Posted on

CHEMICAL COMPOSITION OF THE PRECURSOR COMPOUNDS AND MECHANISMS OF HUMIC SUBSTANCES FORMATION AT THE POST-SEDIMENTATION STAGE OF THE ORGANIC COMPOUNDS EVOLUTION

Home > Archive > No. 1–2 (189–190) 2023 > 41–53


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 41–53

https://doi.org/10.15407/ggcm2023.189-190.041

Yurii KHOKHA, Myroslava YAKOVENKO, Oksana SENIV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: khoha_yury@ukr.net; myroslavakoshil@ukr.net

Abstract

The publication is a review that presents in a concise form information about the chemical composition of living matter components and the mechanisms of their transformations, the result of which is the geopolymers formation. Among geopolymers, humic substances, including humic and fulvic acids, attract our attention. The relevance of this review lies in the importance of understanding multidirectional reactions, the result of which is the secondary polymerization of organic matter chemically active components that have passed the biodegradation barrier at the stage of sedimentation and diagenetic transformations. Humic substances, in their turn, are precursors of kerogen, therefore, an understanding of reaction mechanisms and their products provides complete information about the conditions of various types of kerogen formation, which are characterized by different ability to produce oil and gas. We paid special attention to polyphenols, which have high chemical activity and the ability to react with increasing molecular weight. In addition to the traditional Maillard reaction, among the condensation mechanisms we considered oxidative crosslinking of phenols, oxidative condensation of polyunsaturated fatty acids, and esterification of fatty acids with phenols. For each mechanism, the conditions for its implementation and probable contribution to the formation of humic substances are briefly considered. Analysis of probable mechanisms of formation of humic substances showed that condensation reactions can occur under geochemical conditions of sedimentation and early diagenesis. At the same time, their speeds are low, and the precursors necessary for the reactions, formed as a result of biological degradation, are contained in very small concentrations. We conclude that kerogen contains two components – primary, which enters its structure without any significant changes, and secondary, which is the result of a series of complex multidirectional reactions.

Keywords

organic geochemistry, polycondensation, humic substances, depolymerization, kerogen evolution

Referenses

Chen, Z., Wu, J., Ma, Y., Wang, P., Gu, Z., & Yang, R. (2018). Biosynthesis, metabolic regulation and bioactivity of phenolic acids in plant food materials. Shipin Kexue/Food Science, 39(7), 321–328.

Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In B. Durand (Ed.), Kerogen, Insoluble Organic Matter from Sedimentary Rocks (pp. 13–34). Paris: Editions Technip.

Harvey, G. R., & Boran, D. A. (1985). Geochemistry of humic substances in seawater. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 233–247). New York, Chichester: Wiley & Sons.

Harvey, G. R., Boran, D. A., Chesal, L. A., & Tokar, J. M. (1983). The structure of marine fulvic and humic acids. Marine Chemistry, 12(2–3), 119–132. https://doi.org/10.1016/0304-4203(83)90075-0

Hatcher, P. G., Breger, I. A., Maciel, G. E., Szeverenyi, N. M. (1985). Geochemistry of humin. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 275–302). New York, Chichester: Wiley & Sons.

Huc, A. Y., & Durand, B. M. (1977). Occurrence and significance of humic acids in ancient sediments. Fuel, 56(1), 73–80. https://doi.org/10.1016/0016-2361(77)90046-1

Jokic, A., Wang, M. C., Liu, C., Frenkel, A. I., & Huang, P. M. (2004). Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: the role of δ-MnO2. Organic Geochemistry, 35(6), 747–762. https://doi.org/10.1016/j.orggeochem.2004.01.021

Khant, D. (1982). Geokhimiya i geologiya nefti i gaza. Moskva: Mir. [in Russian]

Kononova, M. M. (1963). Organicheskoye veshchestvo pochvy, ego priroda, svoystva i metody izucheniya. Moskva: Izdatelstvo AN SSSR. [in Russian]

Kontorovich, A. E. (2004). Ocherki teorii naftidogeneza. Novosibirsk: IGiG SO AN SSSR. [in Russian]

van Krevelen, D. W. (1961). Coal: typology, chemistry, physics, constitution. Elsevier Publishing Company.

Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: Biosynthesis and Biological Functions in Plants. International journal of molecular sciences, 19(2), 335. https://doi.org/10.3390/ijms19020335

Maillard, L.C. (1912). Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodique. Comptes rendus de l’Académie des Sciences, 154, 66–68.

Martin, J. P., & Haider, K. (1971). Microbial activity in relation to soil humus formation. Soil Science, 111(1), 54–63. https://doi.org/10.1097/00010694-197101000-00007

Romankevich, E. A. (1977). Geokhimiya organicheskogo veshchestva v okeane. Moskva: Nauka. [in Russian]

Schnitzer, M. (1978). Humic substances: chemistry and reactions. In M. Schnitzer & S. U. Khan (Eds.), Developments in Soil Science: Vol. 8. Soil Organic Matter (pp. 1–64). Amsterdam: Elsevier. https://doi.org/10.1016/S0166-2481(08)70016-3

Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

Tisso, B., & Velte, D. (1981). Obrazovaniye i rasprostraneniye nefti. Moskva: Mir. [in Russian]

Vandenbroucke, M. (2003). Kerogen: from types to models of chemical structure. Oil & gas science and technology, 58(2), 243–269. https://doi.org/10.2516/ogst:2003016

Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833. https://doi.org/10.1016/j.orggeochem.2007.01.001

Vandenbroucke, M., Pelet, R., & Debyser, Y. (1985). Geochemistry of humic substances in marine sediments. In D. M. McKnight, G. R. Aiken, R. L. Wershaw, P. MacCarthy (Eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization (pp. 249–273). New York, Chichester: Wiley & Sons.

Vassoyevich, N. B. (1986). Izbrannyye trudy: Geokhimiya organicheskogo veshchestva i proiskhozhdeniye nefti. Moskva: Nauka. [in Russian]

Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Foodchemistry, 128(3), 573–584. https://doi.org/10.1016/j.foodchem.2011.03.075


Posted on

STUDY OF LOW-AMPLITUDE TECTONICS OF COAL FIELDS BY GEOPHYSICAL METHODS

Home > Archive > No. 1–2 (189–190) 2023 > 26–40


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 26–40

https://doi.org/10.15407/ggcm2023.189-190.026

Ihor KUROVETS, Ihor HRYTSYK, Oleksandr PRYKHODKO, Pavlo CHEPUSENKO, Stepan MYKHALCHUK, Svitlana MELNYCHUK, Roman-Danylo KUCHER

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

An analysis was made as to the usage of geological-geophysical methods for studying of low-amplitude tectonic dislocations in coal-enclosing massifs. As a result of geophysical researches conducted at coal fields, mine fields and mine workings of the Lviv-Volyn Coal Basin, the methods of field observations by means of natural electromagnetic and electric fields were worked and their results were processed for prediction and diagnostics of tectonic dislocations with a break of continuity and zones of unstressed state. To raise the efficiency of the methods of electromagnetic fields it is recommended to carry out measurements at wide frequency range (from 5 to 50 hz) with orientation of the antenna according to the world sides (azimuthal surveying) and at narrow frequency range (5; 12.5; 17 khz) with the southern orientation of the antenna (frequency sensing). According to azimuthal surveying one can calculate the vector of maximum intensity of electromagnetic radiation. It was ascertained that over distinctive dislocation one can observe the variation in the direction and absolute value of vectors. Displacement of the anomaly of electromagnetic radiation intensity at different frequency range by profile indicates the direction of dipping of the area of displacement of dislocations with a break of continuity. The method of natural electromagnetic impulse field of the Earth fixes both the dislocations, distinguishes by geological-geophysical methods before, and new low-amplitude dislocations and stressed zones.Tectonic dislocations, that are displayed only in Paleozoic deposits, are distinguished by contrast anomalies of electromagnetic radiation in electromagnetic field, but dislocations with a break of continuity that cut the Mesozoic thickness and in most cases are accompanied by zones of rock fracturing in the Cretaceous deposits: by wide destructive anomalies. Plots over worked-out lavas with stressed deformational state are characterized by strongly differential abnormal values of the intensity of natural impulse electromagnetic field of the Earth. The method of natural electric field allows us to detect zones with water-bearing fracturing rocks in the upper part of the geological section. Methods of natural impulse electromagnetic field of the Earth and natural electric field may be used both independently and in the complex with other geophysical methods for detection and tracing of tectonic dislocations and dynamically-unstressed zones. Thus, the optimum apparatus-methodical complex for detection and diagnostics of low-amplitude dislocations with a break of continuity of coal-enclosing series by electromagnetic methods (NIEMF, NEF) was formed and effective methods of field observations, processinf and interpretation of data were developed.

Keywords

low-amplitude tectonics, natural electric field, impulse electromagnetic field of the Earth, coal-bearing rocks, geophysical profiles

Referenses

Kurovets, I., Hrytsyk, I., Chepusenko, P., Mykhalchuk, S., & Prykhodko, O. (2019). Vyvchennia maloamplitudnoi tektoniky vuhilnykh rodovyshch metodamy elektromahnitnykh poliv. In Heofizyka i heodynamika: prohnozuvannia ta monitorynh heolohichnoho seredovyshcha: tezy VIII Mizhnarodnoi naukovoi konferentsii (Lviv, 24–26 veresnia 2019 r.) (pp. 92–94). Lviv. [in Ukrainian]

Kurovets, I. M., Zubko, O. S., Kosianenko, G. P., & Chepusenko, P. S. (2000). Diagnostics of physical state of hydrotechnical constructions of enterprises by electromagnetic methods. In 4th European coal conference (September 26–28, 2000, Ustron, Poland) (pp. 43–44). PIG.

