineralakh halohennykh porid. Kyiv: Naukova dumka. [in Ukrainian]

Pozo, M., & Calvo, J. P. (2018). An Overview of Authigenic Magnesian Clays. Minerals, 8(11), 520. https://doi.org/10.3390/min8110520

Raevskii, V. I., Fiveg, M. P., & Gerasimova, V. V. (1973). Mestorozhdeniya kaliinykh solei SSSR. Leningrad: Nedra. [in Russian]

Robinson, D., Schmidt, Th., & Santana de Zambora, A. (2002). Reaction pathways and reaction progress for the smectite-to chlorite transformation: evidence from hydrothermally altered metabasites. J. Metamorph. Geol., 20, 167–174. https://doi.org/10.1046/j.0263-4929.2001.00361.x

Schiffman, P., & Staudigel, H. (1995). The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487–498. https://doi.org/10.1111/j.1525-1314.1995.tb00236.x

Sokolova, T. N. (1982). Autigennoe silikatnoe mineraloobrazovanie rannikh stadii osoloneniya. Moskva: Nauka. [in Russian]

Sone, M., & Metcalfe, I. (2008). Parallel Tethyan sutures in mainland South-East Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340, 166–179. https://doi.org/10.1016/j.crte.2007.09.008

Więcław, D., Lytvyniuk, S. F., Kovalevych, V. M., & Peryt, T. M. (2008). Incluzje w halicie oraz bituminy w solach ewaporatόw mioceńskich ukraińskiego Przedkarpacia jako wskaźnik występowania nagromadzeń węglowodorόw w niżey leżących utworach. Przegląd Geologiczny, 56(9), 837–841.

Yaremchuk, Y., Hryniv, S., Peryt, T., Vovnyuk, S., & Meng, F. (2020a). Controls on Associations of Clay Minerals in Phanerozoic Evaporite Formations: An Overview. Minerals, 10(11), 974. https://doi.org/10.3390/min10110974

Yaremchuk, Ya., Vovniuk, S., Hryniv, S., Tarik, M., Menh, F., Bilyk, L., & Kochubei, V. (2017). Umovy utvorennia hlynystykh mineraliv verkhnoneoproterozoisko-nyzhnokembriiskoi kamianoi soli formatsii Solianyi kriazh, Pakystan. Mineralohichnyi zbirnyk, 67(2), 72–90. [in Ukrainian]

Yaremchuk, Ya. V., Vovniuk, S. V., & Tariq, M. (2020b). Hlynysti mineraly eotsenovoi kamianoi soli formatsii Bakhadar Khel, Pakystan. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 87–99. https://doi.org/10.15407/ggcm2020.01.087 [in Ukrainian]

Yaremchuk, Ya. V., Vovnyuk, S. V., & Hryniv, S. P. (2020c). The peculiarities of high-magnesium clay minerals occurrence in Phanerozoic evaporite formation. Geodynamics, 1(28), 52–61. https://doi.org/10.23939/jgd2020.01.052


Posted on

GEOCHEMISTRY Of FLUIDS: INNOVATIVE SOLUTION OF THE FUNDAMENTAL PROBLEM

Home > Archive > No. 1–2 (183–184) 2021 > 130–148


Geology & Geochemistry of Combustible Minerals No. 1–2 (183–184) 2021, 130–148.

https://doi.org/10.15407/ggcm2021.01-02.130

Josyp SVOREN

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, e-mail: igggk@mail.lviv.ua

Abstract

First of all, has developed a reliable mass spectrometric method for studying fluid inclusions in minerals (on the basis of the author’s certificate of the USSR No. 454446 of 1974 for the invention of the “device for cleaning the content inclusions of solid materials”). Were created and published new scientific directions: 1. Thermobarometry and geochemistry of gases of veinlet-impregnated mineralization in sediments of oil and gas regions and metallogenic provinces. 2. Bowels of the Earth – natural physicochemical reactor. Was developed a “method (technology) for determining the prospects of oil and gas bearing of the local area” and “a method (technology) of local forecasting of enriched areas of gold-ore fields” (together with M. M. Davydenko). Was established unknown before, but objectively existing phenomenon of the material world: 1) “lack of molecular hydrogen in inclusions in minerals in the bowels of the planet Earth” (together with V. A. Kaliuzhny). Independently were established: 2) previously unknown “property of deep abiogenic methane-termobar high-temperature fluid decompose-convert natural organic residues into layers of coal with their simultaneous methane saturation and its conservation in the earth’s crust of the planet Earth”; 3) previously unknown natural “phenomenon of arbitrary formation of natural carbon methane in the coal layers of the earth’s crust of the planet Earth under the influence of abiogenic methane-containing high-temperature fluid with their conservation in them”; 4) previously unknown different chemical properties of carbon isotopes in natural processes of synthesis-formation of various carbon-containing compounds …; 5) “previously unknown pattern of natural processes of synthesis of perfect diamond crystals from astenospheric carbon dioxide ions…”. Was justified “a new way to determine the calorification of natural gas supplied to consumers and its cubic-metre barometry”.