Lysoon, S. O., Kurovets, I. M., & Prytulkа, G. I. (2000). New prognostification technology of low-amplitude tectonic dislocations of coal seams. In 4th European coal conference (September 26–28, 2000, Ustron, Poland) (p. 45). PIG.

Pavliuk, M. I. et al. (2016). Heoekolohichni problemy Zakhodu Ukrainy (na prykladi terytorii Lvivskoi oblasti) (B-II-02-12) [Research report]. Lviv. [in Ukrainian]

Zabigaylo, V. E. (1991). K razvitiyu issledovaniy po prognozu maloamplitudnoy tektoniki. In Maloamplitudnaya tektonika. Metody i rezultaty prognozirovaniya: tezisy dokladov (pp. 3–7). Kiev: Naukova dumka. [in Russian]


Posted on

ON KUZIAN SUITE OF THE MARMAROSH NAPPE OF THE UKRAINIAN CARPATHIANS

Home > Archive > No. 1–2 (189–190) 2023 > 17–25


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 17–25

https://doi.org/10.15407/ggcm2023.189-190.017

Volodymyr SHLAPINSKY, Myroslav TERNAVSKY

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

In 1957, L. G. Tkachuk and D. V. Gurzhiy have singled out the Upper Paleozoic Kuzian suite in the north-western part of the Marmarosh crystalline massif at the Rachiv area. It consists of phyllites, limestones, quartzites and dolomites. The suite is widely distributed in the Dilovets subcover of the Marmarosh nappe at the Rakhiv and Chyvchynian areas. There are two alternative points of view upon the age of the Kuzian suite. Some geologists attribute it to Paleozoic time (Upper Devonian-Lower Carboniferous), the others attribute its lower part to the Upper Paleozoic, and the upper one: to Triassic. One can notice the existence of the different estimation of the lithological composition and different estimation of the lithological composition and the volume of the Kuzian suite.Thus, in 1970 A. K. Boiko has devided it into Muntselulska (Lower) phyllite-quartzite one of Paleozoic age and Upper (Triassic) phyllite-carbonate one for which he saved the name Kuzian suite. The important is that a stratigraphic interruption was fixed between the above-mentioned units. The phyllite-carbonate Kuzian suite is dated on the basis of transgressive occurrence of the middle Triassic dolomites on it, discovery of the post-Paleozoic mosses in its lower part at the Soimul Mountain, and in the upper one: the complex of spores and pollen of Mesozoic age. Geologists, that do not recognize the idea of belonging of the part of suite to Mesozoic, indicate the next contradiction. If we accept the Mesozoic age of the Kuzian suite, so we must affirm that carbonate series of Middle Triassic-Jurassic were deposited on the massif at the same time, and 5–8 km southerly, the regional metamorphism of the Kuzian suite occurred within that zone (by the way, according to some facts at an interval of 148–178 and 175–181 mln years, and according to another information: at an interval of 196–221 mln years. This remark is not correct because the age of the Kuzian suite is Lower Triassic (251.9–247.2 mln years), but metamorphism occurred much later. In those sections where the Kuzian suite lies on the Muntselulska one, basal conglomerates consisting of pebbles and quartzitic fragments of underling suite are present in its bottom. Rocks of the Muntselulska and Kuzian suite are similar by their metamorphism intensity. For the Mesozoic Kuzian suite the manifestations of the main magmatism are characteristic, unlike the Upper Paleozoic acids. The facts testify to that the Mesozoic Kusian suite is existing, but there is a certain indefinity as to its finer dividing, stratigraphic volume and correlation with deposits of Middle Triassic. To avoid confusion, it is expedient to alter the name of the Mesozoic Kuzian suite and to name it, for example, Neo-Kuzian.

Keywords

Kuzian, Muntselulska, suite, Triassic, Paleozoic, Marmarosh nappe, Dilovets subcover, metamorphism

Referenses

Belov, A. A. (1981). Tektonicheskoye razvitiye alpiyskoy skladchatoy zony v paleozoye. Moskva: Nauka. [in Russian]

Boiko, A. K., Ivanchenko, A. I., & Kuriachyi, L. K. (1964). Pro vik kuzynskoi svity Rakhivskoho masyvu. Dopovidi Akademii nauk URSR, 8, 1095–1098. [in Ukrainian]

Boyko, A. K. (1970). Doverkhnepaleozoyskiy kompleks severo-zapadnogo okonchaniya Marmaroshskogo massiva (Vostochnyye Karpaty). Lvov: Izdatelstvo Lvovskogo universiteta. [in Russian]

Boyko, A. K. (1975). Voprosy drevney geologicheskoy istorii Vostochnykh i Zapadnykh Karpat i radiometricheskoye datirovaniye. Kiev: Naukova dumka. [in Russian]

Danіlovich, Yu. R. (1989). Metamorfizm kristallicheskogo fundamenta i domelovogo chekhla Ukrainskikh Karpat. In Geologiya Sovetskikh Karpat: sbornik nauchnykh trudov (pp. 48–56). Kiev: Naukova dumka. [in Russian]

Gabinet, M. P., Kulchitskiy, Ya. O., & Matkovskiy, O. I. (1976). Geologiya i poleznyye iskopayemyye Ukrainskikh Karpat (Part 2). Lvov: Vyshcha shkola. [in Russian]

Glushko, V. V., & Kruglov, S. S. (Eds.). (1971). Geologicheskoye stroyeniye i goryuchiye iskopayemyye Ukrainskikh Karpat. Trudy UkrNIGRI, 25. [in Russian]

Kruhlov, S. S. (2009). Heolohiia Ukrainy: Vol. 3. Heolohiia i metaloheniia Ukrainskykh Karpat. Kyiv: UkrDHRI.

Lashmanov, V. I. (1973). K stratigrafii drevnemezozoyskikh otlozheniy Marmaroshskogo massiva. Geologicheskiy sbornik Lvovskogo geologicheskogo obshchestva, 14, 28–34. [in Russian]

Lyashkevich, Z. M., Medvedev, A. P., Krupskiy, Yu. Z., Varichev, A. S., Timoshchuk, V. R., & Stupka, O. O. (1995). Tektono-magmaticheskaya evolyutsiya Karpat. Kiev: Naukova dumka. [in Russian]

Matkovskiy, O. I., Malayeva, I. P., & Akimova, K. G. (1973). Stratiformnyye kolchedan-polimetallicheskiye mestorozhdeniya i rudoproyavleniya v Marmaroshskom massive Vostochnykh Karpat. Geologicheskiy sbornik Lvovskogo geologicheskogo obshchestva, 4, 36–48. [in Russian]

Matskiv, B. V., Pukach, B. D., Vorobkanych, V. M., Pastukhanov, S. V., & Hnylko, O. M. (2009). Derzhavna heolohichna karta Ukrainy. Masshtab 1 : 200 000. Karpatska seriia.  Arkushi: M-34-XXXVI (Khust), L-34-VI (Baia-Mare), M-35-XXXI (Nadvirna), L-35-I (Visheu-De-Sus). Kyiv. [in Ukrainian]

Nenchuk, I. F. (1967). O metamorfizme porod kuzinskoy svity Rakhovskogo massiva. In Voprosy geologii Karpat (pp. 165–167). Lvov: Izdatelstvo Lvovskogo universiteta. [in Russian]

Slavin, V. I. (1963). Triasovyye i yurskiye otlozheniya Vostochnykh Karpat i Pannonskogo sredinnogo massiva. Moskva: Gosgeoltekhizdat. [in Russian]

Solovyev, V. O. (2011). Khronologiya tektonicheskikh dvizheniy: fazy, epokhi, tsikly tektogeneza. Kharkov. [in Russian]

Tkachuk, L. H., & Danilovych, Yu. R. (1965). Metamorfizm krystalichnykh slantsiv Skhidnykh Ukrainskykh Karpat. Heolohichnyi zhurnal AN URSR, 25(6). [in Ukrainian]

Tkachuk, L. G., & Gurzhiy, D. V. (1957). Rakhovskiy kristallicheskiy massiv. Kiev: Izdatelstvo AN USSR. [in Russian]

Voloshin, A. A. (1981). Geologicheskoye stroyeniye i rudonosnost severo-zapadnogo okonchaniya Marmaroshskogo massiva. Kiev: Naukova dumka. [in Russian]


Posted on

PROSPECTS OF DISCOVERY OF GAS DEPOSITS AT SHALLY DEPTHS IN THE EAST OF THE DNIPRO-DONETS BASIN OF UKRAINE

Home > Archive > No. 1–2 (189–190) 2023 > 5–16


Geology & Geochemistry of Combustible Minerals No. 1–2 (189–190) 2023, 5–16

https://doi.org/10.15407/ggcm2023.189-190.005

Yaroslav LAZARUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua

Abstract

The object of research was the Ustynivka area, which is located in the north-eastern part of the Dnipro-Donets basin on the border between the northern board and axial part of the region.

The geological structure of the area is illuminated from positions of gravitational tectogenesis. Two echelons of brachianticlinal uplifts, genetically related to the Krasnoritsk and Muratove-Tuba discharges, have been identified in the Carboniferous deposits. They were formed in nonconsolidated strata under conditions of stretching and rapid lowering of the Dnipro-Donets graben. Seismic surveys have revealed seven anticlines. Their feature is the orientation of structures along arcuate tectonic faults, asymmetry and displacement of anticlines with a depth to the southwest. According to the geomorphological features of the river valley of the Siverskyi Donets, a new uplift is predicted in the lowered block of the Tuba fault.

In the Voronove anticline, three gas deposits have been established in the Bashkirian stratum. Nearby are Borivske, Muratove, Yevgeniivka, Krasnopopivka and other gas-condensate fields. Therefore, the gravigenic structures of the Ustynivka area are promising for the discovery of new deposits. Promising horizons of the Bashkirian stratum are at shallow depths: from 2 to 2.5 km. Our estimated gas reserves and resources of the Ustynivka area are 262 and 2100 million m3, respectively.

Recommendations are given to clarify the form of gravigenic tectonic faults and related anticlines. The tasks for detailed seismic surveys and drilling are defined. The location of exploration and prospecting boreholes is proposed. Considering the displacement of the vaults of gravigenic structures with depth, to open the productive stratum in the apical parts of the uplifts, we recommend drilling inclined boreholes in the southwestern direction. Tasks for industrial development of deposits of Voronove structure are defined.

Keywords

gas-bearing prospects, Dnipro-Donets basin, gravitational structures, oil and gas traps, hydrocarbon reserves

Referenses

Babadagly, V. A., Lazaruk, Ya. G., Kucheruk, E. V., & Kelbas, B. I. (1981). Osobennosti geologicheskogo stroyeniya zony melkoy skladchatosti Severnogo Donbassa. Geologiya nefti i gaza, 1, 34–39. [in Russian]

Ivaniuta, M. M. (Ed.). (1998). Atlas rodovyshch nafty i hazu Ukrainy (Vol. 1). Lviv: Tsentr Yevropy. [in Ukrainian]

Lazaruk, Ya. H., & Kreidenkov, V. H. (1995). Novyi typ pastok vuhlevodniv u vidkladakh karbonu Dniprovsko-Donetskoi zapadyny. Mineralni resursy Ukrainy, 3–4, 42–46. [in Ukrainian]

Lukin, O. (2008). Vuhlevodnevyi potentsial nadr Ukrainy ta osnovni napriamy yoho osvoiennia. Visnyk Natsionalnoi akademii nauk Ukrainy, 4, 56–67. [in Ukrainian]

Myroshnychenko, R., Polokhov, V., & Borodulin, Ye. (2018). Zvit pro rezultaty seismorozviduvalnykh robit 2D na Ustynivskii diliantsi Sievierodonetskoi ploshchi. Prydniprovska heofizychna rozviduvalna ekspedytsiia DHP “Ukrheofizyka”. Novomoskovsk. [in Ukrainian]

Prior, D. B., & Coleman, J. M. (1982). Active slides and flows in underconsolidated marine sediments on the slopes of the Mississippi delta. In S. Saxov & J. K. Nieuwenhuis (Eds.), Marine slides and other mass movements (pp. 21–49). New York: Plenum press. https://doi.org/10.1007/978-1-4613-3362-3_3

Rudko H. I., Liakhu, M. V., Lovyniukov, V. I., Bahniuk, M. M., & Hryhil, V. H. (2016). Pidrakhunok zapasiv nafty i hazu. Kyiv: Bukrek. [in Ukrainian]

Somin, O., Aksonov, V., & Pysmennyi, I. (2016). Utochnenyi proiekt promyslovoi rozrobky Borivskoho hazokondensatnoho rodovyshcha [Research report]. UkrNDIHaz PAT “Ukrhazvydobuvannia”. Kharkiv. [in Ukrainian]

Tovstiuk, Z. M., Yefimenko, T. A., & Titarenko, O. V. (2014). Novitnia rozlomno-blokova tektonika Dniprovsko-Donetskoi zapadyny. Ukrainskyi zhurnal dystantsiinoho zonduvannia Zemli, 2, 4–13. [in Ukrainian]


Posted on

ECOLOGICAL AND GEOCHEMICAL CHARACTERISTIC OF NATURAL WATERS WITHIN THE INFLUENCE LIMITS OF THE DOBRIVLYANY GAS CONDENSATE FIELD (PRECARPATHIA)

Home > Archive > No. 1–2 (187–188) 2022 > 115–126


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 115–126.

https://doi.org/10.15407/ggcm2022.01-02.115

Halyna MEDVID1, Oleg СHEBAN2, Maria KOST’1, Olga TELEGUZ1, Vasyl HARASYMCHUK1, Iryna SAKHNYUK1, Orysia MAYKUT1, Solomia KALMUK1

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 LLC “Stryinaftogaz”, Stryi, Lviv Region, Ukraine, e-mail: ovcheb2015@gmail.com

Abstract

A study of natural waters within the influence of the Dobrivlyany gas condensate field, located in the Dobryany and Dobrivlyany area village councils of the Stryi district of the Lviv Region of Ukraine, was conducted.

The purpose of the work is to evaluate the geochemical indicators of natural waters based on our own research, to find out the role of natural and man-made factors in the formation of the chemical composition of waters.

The objects of the research are surface waters and groundwaters within the influence of the Dobrivlyany gas condensate field.

Research results. In the research area, as well as in the Bilche-Volytsia zone in general, there are unfavorable conditions for active water exchange and the formation of fresh infiltration waters, since the upper part of the geological section is characterized by clayey Neogene deposits. The depth of penetration of fresh hydrocarbonate-calcium waters here does not exceed 70 m. The small thickness of the zone of active water exchange is one of the indicators of difficult water exchange in the subsoil, therefore, favourable conditions for the preservation of hydrocarbon deposits.

As a result of exploratory work, the Dobrivlyany gas condensate field was opened in 2016. During 2016–2019, 7 boreholes were drilled, and industrial gas inflows were received from horizons LD-9, LD-12, and N1kr+K2. In tectonic terms, the deposit is confined to the northwestern part of the Kosiv-Ugersko subzone of the Bilche-Volytsia zone of the Carpathian Foredeep.

Observation of the macro component composition of groundwater from the wells of the Dobrivlyany gas condensate field indicates the stability of the hydrodynamic conditions of the deposit and, accordingly, the low variability of their geochemical characteristics. Direct hydrogeochemical zonation is clearly manifested in the increase in water mineralization with depth: for the LD-9 horizon at depths of 800–840 m, it varies within the range of 34.74–48.55 g/dm3, for LD-12 at depths of 995–1010 m – 33.82–73.70 g/dm3 and for N1kr+K2 at 1131–1158 m – 67.49–100.31 g/dm3. The content of Br and J doubles with depth. All waters are of the chloride-calcium type (according to Sulin), and genetic indicators vary within narrow limits (rNa/rCl – 0.82–0.91; Cl/Br – 216–315; rSO4 ∙ 100/rCl – 0.003–0.5) and indicate their thalassogenic sedimentogenic origin. The analysis of research results showed that underground waters belong to a single hydrodynamic system, and are characterized by the same type of water according to their chemical composition.

According to the qualitative characteristics of groundwater from an ecological borehole and a well in the Dobrivlyany village remain clean and meets regulatory requirements for drinking water. At the same time, water from a well in Vivnya village is characterized by a high content of nitrates (2.28 maximum permissible concentration), which is caused by the location of the pig complex “Halychyna-Zakhid” LLC on the outskirts. Increased content of organic substances in the waters of two wells of the Railiv village was also established, in which the permanganate oxidizability reaches 1.08–1.24 maximum permissible concentration, and, according to Hygienic requirements for drinking water intended for human consumption, is unfit for consumption. The waters of the Kolodnytsia River are chloride-hydrocarbonate sodium-calcium (calcium-sodium) in composition, while the waters of the Stryi River and the Zhizhava River are calcium bicarbonate.

Keywords

surface waters, groundwaters, ecological and geochemical characteristic, Dobrivlyany gas condensate field

Referenses

Babinets, A. Ye., & Malskaya, R. V. (1975). Geokhimiya mineralizovannikh vod Predkarpatya. Kiev: Naukova dumka. [in Russian]

Harasymchuk, V., Medvid, H., Kost, M., & Telehuz, O. (2019) Paleo- ta suchasni hidroheolohichni umovy Bilche-Volytskoi zony Karpatskoi naftohazonosnoi provintsii. Heolohiia i heokhimiia horiuchykh kopalyn, 2(179), 68–83. https://doi.org/10.15407/ggcm2019.02.068 [in Ukrainian]

Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu (DSanPiN 2.2.4-171-10). (2010). Kyiv. https://zakon.rada.gov.ua/laws/show/z0452-10#Text [in Ukrainian]

Kost, M., Medvid, H., Harasymchuk, V., Telehuz, O., Sakhniuk, I., & Maikut, O. (2020). Heokhimichna kharakterystyka richkovykh ta gruntovykh vod (Zovnishnia zona Peredkarpatskoho prohynu). Heolohiia i heokhimiia horiuchykh kopalyn, 1(182), 76–87. https://doi.org/10.15407/ggcm2020.01.076 [in Ukrainian]