Keywords

geochemistry, fluid inclusions, veinlet-impregnated mineralization, deep abiogenic methane-bearing high-termobaric fluid, searches, new technologies, cubic-metre-barometry, scientific discovery.

Referenses

Davydenko, M. M., & Svoren, Y. M. (1994). Sposib lokalnoho prohnozuvannia zbahachenykh dilianok zolotorudnykh poliv (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 3, 27. [in Ukrainian]

Naumko, I. M. (2006). Fliuidnyi rezhym mineralohenezu porodno-rudnykh kompleksiv Ukrainy (za vkliuchenniamy u mineralakh typovykh parahenezysiv) [Extended abstract of Doctorʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Naumko, I. M., Bekesha, S. M., & Svoren, Y. M. (2008). Fliuidy hlybynnykh horyzontiv litosfery: zviazok z rodovyshchamy nafty i hazu u zemnii kori (za danymy vyvchennia vkliuchen u mineralakh hlybynnoho pokhodzhennia). Dopovidi Natsionalnoi akademii nauk Ukrainy, 8, 117–120. [in Ukrainian]

Naumko, I. M., & Kaliuzhnyi, V. A. (2001). Pidsumky ta perspektyvy doslidzhen termobarometrii i heokhimii paleofliuidiv litosfery (za vkliuchenniamy u mineralakh). Heolohiia i heokhimiia horiuchykh kopalyn, 2, 162–175. [in Ukrainian]

Naumko, I., Kaliuzhnyi, V., Bratus, M., Zinchuk, I., Kovalyshyn, Z., Matviienko, O., Redko, L., & Svoren, Y. (2000). Uchennia pro mineralotvorni fliuidy: priorytetni zavdannia rozvytku na suchasnomu etapi. Mineralohichnyi zbirnyk, 50(2), 22–30. [in Ukrainian]

Naumko, I., Pavliuk, M., & Poberezhskyi, A. (2020). Heokhimiia i termobarometriia mineraloutvoriuvalnykh fliuidiv ta termobaroheokhimiia evaporytiv – vsesvitno vidomi naukovi shkoly. Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 62–75. https://doi.org/10.15407/ggcm2020.01.062 [in Ukrainian]

Naumko, I. M., & Svoren, Y. M. (2008). Pro shliakhy vtilennia hlybynnoho vysokotemperaturnoho fliuidu u zemnu koru. Dopovidi Natsionalnoi akademii nauk Ukrainy, 9, 112–114. [in Ukrainian]

Pavlyshyn, V. I., Bondarenko, S. M., Bryk, O. B., Vozniak, D. K., Yelchenko, K. O., Kalinichenko, A. M., Kvasnytsia, V. M., Kulchytska, H. O., Lupashko, T. M., Naumko, I. M., Semenenko, V. P., Taran, M. M., Tarashchan, A. M., Khomenko, V. M., & Chernysh, D. S. (2018). Mineralohiia u Natsionalnii akademii nauk Ukrainy (do 100-richchia NAN Ukrainy). Mineralohichnyi zhurnal, 40(3), 3–22. https://doi.org/10.15407/mineraljournal.40.03.003 [in Ukrainian]

Svoren’, I. M. (1974). Ustroistvo dlya ochistki soderzhimogo vklyuchenii tverdykh materialov (Avtorskoe svidetel’stvo SSSR № 454446). Byulleten’, 47. [in Russian]

Svoren’, I. M. (1984). Primesi gazov v kristallakh mineralov i drugikh tverdykh telakh, ikh sposoby izvlecheniya, sostav, forma nakhozhdeniya i vliyanie na svoistva veshchestv [Extended abstract of сandidateʼs thesis]. Institut geologii i geokhimii goryuchikh iskopaemykh AN USSR. L’vov. [in Russian]

Svoren, Y. M. (1992). Pytannia teorii henezysu pryrodnykh vuhlevodniv ta shliakhy poshuku yikh pokladiv. In Tektohenez i naftohazonosnist nadr Ukrainy: tezy dopovidei naukovoi narady (20–22 zhovtnia 1992 r.) (pp. 143–145). Lviv. [in Ukrainian]