Kost, M. V., Medvid, H. B., Telehuz, O. V., Cheban, O. V., Harasymchuk, V. Yu., Sakhniuk, I. I., Maikut, O. M., & Kalmuk, S. D. (2022). Monitorynhovi doslidzhennia pidzemnykh vod v mezhakh vplyvu Dobrivlianskoho hazokondensatnoho rodovyshcha. In Resursy pryrodnykh vod Karpatskoho rehionu. Problemy okhorony ta ratsionalnoho vykorystannia: zbirnyk naukovykh statei KhKh Mizhnarodnoi naukovo-praktychnoi konferentsii (Lviv, 26–27 travnia 2022 r.) (pp. 11–12). Lviv. [in Ukrainian]

Medvid, H. B. (2018). Paleohidroheolohichna kharakterystyka miotsenu pivnichno-zakhidnoi chastyny Zovnishnoi zony Peredkarpatskoho prohynu. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(176–177), 73–85. [in Ukrainian]

Shcherba, V. M., Pavlyukh, I. S., & Shcherba, A. S. (1987). Gazovie mestorozhdeniya Predkarpatya. Kiev: Naukova dumka. [in Russian]

Shestopalov, M., Liutyi, H., & Sanina, I. (2019). Suchasni pidkhody do hidroheolohichnoho raionuvannia Ukrainy. Mineralni resursy Ukrainy, 2, 3–12. https://doi.org/10.31996/mru.2019.2.3-12 [in Ukrainian]

Shtohryn, O. D., & Havrylenko, K. S. (1968). Pidzemni vody zakhidnykh oblastei Ukrainy. Kyiv: Naukova dumka. [in Ukrainian]

 «Stryinaftohaz» planuie rozshyrennia mezh Dobrivlianskoi ploshchi. (2019). EXPRO Consulting. https://expro.com.ua/novini/striynaftogaz-planu-rozshirennya-mej-dobrvlyansko-plosch [in Ukrainian]

TOV «Burproekt». (2019). Zvit z otsinky vplyvu na dovkillia planovanoi diialnosti z rozshyrenniam mezh spetsialnoho dozvolu na heolohichne vyvchennia, v tomu chysli doslidno-promyslovu rozrobku Dobrivlianskoho HKR, roztashovanoho v mezhakh Stryiskoho raionu Lvivskoi oblasti zghidno spets. dozvolu N 4748 vid 12.04.2016 r. Lviv. [in Ukrainian]


Posted on

NON-ORE MINERALS OF VEINLET-IMPREGNATED MINERALIZATION IN THE DEPOSITS OF THE KROSNO ZONE OF THE UKRAINIAN CARPATHIANS (district of the new Beskydy railway tunnel)

Home > Archive > No. 1–2 (187–188) 2022 > 103–114


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 103–114.

https://doi.org/10.15407/ggcm2022.01-02.103

Ihor NAUMKO1, Halyna ZANKOVYCH1, Oksana KOКHAN1, Olexandеr VOVK2, Yaroslav KUZEMKO1, Bohdan SAКHNO1, Roman SERKIZ3

1 Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: igggk@mail.lviv.ua
2 Lesya Ukrainka Volyn National University, Lutsk, Ukraine, е-mail: geologygeochemistry@gmail.com
3 Ivan Franko National University of Lviv, Lviv, Ukraine, е-mail: rserkiz@gmail.com

Abstract

The construction of the new Beskydy railway tunnel, which revealed the indigenous deposits of the Krosno formation of the Ukrainian Carpathians, provided an opportunity to obtain new results from the study of another prospective oil and gas-bearing areas of the flysch formation within the Krosno structural-facies unit. There is a second tunnel in length in Ukraine and passes under the Verkhovyna watershed ridge of the Ukrainian Carpathians. Its section is represented by the rocks of the Krosno formation, namely the stratification of sandstones, argillites and silt stones. There are two fracture zones have been indentified here, in which developed veinle-impregnated mineralization of ore (sulfides) and non-ore (calcite and quartz type of the “Marmarosh diamonds”) minerals. Calcite and quartz formas monominerals veins and in paragenesis calcite-quartz type of the “Marmarosh diamonds” ‒ sulfides. Quartz occurs in the form of splice sand well-faceted crystals, transparent, in yellow, brown, black, green colour. Calcite of a milky, translucent colour in the form of veins, veinlets, impregnation, powder on quartz, druz. Contains significant impurities of magnesium, manganese and iron which means the presence of a rhodochrosite-magnesite-siderite component. Hydrocarbon fluids are present in all calcite and quartz crystals of the “Marmarosh diamonds” type. By chemical composition, it is methane with impurities of higher hydrocarbons (up to hexane). Sometimes the manifestations of the outflow of a black substance with the smell of oil from the cracks in the veinlet-impregnated mineralization are recorded studied rock complexes of the flysch formation of the Krosno zone of the Ukrainian Carpathians (construction area of the new branch of the Beskydy railway tunnel), which acquires an important genetic significance.

Keywords

veinlet-impregnated mineralization, calcite, “Marmarosh diamonds”, new Beskydy railway tunnel, Krosno zone, Ukrainian Carpathians

Referenses

Beskydskyi tunel. (2021, 9 hrudnia). In Vikipediia. https://uk.wikipedia.org/wiki/Beskydskyi_tunel [in Ukrainian]

Hnylko, O. (2010). Pro pivnichno-skhidnu hranytsiu Krosnenskoi tektonichnoi zony v Ukrainskykh Karpatakh. Heolohiia i heokhimiia horiuchykh kopalyn, 2(151), 44–57. [in Ukrainian]

Hulii, V., Kuzemko, Ya., Stepanov, V., Petruniak, H., Menshov, O., & Ohorilko, R. (2015). Heoloho-strukturni osoblyvosti ta rechovynnyi sklad porid Krosnenskoi zony v raioni novoho Beskydskoho tuneliu. In Fundamentalne znachennia i prykladna rol heolohichnoi osvity i nauky: tezy dopovidei Mizhnarodnoi naukovoi konferentsii, prysviachenoi 70-richchiu heolohichnoho fakultetu Lvivskoho natsionalnoho universytetu imeni Ivana Franka (Lviv, 7–9 zhovtnia 2015 r.) (pp. 69–71). Lviv: Vydavnychyi tsentr LNU imeni Ivana Franka. [in Ukrainian]

Naumko, I. M., Zankovych, H. O., Kuzemko, Ya. D., Diakiv, V. O., Sakhno, B. E. (2017). Vuhlevodnevi hazy fliuidnykh vkliuchen u “marmaroskykh diamantakh” z zhyl u vidkladakh flishovoi formatsii raionu novoho Beskydskoho tuneliu (Krosnenska zona Ukrainskykh Karpat). Dopovidi NAN Ukrainy, 10, 70–77. https://doi.org/10.15407/dopovidi2017.10.070 [in Ukrainian]

Svoren, Y. M., & Naumko, I. M. (2005). Termobarometriia i heokhimiia haziv prozhylkovo-vkraplenoi mineralizatsii u vidkladakh naftohazonosnykh oblastei i metalohenichnykh provintsii – pryrodnyi fenomen litosfery Zemli. Dopovidi NAN Ukrainy, 2, 109–113. [in Ukrainian]

Vovk, O., Zankovych, H., & Naumko I. (2018). Osoblyvosti krystalomorfolohii marmaroskykh «diamantiv» iz zhyl u flishovykh vidkladakh Krosnenskoi strukturno-fatsialnoi odynytsi Ukrainskykh Karpat (raion novoho Beskydskoho tuneliu). Mineralohichnyi zbirnyk, 68(1), 72–75. [in Ukrainian]

Vovk, O. P., Zankovych, H. O., & Naumko, I. M. (2019). Materialy do porivnialnoi kharakterystyky krystalomorfolohii “marmaroskykh diamantiv” Ukrainskykh i Slovatskykh Karpat. In Zdobutky i perspektyvy rozvytku heolohichnoi nauky v Ukraini: zbirnyk tez naukovoi konferentsii, prysviachenoi 50-richchiu Instytutu heokhimii, mineralohii ta rudoutvorennia imeni M. P. Semenenka NAN Ukrainy (Kyiv, 14–16 travnia 2019 r.) (Vol. 1, pp. 130–131). Kyiv. [in Ukrainian]

Zankovych, H. O. (2016). Heokhimiia fliuidiv prozhylkovo-vkraplenoi mineralizatsii perspektyvno naftohazonosnykh kompleksiv pivnichno-zakhidnoi chastyny Krosnenskoi zony Ukrainskykh Karpat [Extended abstract of Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Zankovych, H. O., & Cheremisska, O. M. (2021). Typy vtorynnoi mineralizatsii v kreidovo-paleohen-neohenovykh vidkladakh Krosnenskoi zony Ukrainskykh Karpat. In Scientific Trends and Trends in the Context of Clobalization: III International Scientific and Practical Conference (Umea, Kingdom of Sweden, December 21–22, 2021) (pp.  74–379). Umea. [in Ukrainian]

Zankovych, H. O., & Kokhan, O. M. (2021). Nerudni mineraly prozhylkovo-vkraplenoi mineralizatsii Beskydskoho tuneliu Krosnenskoi zony Ukrainskykh Karpat. In Heolohichna nauka v nezalezhnii Ukraini: zbirnyk tez naukovoi konferentsii (Kyiv, 8–9 veresnia 2021 r.) (pp. 282–284). Kyiv. [in Ukrainian]


Posted on

LITHOLOGY AND SEDIMENTATION CONDITIONS OF PALEOCENE DEPOSITS OF THE SOUTH SLOPE OF THE KARKINITE DEPRESSION (BLACK SEA COAST)

Home > Archive > No. 1–2 (187–188) 2022 > 71–81


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 71–81.

https://doi.org/10.15407/ggcm2022.01-02.071

Kostyantyn HRYGORCHUK1, Volodymyr HNIDETS2, Lina BALANDYUK

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: 1kosagri@ukr.net; 2vgnidets53@gmail.com

Abstract

According to the results of lithological studies of the Paleocene sediments of the southern side of the Karkinite Depression, the lateral lithological-lithmological and facial variability of the sediments is characterized, which is manifested both in the whole section of the Paleocene and its individual epochs. It is shown that the role of limestone formations clearly decreases from the beginning to the end of the period with their maximum development in Zealand time. Sediments of the Tanetian epoch are characterized by dominance in the section of marl-clay formations and the development of siltstone-sand bodies in the area of the Odesa structure. Sediments are represented by three types of section: terrigenous (well Odeska-2), carbonate (wells Hamburtseva-2, Selskogo-40), carbonate-clay (wells Crimean-1, Shtormova-5, Centralna-1, Arkhangelskogo-1). In different areas, each type of section is characterized by a certain specificity of the internal structure. Lithological heterogeneity of sediments is associated with spatial and age variability of biofacial zones: biogerms, inland biogerm lagoons, plumes of destruction of bioherms, the outer shelf. In the sediments of the Danian age, small limestone bodies are localized in the Shtormova and Odesa structures. Zealand strata in the area from well Hamburtseva-2 to well Centralna-1 are characterized by significant development of bioherms, which are replaced in the direction of the Odesa structure by plumes of destruction and sediments of basin plains. The development of bioherm formations in the axial part of the depression is predicted, which is associated with the sedimentary manifestation of the Central Mikhailovsky uplift. This significantly expands the prospects for oil and gas in this part of the study area. During the Tanetian period, rising sea levels caused an increase in the area of distribution of the outer shelf in the axial zone of depression. At the same time, in the area of the structures of Hamburtseva, Selskogo, Centralna inheritedly (despite the transgression) were developed biohermic massifs, which was caused by upward movements within the Black Sea-Kalamitsky uplift.

Keywords

lithology, facies, sedimentation conditions, Paleocene, Karkinite Depression

Referenses

Fortunatova, N. K. (Ed.). (2000). Sedimentologicheskoe modelirovanie karbonatnikh osadochnikh kompleksov [Sedimentological modeling of carbonate sedimentary complexes]. Moskva: REFIA. [in Russian]

Gromin, V. I., Rogoza, O. I., Chaitskii, V. P., & Shimanskii, A. A. (1986). Klinoformi severo-zapadnogo shelfa Chernogo morya, ikh genezis i usloviya neftegazonosnosti [Clinoforms of the northwestern shelf of the Black Sea, their genesis and conditions of oil and gas potential]. Geologiya nefti i gaza, 10, 46–53. [in Russian]

Hnidets, V. P., Hryhorchuk, K. H., & Balandiuk, L. V. (2021). Osoblyvosti formuvannia nyzhnokreidovoi tektono-sedymentatsiinoi systemy Prychornomorskoho mehaprohynu [Peculiarities of formation of the Lower Cretaceous teсtono-sedimentation system of the Black Sea megadepression]. Heolohichnyi zhurnal, 2(375), 67–78. https://doi.org/10.30836/igs.1025-6814.2021.2.224399 [in Ukrainian]

Hnidets, V. P., Hryhorchuk, K. H., Kurovets, I. M., Kurovets, S. S., Prykhodko, O. A., Hrytsyk, I. I., & Balandiuk, L. V. (2013). Heolohiia verkhnoi kreidy Prychornomorsko-Krymskoi naftohazonosnoi oblasti (heolohichna paleookeanohrafiia, litohenez, porody-kolektory i rezervuary vuhlevodniv, perspektyvy naftohazonosnosti) [Geology of the Upper Cretaceous of the Black Sea-Crimean oil and gas region (geological paleoceanography, lithogenesis, reservoir rocks and hydrocarbon reservoirs, oil and gas potential)]. Lviv: Poli. [in Ukrainian]

Hozhyk, P. F. (Ed.). (2006). Stratyhrafiia mezokainozoiskykh vidkladiv pivnichno-zakhidnoho shelfu Chornoho moria [Stratigraphy of Mesocainozoic sediments of the north-western shelf of the Black Sea]. Kyiv. [in Ukrainian]

Ilin, V. D., & Fortunatova, N. K. (1988). Metodi prognozirovaniya i poiskov neftegazonosnikh rifovikh kompleksov [Methods of forecasting and searching for oil and gas reef complexes]. Moskva: Nedra. [in Russian]

Karogodin, Yu. N. (1980). Sedimentatsionnaya tsiklichnost [Sedimentation cycle]. Moskva: Nedra. [in Russian]

Kozlenko, M. V., Kozlenko, Yu. V., & Lisinchuk, D. V. (2013). Struktura zemnoi kori severo-zapadnogo shelfa Chernogo morya vdol profilya GSZ No. 26 [The structure of the earth’s crust in the N-W of the Black Sea shelf along the DSS profile No. 26]. Heofizychnyi zhurnal, 35(1), 142–152. https://doi.org/10.24028/gzh.0203-3100.v35i1.2013.116345 [in Russian]

Rever, V. B. (2016). Litohenez eotsenovykh vidkladiv Chornomorskoho sehmentu okeanu Tetis [Lithogenesis of Eocene sediments of the Black Sea segment of the Tethys Ocean]. Kyiv: Naukova dumka. [in Ukrainian]

Vail, P. R., Mitchum Jr., R. M., & Thompson III, S. (1977). Seismic stratigraphy and global changes of sea level: Part 4. Global cycles of relative changes of sea level. AAPG, Memoir, 26, 83–97. https://doi.org/10.1306/M26490C6


Posted on

LITHOGEOCHEMISTRY OF BLACK SHALES OF THE PHANEROZOIC OF THE WESTERN UKRAINE – UNCONVENTIONAL HYDROCARBON RESERVOIRS

Home > Archive > No. 1–2 (187–188) 2022 > 82–102


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 82–102.

https://doi.org/10.15407/ggcm2022.01-02.082

Ihor POPP, Petro MOROZ, Mykhaylo SHAPOVALOV

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: itpopp@ukr.net

Abstract

The purpose of this work is to compare the lithological, geochemical and mineralogical features of carbonaceous clayey and siliceous-clay rocks of Cretaceous-Paleogene flysch of the Ukrainian Carpathians and Lower Silurian of the Volyn-Podillya edge of the East European Platform and to determine the factors that contributed to the formation of zones of “unconventional reservoirs” in these sedimentary strata of cracked and mixed types.

Data from the lithology, geochemistry and mineralogy of bituminous siliceous-clay rocks and siliceous rocks of Lower Cretaceous and Oligocene of the Carpathians and black argillites of Lower Silurian of the Volyn-Podillya edge of the East European Platform are presented.

Sedimentogenesis of Lower Cretaceous and Oligocene bituminous deposits of the Carpathians and Lower Silurian deposits of Volyn-Podillya took place in anoxic conditions (phases of oceanic anoxic events: OAE-1 (Barrem–Albian), OAE-4 (Oligocene) and at the border of Ordovician and Silurian. Paleoceanographic conditions of their sedimentation differed significantly. The first are deep-sea formations at the foot of the continental slope of the Carpathian segment of the Tethys Ocean, the second were accumulated in the warm shallow sea on the eastern shelf of the West European Sea Basin.

The layered texture of carbonaceous deposits, as well as the catagenetic transformation of rock-forming clay and siliceous minerals and their hydrophobization, played a significant role in the formation of the filtration capacity properties of “unconventional reservoirs”. In Cretaceous-Paleogene flysch deposits of the Carpathians, “unconventional reservoirs” are usually terrigenous-clay or siliceous-clay rocks with shale and layered texture or compacted sandstones localized in conventional oil, gas or condensate deposits. Lower Silurian clay deposits of Volyn-Podillya are promising for the search for “shale gas”.

Keywords

unconventional reservoirs, black shales, shale gas, clay minerals, organic carbon

Referenses

Afanaseva, I. M. (1983). Litogenez i geokhimiya flishevoi formatsii severnogo sklona Sovetskikh Karpat. Kiev: Naukova dumka. [in Russian]

Beckwith, R. (2013). California’s Monterey Formation Zeroing in on a New Shale Oil Play? J. Pet. Technol., 5, (65), 44–58. https://doi.org/10.2118/0513-0044-JPT

Behl, R. J. (2011). Chert spheroids of the Monterey Formation, California (USA): early-diagenetic structures of bedded siliceous deposits. Sedimentology, 58, 325–351. https://doi.org/10.1111/j.1365-3091.2010.01165.x

Bratcher, J. C., Kaszuba, J. P., Herz-Thyhsen, R. J., & Dewey, J. C. (2021). Ionic strength and pH effects on water–rock interaction in an unconventional siliceous reservoir: on the use of formation water in hydraulic fracturing. Energy Fuels, 35(22), 18414–18429. https://doi.org/10.1021/acs.energyfuels.1c02322

Cipolla, C. L., Lolon, E. P., Erdle, J. C., & Rubin, B. (2010). Reservoir Modeling in Shale-Gas Reservoirs. SPE Res Eval & Eng, 13(04), 638–653. https://doi.org/10.2118/125530-PA

Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938. https://doi.org/10.1306/61EEDDBE-173E-11D7-8645000102C1865D