Svoren, Y. M. (2008). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii: pryroda vuhilnoho metanu. Ugol’ Ukrainy, 8(620), 42–46. [in Ukrainian]

Svoren, Y. (2011a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: izotopy vuhletsiu pro pokhodzhennia planety Zemlia. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 158–159. [in Ukrainian]

Svoren, Y. (2011b). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda zemletrusu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(154–155), 160–162. [in Ukrainian]

Svoren, Y. (2017a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryrodnyi vuhlevodnevyi fenomen. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 157–160. [in Ukrainian]

Svoren, Y. (2017b). Yavyshche utvorennia pryrodnykh vuhlemetaniv pid diieiu abiohennoho metanovmistnoho vysokotermobarnoho hlybynnoho fliuidu. In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy II Mizhnarodnoi naukovoi konferentsii (Kyiv, 6–8 veresnia 2017 r.) (pp. 225–229). Kyiv. [in Ukrainian]

Svoren, Y. (2019a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: poshuk pryrodnoho metanu – fundamentalna nauka chy tekhnichna problema? Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 104–115. https://doi.org/10.15407/ggcm2019.04.104 [in Ukrainian]

Svoren, Y. (2019b). Pro novyi pidkhid do vyznachennia teplotvornosti pryrodnoho hazu, yakyi postachaiut spozhyvacham ta yoho kubometrobarometriiu. Heolohiia i heokhimiia horiuchykh kopalyn, 2(179), 84–89. https://doi.org/10.15407/ggcm2019.02.084 [in Ukrainian]

Svoren, Y. (2020a). Nadra Zemli – pryrodnyi fizyko-khimichnyi reaktor: pryroda vody naftovykh i hazovykh rodovyshch. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 08–09 hrudnia 2020 r.) (pp. 158–160). [in Ukrainian]

Svoren, Y. (2020b). Pro znachennia kubometrobarometrii pryrodnoho hazu, yakyi postachaiut spozhyvacham. In Naftohazova haluz: Perspektyvy naroshchuvannia resursnoi bazy: materialy dopovidei Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Ivano-Frankivsk, 08–09 hrudnia 2020 r.) (pp. 91–94). [in Ukrainian]

Svoren’, J. M. (2020c). Subsoil Natural Physico-Chemical Reactor: Regularity of Natural Processes of Synthesis of Perfect Diamond Crystals. Journal of Geological Resource and Engineering, 8, 133–136. https://doi.org/10.17265/2328-2193/2020.04.005

Svoren’, J. M. (2020d). Various Chemical Properties of Carbon Isotopes in Natural Synthesis of Different Compounds. Journal of Geological Resource and Engineering, 8, 20–23. https://doi.org/10.17265/2328-2193/2020.01.002

Svoren’, J. M. (2021). Subsoil Natural Physico-chemical Reactor: The Property of Deep Abiogenic Methane-Containing High-Thermobaric Fluid to Form Coal Seams. Journal of Geological Resource and Engineering, 9, 25–28. https://doi.org/10.17265/2328-2193/2021.01.003

Svoren, Y. M., & Davydenko, M. M. (1994). Sposib vyznachennia perspektyvy naftohazonosnosti lokalnoi ploshchi (Patent Ukrainy № 5G01V9/00). Promyslova vlasnist, 4. [in Ukrainian]

Svoren, Y. M., Davydenko, M. M., Haievskyi, V. H., Krupskyi, Yu. Z., & Pelypchak, B. P. (1994). Perspektyvy termobarometrii i heokhimii haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii (novyi naukovyi napriamok v heolohii). Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 54–63. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2000). Nova tekhnolohiia vyznachennia henezysu vuhlevodnevykh haziv. In Nafta i haz Ukrainy–2000: materialy VI Mizhnarodnoi naukovo-praktychnoi konferentsii (Ivano-Frankivsk, 31 zhovtnia–3 lystopada 2000 r.) (Vol. 1, pp. 108). Ivano-Frankivsk: Fakel. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006a). Nova teoriia syntezu i henezysu pryrodnykh vuhlevodniv: abiohenno-biohennyi dualizm. Dopovidi Natsionalnoi akademii nauk Ukrainy, 2, 111–116. [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2006b). Rol riznykh form vodniu ta vuhletsiu v pryrodnykh protsesakh: novyi pohliad na pokhodzhennia vuhlevodniv. Dopovidi Natsionalnoi akademii nauk Ukrainy, 1, 131–134. [in Ukrainian]