Gabinet, M. P. (1985). Postsedimentatsionnie preobrazovaniya flisha Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Gabinet, M. P., & Gabinet, L. M. (1991). K geokhimii organicheskogo veshchestva bituminoznikh argillitov flishevoi formatsii Karpat. Geologiya i geokhimiya goryuchikh iskopaemikh, 76, 23–31. [in Russian]

Gabinet, M. P., Kulchitskii, Ya. O., & Matkovskii, O. I. (1976). Geologiya i poleznie iskopaemie Ukrainskikh Karpat (Part 1). Lvov: Izdatelstvo Lvovskogo universiteta. [in Russian]

Gurzhii, D. V., Gabinet, M. P., Kiselev A. Ye. i dr. (1983). Litologiya i porodi-kollektori na bolshikh glubinakh v neftegazonosnikh provintsiyakh. Kiev: Naukova dumka. [in Russian]

Hryhorchuk, K. H., & Senkovskyi, Yu. M. (2013). Dyskretne formuvannia rezervuariv “slantsevoho” hazu v eksfiltratsiinomu katahenezi. Heodynamika, 1(14), 61‒67. https://doi.org/10.23939/jgd2013.01.061 [in Ukrainian]

Hubych, I., Krupskyi, Yu., Lazaruk, Ya., & Syrota, T. (2012). Aktualni aspekty heolohii ta heokhimii slantsevoho hazu Volyno-Podillia. Heoloh Ukrainy, 1‒2, 135‒140. [in Ukrainian]

Isaacs, C. M. (1984). Geology and Physical Properties of the Monterey Formation, California. In SPE California Regional Meeting. SPE-12733-MS. Society of Petroleum Engineers. https://doi.org/10.2118/12733-MS

Jiang, S. (2012). Clay Minerals from the Perspective of Oil and Gas Exploration. In M. Valaškova, & G. S. Martynkova (Eds.), Clay Minerals in Nature – Their Characterization, Modification and Application. IntechOpen. https://doi.org/10.5772/47790

Klubova, T. T. (1988). Glinistie kolektori nefti i gaza. Moskva: Nedra. [in Russian]

Kolodii, V. V., Boiko, H. Yu., Boichevska, L. T., Bratus, M. D., Velychko, N. Z., Harasymchuk, V. Yu., Hnylko, O. M., Danysh, V. V., Dudok, I. V., Zubko, O. S., Kaliuzhnyi, V. A., Kovalyshyn, Z. I., Koltun, Yu. V., Kopach, I. P., Krupskyi, Yu. Z., Osadchyi, V. H., Kurovets, I. M., Lyzun, S. O., Naumko, I. M., . . . Shcherba, O. S. (2004). Karpatska naftohazonosna provintsiia. Lviv; Kyiv: Ukrainskyi vydavnychyi tsentr. [in Ukrainian]

Koltun, Yu. V. (1993). Source rock potential of the black formation of the Ukrainian Carpathians. Acta Geologica Hungarica, 2(36), 251–261.

Kondrat, О. R., & Hedzyk, N. M. (2014). Study of adsorption processes influence on development of natural gas fields with low permeability reservoirs. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 4(53), 7‒17.

Kosakowski, P., Koltun, Yu., Machowski, G., Poprawa, P., & Papiernik, B. (2018). The geochemical characteristics of the Oligocene – Lower Miocene Menilite Formation in the Polish and Ukranian Outer Carpathians: a review. Journal of Petroleum Geology, 41(3), 319–335. https://doi.org/10.1111/jpg.12705

Krupskyi, Yu. Z., Kurovets, I. M., Senkovskyi, Yu. M., Mykhailov, V. A., Chepil, P. M., Dryhant, D. M., Shlapinskyi, V. S., Koltun, Yu. V., Chepil, V. P., Kurovets, S. S., & Bodlak, V. P. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 2. Zakhidnyi naftohazonosnyi rehion. Kyiv: Nika-Tsentr. [in Ukrainian]

Kukhar, N. P., Petrovskyi, O. P., & Hanzhenko, N. S. (2013). Zastosuvannia heofizychnykh metodiv dlia poshukiv, rozvidky i rozrobky pryrodnoho hazu zi slantsevykh porid. Heodynamika, 2(15), 195‒197. https://doi.org/10.23939/jgd2013.02.195 [in Ukrainian]

Kurovets, I. M., Mykhailov, V. A., Zeikan, O. Yu., Krupskyi, Yu. Z., Hladun, V. V., Chepil, P. M., Hulii, V. M., Kurovets, S. S., Kasianchuk, S. V., Hrytsyk, I. I., & Naumko, I. M. (2014). Netradytsiini dzherela vuhlevodniv Ukrainy: Vol. 1. Netradytsiini dzherela vuhlevodniv: ohliad problemy. Kyiv: Nika-Tsentr. [in Ukrainian]

Kurovets, S. S. (2016). Naukovo-metodychni zasady otsinky vtorynnykh yemnostei porid-kolektoriv yak osnova efektyvnoho prohnozu naftohazonosnosti nadr [Extended abstract of Doctorʼs thesis]. Ivano-Frankivsk. [in Ukrainian]

Liehui, Z., Baochao, S., Yulong, Z., & Zhaoli, G. (2019). Review of micro seepage mechanisms in shale gas reservoirs. International Journal of Heat and Mass Transfer, 139, 144‒179. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.141

Loktiev, A. V., Pavliuk, M. I., & Loktiev, A. A. (2011). Perspektyvy vidkryttia pokladiv “slantsevoho“ hazu v mezhakh Volyno-Podilskoi okrainy Skhidno-Yevropeiskoi platformy. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(156–157), 5–23. [in Ukrainian]

Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnet shale. Journal of Sedimentary Research, 79(12), 848–861. http://doi.org/10.2110/jsr.2009.092

Lukin, A. Ye. (2010a). Slantsevii gaz i perspektivi yego dobichi v Ukraine. Statya 1. Sovremennoe sostoyanie problemi slantsevogo gaza (v svete opita osvoeniya yego resursov v SShA). Heolohichnyi zhurnal, 3, 17–33. https://doi.org/10.30836/igs.1025-6814.2010.3.219195 [in Russian]

Lukin, A. Ye. (2010b). Slantsevii gaz i perspektivi yego dobichi v Ukraine. Statya 2. Chernoslantsevie kompleksi Ukraini i perspektivi ikh gazonosnosti v Volino-Podolii i Severo-Zapadnom Prichernomore. Heolohichnyi zhurnal, 4, 7–24. https://doi.org/10.30836/igs.1025-6814.2010.4.215055 [in Russian]

Lukin, A. Ye. (2011a). O prirode i perspektivakh gazonosnosti nizkopronitsaemikh porod osadochnoi obolochki Zemli. Dopovidi NAN Ukrainy, 3, 114–123. [in Russian]

Lukin, A. Ye. (2011b). Priroda slantsevogo gaza v kontekste problem neftegazovoi litologii. Geologiya i poleznie iskopaemie Mirovogo okeana, 3, 70–85. [in Russian]

Lukin, A. Ye. (2016). O novikh geneticheskikh tipakh porod litosferi – vazhneishikh faktorakh formirovaniya kollektorov nefti i gaza. Tektonika i stratyhrafiia, 43, 5‒18. https://doi.org/10.30836/igs.0375-7773.2016.108272 [in Russian]

Monchak, L., Khomyn, V., Maievskyi, B., Shkitsa, L., Kurovets, S., Zderka, T., & Stasyk, I. (2013). Haz sharuvatykh nyzkoporystykh verkhnokreidovykh porid (slantsevyi haz) Skybovykh Karpat. Heoloh Ukrainy, 1(141), 56‒62. https://doi.org/10.53087/ug.2013.1(41).246559 [in Ukrainian]

Naumko, I. M., Kurovets, I. M., Zubyk, M. I., Batsevych, N. V., Sakhno, B. E., & Chepusenko, P. S. (2017). Hydrocarbon compounds and plausible mechanism of gas generation in “shale” gas prospective Silurian deposits of Lviv Paleozoic depression. Heodynamika, 1(22), 26–41. https://doi.org/10.23939/jgd2017.01.036

Nesterov, I. I., Ushatinskii, I. N., Malikhin, A. Ya., Stavitskii, B. P., & Pyankov, B. N. (1987). Neftenosnost glinistikh tolshch Zapadnoi Sibiri. Moskva: Nedra. [in Russian]

Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From Oil-Prone Source Rock to Gas-Producing Shale Reservoir – Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. In CPS/SPE International Oil & Gas Conference and Exhibition in China held in Beijing, China, 8–10 June 2010. SPE 131350. Society of Petroleum Engineers. https://doi.org/10.2118/131350-MS

Popp, I. T. (1995). Naftomaterynski vlastyvosti bituminoznykh kremenystykh vidkladiv Ukrainskykh Karpat. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, (92–93), 35–41. [in Ukrainian]

Popp, I. T. (2005). Okremi aspekty problemy litohenezu naftohazonosnykh vidkladiv kreidovo-paleohenovoho flishovoho kompleksu Peredkarpatskoho prohynu ta ukrainskykh Karpat. Chastyna 1. Sedymentohenez i postsedymentatsiini peretvorennia. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4, 43–59. [in Ukrainian]

Popp, I., Moroz, P., & Shapovalov, M. (2019). Litoloho-heokhimichni typy kreidovo-paleohenovykh vidkladiv Ukrainskykh Karpat ta umovy yikhnoho formuvannia. Heolohiia i heokhimiia horiuchykh kopalyn, 4(181), 116‒133. https://doi.org/10.15407/ggcm2019.04.116 [in Ukrainian]

Popp, I., Shapovalov, M., & Moroz, P. (2018). Mineralohichnyi ta heokhimichnyi aspekt problemy slantsevoho hazu (na prykladi chornykh arhilitiv zakhodu Ukrainy). Mineralohichnyi zbirnyk, 1(68), 184–186. [in Ukrainian]

Popp, I. T., Shapovalov, M. V., & Moroz, P. V. (2019). Chorni arhility zakhodu Ukrainy yak potentsiini porody-kolektory (mineraloho-heokhimichnyi aspekt problemy “slantsevoho hazu”). In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy III Mizhnarodnoi naukovoi konferentsii (pp. 42–47). Kyiv. [in Ukrainian]

Rauball, J. F., Sachsenhofer, R. F., Bechtel, A., Coric, S., & Gratzer, R. (2019). The Oligocene‒Miocene Menilite Formation in the Ukrainian Carpathians: a world-class source rock. Journal of Petroleum Geology, 42(4), 393‒415. https://doi.org/10.1111/jpg.12743

Ross, D. J. K., & Bustin, R. M. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927. http://doi.org/10.1016/j.marpetgeo.2008.06.004

Rudko, H. I., Hryhil, H. V., & Simachenko, H. V. (2017). Ekolohichna bezpeka rodovyshch vuhlevodniv netradytsiinoho typu v Ukraini. Kyiv; Chernivtsi: Bukrek. [in Ukrainian]

Samvelov, R. G. (1995). Zalezhi uglevodorodov na bolshikh glubinakh: osobennosti formirovaniya i razmeshcheniya. Geologiya nefti i gaza, 9, 5–15. [in Russian]

Schwalbach, J. R., Gordon, S. A., O’Brien, C. P., Lockman, D. F., Benmore, W. C., Huggins, C. A. (2009). Reservoir characterization Monterey Formation siliceous shales: tools and applications. In Contributions to the Geology of the San Joaquin Basin, California. Pacific Section American Association of Petroleum Geologists. MP 48. https://doi.org/10.32375/2009-MP48.7

Senkovskyi, Yu., Hryhorchuk, K., Hnidets, V., & Koltun, Yu. (2004). Heolohichna paleookeanohrafiia okeanu Tetis (Karpato-Chornomorskyi sehment). Kyiv: Naukova dumka. [in Ukrainian]

Senkovskyi, Yu. M., Hryhorchuk, K. H., Koltun, Yu. V., Hnidets, V. P., Radkovets, N. Ya., Popp, I. T., Moroz, M. V., Moroz, P. V., Rever, A. O., Haievska Yu. P., Havryshkiv, H. Ya., Kokhan, O. M., & Koshil, L. B. (2019). Litohenez osadovykh kompleksiv okeanu Tetis. Karpato-Chornomorskyi sehment. Kyiv: Naukova dumka. [in Ukrainian]

Senkovskyi, Yu. M., Koltun, Yu. V., Hryhorchuk, K. H., Hnidets, V. P., Popp, I. T., & Radkovets, N. Ya. (2012). Bezkysnevi podii okeanu Tetis. Karpato-Chornomorskyi sehment. Kyiv: Naukova dumka. [in Ukrainian]

Tisso, B., & Velte, D. (1981). Obrazovanie i rasprostranenie nefti. Moskva: Mir. [in Russian]

Visotskii, I. V., & Visotskii, V. I. (1986). Formirovanie neftyanikh, gazovikh i kondensatnogazovikh mestorozhdenii. Moskva: Nedra. [in Russian]

Vyalov, O. S., Gavura, S. P., Danish, V. V., Lemishko, O. D., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Smirnov, S. Ye., Smolinskaya, N. I., & Tsarnenko, P. N. (1988). Stratotipi melovikh i paleogenovikh otlozhenii Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Vyalov, O. S., Gavura, S. P., Danish, V. V., Leshchukh, R. I., Ponomareva, L. D., Romaniv, A. M., Tsarnenko, P. N., & Tsizh, I. T. (1981). Istoriya geologicheskogo razvitiya Ukrainskikh Karpat. Kiev: Naukova dumka. [in Russian]

Wilson, M. J., Shaldybin, M. V., & Wilson, L. (2016). Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I. Occurrence and interpretation of mixed-layer R3 ordered illite/smectite. Earth-Science Reviews, 158, 31‒50. https://doi.org/10.1016/j.earscirev.2016.04.004

Yan, B., Alfi, M., Wang, Y., & Killough, J. E. (2013). A New Approach for the Simulation of Fluid Flow in Unconventional Reservoirs through Multiple Permeability Modeling. In SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 30 September–2 October 2013. SPE 166173. https://doi.org/10.2118/166173-MS

Yevdoshchuk, M. I., & Bondar, H. M. (2019). Prohnozuvannia porid-kolektoriv v hlybokozanurenykh horyzontakh. In Heolohiia horiuchykh kopalyn: dosiahnennia ta perspektyvy: materialy III Mizhnarodnoi naukovoi konferentsii (pp. 69–73). Kyiv. [in Ukrainian]


Posted on

GEOCHEMICAL FEATURES OF STRONTIUM ACCUMULATION AND MIGRATION IN THE PEATS OF THE LVIV REGION

Home > Archive > No. 1–2 (187–188) 2022 > 58–70


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 58–70.

https://doi.org/10.15407/ggcm2022.01-02.058

Myroslava YAKOVENKO

Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine, Lviv, Ukraine, e-mail: myroslavakoshil@ukr.net

Abstract

The article is devoted to the study of geochemical characteristics of the distribution, accumulation and migration of strontium in the lowland peats of the Lviv Region, both laterally and vertically, and to identify the main factors influencing the formation of its concentrations.

A significant uneven distribution of concentration, high dispersion and variability (coefficient of variation – 116.61, standard deviation – 564.11) of Sr in peats within deposits, districts and regions both with depth and area of distribution and high content indicators were established Sr relative to clarks of the lithosphere, soils, plant ash (CC relative to the lithosphere = 1.42; CC relative to soil clarks = 1.94; Сs relative to background values in the soils of Ukraine = 4.56; CK relative to clarks of terrestrial plants = 1.61).

The content of Sr in the peat of the Lviv Region ranges from 40–3190 mg/kg (average content 483.75 mg/kg, median content (background content) – 250 mg/kg), which is due to natural-climatic, geological, lithological, hydrogeochemical and anthropogenic factors.

The features of the distribution and the degree of concentration of Sr in the peatlands of the Lviv Region are mainly influenced by the chemical-mineralogical-petrographic composition of the bedrocks of the wear area during their weathering; terrain, climatic, geomorphological, tectonic and hydrogeological conditions of the area, which determine the of the weathering processes of the rocks in the wear areas, the degree of transformation of terrigenous material in the weathering processes, the rate of accumulation of biomass and the rate of its decomposition; features of water and mineral nutrition of the peatland.

High concentrations of strontium in the peat of the Lviv Region reflect the local regional processes of the concentration of the element in the mass of peat and may indicate the accumulation of Sr of both natural and anthropogenic origin in the upper layers of peat profiles. There is an enrichment of Sr in the upper intervals of deposits (0–1 m) of deposits in the northeastern part of the Lviv Region (Malopoliska peat region) is observed.

Keywords

peat, peat deposit, strontium, microelement composition, concentration, Clark concentration, accumulation, migration

Referenses

Angino, E., Billings, G. K., & Andersen, N. (1966). Observed variations in the strontium concentration of seawater. Chemical Geology, 1, 145–153. https://doi.org/10.1016/0009-2541(66)90013-1

Boiko, T. I. (1995). Heokhimiia sirky ta strontsiiu v zoni tekhnohenezu sirkodobuvnykh pidpryiemstv Peredkarpattia [Extended abstract of Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Bowen, H. J. M. (1979). Environment Chemistry of the Elements. London; New-York; Toronto; Sydney; San-Francisco: Academic Press.

Buchynska, I., Lazar, H., Savchynskyi, L., & Shevchuk, O. (2013). Umovy utvorennia vuhillia plasta n8 Lvivsko-Volynskoho baseinu za heokhimichnymy danymy. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2, 32–41. [in Ukrainian]

Burkov, V. V., & Podporina, Ye. K. (1962). Strontsii. Trudi Instituta mineralogii, geokhimii i kristallografii redkikh metallov, 12, 180. [in Russian]

Chertko, N. K., & Chertko, E. N. (2008). Geokhimiya i ekologiya khimicheskikh elementov. Minsk: Izdatelskii tsentr BGU. [in Russian]

For, G., & Dzhons, L. (1974). Izotopnii sostav strontsiya v rossipyakh Krasnogo morya. In Sovremennoe gidrotermalnoe rudootlozhenie (pp. 141–148). Moskva: Mir. [in Russian]

Ivantsiv, O. Ye., & Uzhenkov, G. A. (1984). Geokhimicheskie osobennosti torfyano-bolotnogo litogeneza Prikarpatya. In Osadochnie porodi i rudi (pp. 215–220). Kiev: Naukova dumka. [in Russian]

Kabata-Pendias, A., & Pendias, X. (1989). Mikroelementi v pochvakh i rasteniyakh. Moskva: Mir. [in Russian]

Klos, V. R., Birke, M., Zhovynskyi, E. Ya., Akinfiiev, H. O., Amaiyukeli, Yu. A., & Klamens, R. (2012). Rehionalni heokhimichni doslidzhennia gruntiv Ukrainy v ramkakh mizhnarodnoho proektu z heokhimichnoho kartuvannia silskohospodarskykh ta pasovyshchnykh zemel Yevropy (GEMAS). Poshukova ta ekolohichna heokhimiia, 1, 51–66. [in Ukrainian]

Kushnir, S. V., Shuter, Ya. N., Pankiv, R. II., & Srebrodolskii, B. I. (1982). Osnovnie formi nakhozhdeniya strontsiya v sernikh rudakh Predkarpatya. In Geologiya i geokhimiya nemetallicheskikh iskopaemikh (pp. 102–108). Kiev: Naukova dumka. [in Russian]

Kushnir, S. V., Vivchar, O. I., & Boiko, T. I. (1995). Deiaki heokhimichni naslidky zastosuvannia “vapniakovo-sirchanoho dobryva”. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(88–89), 27–35. [in Ukrainian]

Kyrylchuk, A. A., & Bonishko, O. S. (2011). Khimiia gruntiv. Osnovy teorii i praktykum. Lviv: LNU imeni Ivana Franka. [in Ukrainian]

Lazar, H. (2017). Osoblyvosti poshyrennia strontsiiu u vuhilli plasta v6 Lvivsko-Volynskoho baseinu. Heolohiia i heokhimiia horiuchykh kopalyn, 1–2(170–171), 86. [in Ukrainian]

Noll, W. (1931). Über die Bestimmung des Strontiums in der Mineral- und Gesteinsanalyse. Zeitschrift für anorganische und allgemeine Chemie, 199(1), 193–208. https://doi.org/10.1002/zaac.19311990121

Odum, H. T. (1951). Notes on the Strontium Content of Sea Water, Celestite Radiolaria, and Strontianite Snail Shells. Science, 114(2956), 211–213. https://doi.org/10.1126/science.114.2956.211

Orru, H., & Orru, M. (2006). Sources and distribution of trace elements in Estonian peat. Global and Planetary Change, 53(4), 249–258. https://doi.org/10.1016/j.gloplacha.2006.03.007

Pampura, V. D., Sandimirova, G. P., & Brandt, S. B. (1991). Geokhimiya i izotopnii sostav strontsiya v gidrotermalnikh sistemakh. Nauka, Sibirskoe otdelenie. [in Russian]

Sklyarov, Ye. V., Barash, I. G., Bulanov, V. A., Gladkochub, D. P., Donskaya, T. V., Ivanov, A. V., Letnikova, Ye. F., Mironov, A. G., & Sizikh, A. I. (2001). Interpretatsiya geokhimicheskikh dannikh. Moskva: Intermetinzhiniring. [in Russian]

Sprynskyi, M. I. (1999). Litii, rubidii, tsezii i strontsii u pidzemnykh vodakh Karpatskoi naftohazonosnoi provintsii [Extended abstract of Candidateʼs thesis]. Instytut heolohii i heokhimii horiuchykh kopalyn NAN Ukrainy. Lviv. [in Ukrainian]

Turekian, K. K., & Kulp, J. L. (1956). The geochemistry of strontium. Geochimica et Cosmochimica Acta, 10(5–6), 245–296. https://doi.org/10.1016/0016-7037(56)90015-1

Voitkevich, G. V., Miroshnikov, A. Ye., Povarennikh, A. S., & Prokhorov, V. G. (1970). Kratkii spravochnik po geokhimii. Moskva: Nedra. [in Russian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2022). Heokhimichni osoblyvosti nakopychennia i mihratsii vazhkykh metaliv u torfakh Lvivskoi oblasti. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina, ceriia “Heolohiia. Heohrafiia. Ekolohiia”, 56, 105–121. https://doi.org/10.26565/2410-7360-2022-56-07 [in Ukrainian]

Yakovenko, M., Khokha, Yu., & Liubchak, O. (2021). Rozpodil khimichnykh elementiv u nyzynnykh torfakh Lvivskoi oblasti. Heolohiia i heokhimiia horiuchykh kopalyn, 3–4(185–186), 65–72. https://doi.org/10.15407/ggcm2021.03-04.065 [in Ukrainian]


Posted on

DEFORMATIONS IN THE THRUST ZONE BETWEEN THE ZELEMIANKA AND PARASHKA SKYBAS OF THE UKRAINIAN CARPATHIAN SKYBA NAPPE (HREBENIV QUARRY)

Home > Archive > No. 1–2 (187–188) 2022 > 48–57


Geology & Geochemistry of Combustible Minerals No. 1–2 (187–188) 2022, 48–57.

https://doi.org/10.15407/ggcm2022.01-02.048

Milena BOGDANOVA

Ivan Franko National University of Lviv, Ukraine, e-mail: milena_bogdanova@ukr.net

Abstract

In the article, based on own field observations, the deformation structures into the thrust zone of the Zelemianka Skyba (=thrust-sheet) onto the Parashka Skyba (the Ukrainian Carpathian Skyba Nappe) are described. They are exposed in the Hrebeniv quarry located in the Opir River basin (Lviv Region, Skole district). The tectonically disintegrated Stryi Formation (Upper-Cretaceous–Paleocene flysch) characterized by the rigid sandstone blocks (formed mainly as a result of boudinage) placed in a ductile clay matrix is represented in the Hrebeniv quarry. This formation is proposed to be classified as a “broken formation”, which is strongly tectonized, but retain their lithological and stratigraphic identity. It is a transitional element between the weakly deformed strata and tectonic mélange. Their characteristic features are: linearity of the distribution zone; significant monomictic composition and absence of exotic formations; the presence of an intensively tectonized matrix with clastolites (blocks) of less tectonized rocks of the same lithostratum (formation, series); the presence of newly formed hydrothermal minerals in clastolite cracks; the upper and lower contacts limiting the broken formation have a tectonic nature. An intensely tectonized matrix and a weakly tectonized rigid blocks belong to the same stratigraphic unit in a broken formation. The structural features suggest a brittle deformations in the studied rocks. Tectonic processes occurred in the completely lithified deposits. Thrust processes were accompanied by the formation of the duplexes, including antiformal stack duplexes, which are well expressed in the quarry. Duplexes are observed in different parts of the quarry, and the most representative ones are developed in its central section. Horses in the duplexes are characterized by a size of 1 to 3 meters here. They are generally subparallel, which is consistent with monoclinal bedding, however, they sometimes acquire an antiform appearance as a result of tectonic thrusting.

Keywords

Ukrainian Carpathians, Skyba Nappe, broken formation, thrust zone, deformations, duplexes

Referenses

Astakhov, K. P. (1989). Alpiiskaya geodinamika Ukrainskikh Karpat [Extended abstract of Candidateʼs thesis]. Moskovskii gosudarstvennii universitet. Moskva. [in Russian]

Bohdanova, M. I. (2001). Osoblyvosti vnutrishnoi budovy prynasuvnoi chastyny skyby Zelemianka. Visnyk Lvivskoho universytetu. Seriia heolohichna, 15, 144–151. [in Ukrainian]

Boyer, S. E., & Elliott, D. (1982). Thrust systems. Bulletin of the American Association of Petroleum Geologists, 66(9), 1196–1230. https://doi.org/10.1306/03B5A77D-16D1-11D7-8645000102C1865D

Festa, A., Pini, G. A., Ogata, K., & Dilek, Y. (2019). Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Research, 74, 7–30. https://doi.org/10.1016/j.gr.2019.01.003

Fossen, H. (2016). Structural Geology (2nd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781107415096

Hnylko, O. M. (2012). Tektonichne raionuvannia Karpat u svitli tereinovoi tektoniky. Stattia 2. Flishovi Karpaty – davnia akretsiina pryzma. Heodynamika, 1(12), 67–78. https://doi.org/10.23939/jgd2012.01.067 [in Ukrainian]

Kalinin, V. I., Hurskyi, D. S., & Antakova, I. V. (Eds.). (2006). Heolohichni pamiatky Ukrainy (Vol. 1). Kyiv: Derzhavna heolohichna sluzhba Ukrainy. [in Ukrainian]

Lukiienko, O. I., Vakarchuk, S. H., & Kravchenko, D. V. (2014). Strukturno-parahenetychnyi analiz (na tektonofatsialnii osnovi): Vol. 1. Epizona. Kyiv. [in Ukrainian]

McClay, K. R. (1992). Glossary of thrust tectonics terms. In K. R. McClay (Ed.), Thrust Tectonics (pp. 419–433). London: Chapman and Hall.

McClay, K. R., & Insley, M. W. (1986). Duplex structures in the Lewis thrust sheet, Crowsnest Pass, Rocky Mountains, Alberta, Canada. Journal of Structural Geology, 8(8), 911–922. https://doi.org/10.1016/0191-8141(86)90036-2

Schmid, S. M., Fügenschuh, B., Kounov, A., Maţenco, L., Nievergelt, P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K., & van Hinsbergen, D. J. J. (2020). Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78, 308–374. https://doi.org/10.1016/j.gr.2019.07.005

Starzec, К., Malata, E., Wronka, A., & Malina, L. (2015). Mélanges and broken formations at the boundary zone of the Magura and Silesian nappes (Gorlice area, Polish Outer Carpathians) – a result of sedimentary and tectonic processes. Geological Quarterly, 59(1), 169–178. https://doi.org/10.7306/gq.1173